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ON THE RANKS OF CERTAIN SEMIGROUPS OF
ORDER-PRESERVING PARTIAL ISOMETRIES OF A

FINITE CHAIN

B. ALI, M. A. JADA∗, AND M. M. ZUBAIRU

Abstract. Let Xn = {1, 2, . . . , n} be a finite chain, ODPn be
the semigroup of order-preserving partial isometries on Xn and
N be the set of all nilpotents in ODPn. In this work, we study
the nilpotents in ODPn and investigate the ranks of two subsemi-
groups of ODPn; the nilpotent generated subsemigroup 〈N〉 and
the subsemigroup L(n, r) = {α ∈ ODPn : |im α| ≤ r}.

1. Introduction

Let Xn = {1, 2, . . . , n} be a finite chain, Pn be the Partial trans-
formation semigroup on Xn and In be the set of all injective transfor-
mation on Xn. The set In is known to be an inverse subsemigroup of
Pn (in the sense that ∀α ∈ In there exist a unique α′ ∈ In such that
α = αα′α and α′ = α′αα′). This semigroup is more commonly known
as the symmetric inverse semigroup.

For a transformation α ∈ Pn, we denote the domain set and image
set of α as dom α and im α respectively, while the height of α is denoted
and defined as h(α)=|im α|.

A map α ∈ In is said to be order increasing (resp., order decreas-
ing) if, for all x ∈ dom α, x ≤ xα (resp. xα ≤ x); order preserving
if (for all x, y ∈ dom α) x ≤ y =⇒ xα ≤ yα; an isometry (i. e.,
distance preserving) if (for all x, y ∈ dom α) |xα − yα| = |x − y| and
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an order preserving partial isometry if it is both order-preserving and
isometry. Adopting the symbols used in [1], we shall denote by DPn

and ODPn the semigroup of partial isometries and the semigroup of
order-preserving partial isometries respectively. The semigroup In and
some of its subsemigroups have been well studied and its algebraic
and combinatorial properties were investigated over the years. Some
of these interesting results can be found in [7, 10, 11, 14, 15]. The
study of semigroup of partial isometries on a chain was only initiated
recently by Alkharousi et al. [1, 2], where some of the combinatorial,
algebraic and rank properties of the two semigroups DPn and ODPn

were investigated.

Let α be in Pn, then α is said to be a nilpotent if there exists m ∈ N
such that αm = 0. The study of nilpotents in some subsemigroups of
In have been considered by many authors and some delightful results
were obtained. See for example [3, 6, 8].

The main aim of this paper is to present the study of nilpotents in
ODPn.

It was shown among other things in Alkharousi et al. [1] that, the
semigroup ODPn (as an inverse semigroup) has rank n. As part of
what we want to achieve in this paper is to generalize this result and
find the rank of the subsemigroup L(n, r) = {α ∈ ODPn : |imα| ≤ r}
(1 < r ≤ n) of ODPn.

In this section we introduce some of the basic terminologies and also
quote some results from related literature which we will later need in
proving some of the results in this paper.

In section 2 we define nilpotents in ODPn and describe the nilpotent
generated subsemigroup 〈N〉 of ODPn.

In section 3 we define an equivalence relation on the subsets of Xn

and computed the order of each equivalence class. This equivalence
relations lead us to finding the minimal generating set for the inverse
subsemigroup

M(n, r) = {α ∈ 〈N〉 : |im α| ≤ r}.

Consequently the rank M(n, r) and 〈N〉 were obtained.
The results obtained in section 3 is extended to investigate the rank

of the ideal of ODPn which was obtained in section 4.
For standard concept in semigroup we refer to Howie [9] and Higgins

[12].
Let

DPn = {α ∈ In : (for all x, y ∈ dom α) |xα− yα| = |x− y|} (1.1)
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and

ODPn = {α ∈ DPn : (for all x, y ∈ dom α) x ≤ y =⇒ xα ≤ yα}
(1.2)

be the semigroup of partial isometries and the semigroup of order-
preserving partial isometries respectively. Then we have the following
lemma:

Lemma 1.1. [1, Lemma 1.1] DPn and ODPn are inverse subsemi-
groups of In.

For a transformation α, if xα = x for some x ∈ domα then x is
called a fix point of α. The set of all fix points of α is denoted by
F (α), that is F (α) = {x ∈ domα : xα = x}, while f(α) is defined as
the cardinality of the set F (α), that is f(α) = |F (α)|. The following
results are found useful in this paper:

Lemma 1.2. [1, Lemma 1.7] Let α ∈ ODPn and f(α) ≥ 1. Then α
is partial identity.

Lemma 1.3. Let α ∈ ODPn. If {1, n} ⊆ dom α then α is a partial
identity.

Theorem 1.4. [1, Theorem 2.6] Let ODPn be the semigroup of order
preserving partial isometries. Then |ODPn| = 3.2n − 2(n+ 1).

2. Nilpotents in ODPn

Let S be a semigroup with 0(zero) element. A non zero element a ∈ S
is said to be a nilpotent if there exist m ∈ N such that am = 0. Since
the semigroup ODPn is finite and contains a zero element (which is the
empty map) therefore, it is natural to ask about its nilpotent elements
and its nilpotent generated subsemigroup.

Let S be a semigroup, an element e in S is said to be an idempotent
if e2 = e. We write E(S) to denote the set of all idempotents in a
semigroup S.

Next, we have the following lemmas.

Lemma 2.1. [4, Lemma 2.1] Let α be in IOn such that h(α) < n,
then α is a nilpotent if and only if xα 6= x for every x ∈ dom α.

Since the semigroup ODPn is a subsemigroup of IOn, every nilpo-
tent/idempotent inODPn is also a nilpotent/idempotent in IOn. There-
fore, the above Lemma holds for ODPn as well.

Lemma 2.2. [8, corollary 2.7.3] The element α ∈ In is an idempotent
if and only if α is the identity transformation of some A ⊆ Xn. In
particular, In contains exactly 2n idempotents.
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The next lemma follows directly from Lemma (1.2), Lemma (2.1)
and Lemma (2.2).

Lemma 2.3. Let α be in ODPn such that h(α) ≥ 1, then α is either
a nilpotent or an idempotent.

Remark 2.4. It is clear that if h(α) = 0, then α is both nilpotent and
idempotent.

Let N be the set of all nilpotent elements in ODPn, Alkharousi [1,
Proposition 2.8] obtained the cardinality of the set N from combina-
torial point of view as the set of all elements of ODPn with zero fixed
points. Here we give an alternative proof of the Proposition using the
word nilpotents instead of fixed points, which (to our own opinion)
will fit better into the context of our work.

Proposition 2.5. Let N be the set of all nilpotents in ODPn. Then
|N | = 2n+1 − (2n+ 1).

Proof. Let E(ODPn) be the set of all idempotents in ODPn. From
Lemma (2.3) we have that

|ODPn| = |E(ODPn)|+ |N |+ 1,

it therefore follows from Theorem (1.4) and Lemma (2.2) that

|N | = 3(2n)− 2(n+ 1)− 2n = 2n+1 − (2n+ 1).

�

One of the interesting question one may ask pertaining the semigroup
that has nilpotents is that; can some of those non-nilpotent elements
be expressed as the product of nilpotents? The collection of all those
elements that can be express as product of nilpotents, together with the
nilpotent elements is what we called nilpotent generated subsemigroup.
If every element of a semigroup S can be expressed as a product of
some nilpotents, then S is called a semigroup generated by nilpotent
elements. Otherwise, the nilpotent elements can only generate a proper
subsemigroup. Next, we give the description of the subsemigroup 〈N〉
of ODPn generated by nilpotent elements. Let

α =

(
a1 a2 . . . ar
b1 b2 . . . br

)
(2.1)

be an element of ODPn with h(α) = r (1 ≤ r ≤ n). We have the
following theorem:

Theorem 2.6. For n ≥ 2, let α be defined by aiα = bi (1 ≤ i ≤ r) be
an element of ODPn with h(α) < n. Then α is a product of nilpotents
if and only if it fails to satisfies the condition a1 = 1 and ar = n.
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Proof. Let α be defined as in Equation (2.1) be an element of ODPn

with h(α) < n. By Lemma (2.3), we only need to consider when α is
idempotent (i. e., ai = bi∀(1 ≤ i ≤ r).

Now, Suppose that α fail to satisfy the condition: a1 = 1 and ar = n.
we shall consider two cases:

Case 1: a1 = 1 (ar 6= n). Then we can define a set C = {ci : ci =
ai + 1, (1 ≤ i ≤ n)} and express α as

α =

(
a1 a2 . . . ar
c1 c2 . . . cr

)(
c1 c2 . . . cr
a1 a2 . . . ar

)
a product of two nilpotents.

case 2: If a1 6= 1, then we can define the C = {ci : ci = ai − 1, ( 1 ≤
i ≤ n)}, and express α as product of two nilpotents just as in case 1.

Conversely, suppose for some k ∈ N that α can be written as

α = θ1θ2 . . . θk (2.2)

a product of k nilpotents and suppose by the way of contradiction that
a1 = 1 and ar = n, then from Equation (2.2) we have that dom α ⊆
dom θ1, and this implies that {1, n} ⊆ dom θ1 which by Lemma (1.3)
contradicts our assumption that θ1 is a nilpotent. �

Corollary 2.7. Let α be defined as in Equation (2.1) then α is a prod-
uct of nilpotent if and only if it satisfy one of the following conditions:

(I) a1 6= 1 and b1 6= 1;
(II) a1 6= 1, b1 = 1 and br 6= n;

(III) a1 = 1, b1 6= 1 and ar 6= n;
(IV) a1 = 1, b1 = 1 and br = ar 6= n;

Remark 2.8. We can observe that;

(1) By Corollary (2.7) elements of the nilpotent generated subsemi-
group 〈N〉 can be categorized into four different types. Hence-
forth, we shall say an element α ∈ 〈N〉 is of type m (where m
represents any of the conditions I, II, III, IV in the corollary)
if α satisfies condition m.

(2) Elements of ODPn that are not in 〈N〉 are partial identities of

the form:

(
1 . . . n
1 . . . n

)
(3) For any r in (2 ≤ r ≤ n), to select an element in item (2) above,

we fix 1 and n and select r−2 out of n−2. Therefore, the total
number of those elements is

∑n
r=2

(
n−2
r−2

)
= 2n−2.

The next theorem gives us the cardinality of the subsemigroup 〈N〉
generated by nilpotent elements.
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Theorem 2.9. Let N be the set of all nilpotents in ODPn, and 〈N〉
be the subsemigroup generated by those nilpotents. Then |〈N〉| = 11 ·
2n−2 − 2(n+ 1).

Proof. Let 〈N〉 be the nilpotent generated subsemigroup of ODPn.
From Theorem (1.4) and Remark (2.8) we have that;

|〈N〉| = 3 · 2n − 2(n+ 1)−
∑n

r=2

(
n−2
r−2

)
= 3 · 2n − 2(n+ 1)− 2n−2

= 11 · 2n−2 − 2(n+ 1).

�

3. Rank of Nilpotent Generated Subsemigroup

If a semigroup S is generated by nilpotent elements, then the cardi-
nality of the smallest subset consisting of only nilpotent elements that
generates S is called the nilpotent rank of S (written as nilrank(S)).
The study of nilpotent elements was initiated by Sullivan [13], after
which many other authors work on various subemigroups of Pn. See
for example [4, 5, 6].

Let N be the set of all nilpotents in ODPn and 〈N〉 be the subsemi-
group generated by those nilpotents. We have seen from Corollary (2.7)
that, 〈N〉 generates only a proper subsemigroup of ODPn. Our aim in
this section is to investigate the rank of 〈N〉. Let

L(n, r) = {α ∈ ODPn : |im α| ≤ r} (1 ≤ r ≤ n). (3.1)

And let
Kr = L(n, r)\L(n, r − 1). (3.2)

Then Kr is of the form Jr ∪ {0}, where Jr is the set of all elements of
ODPn whose height is exactly r. The product of any two elements in
Kr say α and β is of the form:

α ∗ β =

{
αβ, if |h(αβ)| = r;
0, if |h(αβ)| < r

Kr is called the Rees quotient semigroup on L(n, r). Also, let

M(n, r) = {α ∈ 〈N〉 : |im α| ≤ r} (3.3)

be inverse subsemigroup of ODPn generated by nilpotent elements of
heights less than or equals to r. And let

Wr = M(n, r)\M(n, r − 1) (3.4)

be the Rees quotient semigroup on M(n, r). Observe that M(n, r) ⊆
L(n, r), therefore Wr ⊆ Kr.
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Let Xn = {1, 2, . . . , n} be a finite chain and A = {a1, a2, . . . , ar} be
a subset of Xn with r number of elements (1 < r ≤ n). Adopting the
term used in [3], we shall say that A has k-jumps (k ∈ N) between the
elements ai and ai+1 (1 ≤ i ≤ r− 1), if ai+1− ai = k+ 1. And the sum
of all jumps in A is called the total jumps in A. Observe that if ai and
ai+1 are consecutive numbers, then k is zero in that case, and for any
r in (1 < r ≤ n), subsets of the form {1, . . . , r − 1, n} are subset that
has the maximum number of jumps. Therefore, the number k is in the
interval 0 ≤ k ≤ n− r.

Example 3.1. consider the set X9 = {1, 2, . . . , 9} and let r = 5,
then the subset {1, 3, 4, 5, 8} has 1-jump between it’s first and second
element and 2-jumps between it’s forth and fifth element. While the
subsets {1, 2, 3, 4, 5} and {3, 4, 5, 6, 7} has total jumps of zero each.

Before stating the main theorem of the section, we would first par-
tition the set Xn using some set theoretic terminology, so as to char-
acterize the elements of ODPn according their respective domain sets
and image sets.

Let Xn = {1, 2, . . . , n} and A = {a1 < a2 < . . . < ar}, B = {b1 <
b2 < . . . < br} be any two subsets of Xn with same cardinality say
r(1 ≤ r ≤ n). Define an equivalence relation ∼ on Xn as

A ∼ B if ∀i, j ∈ {1, 2, . . . , r}, |ai − aj| = |bi − bj|. (3.5)

Remark 3.2. It is clear from the definition ∼ that, if A ∼ B then:

(a) A and B must have the same jumps in the same respective
positions. And

(b) one can always define an order preserving partial isometry map-
ping between A and B.

We shall denote the equivalent class of a subset A of Xn by [A], that
is

[A] = {B ⊆ Xn : B ∼ A}. (3.6)

And we denote the set of all equivalent classes on Xn by Xn/ ∼.
From the definition of ∼, Equation (3.6) can be interpreted as

[A] = {B ⊆ Xn : ∀bi, bj ∈ B and ai, aj ∈ A (i, j = {1, 2, . . . r}), |bi−bj|
= |ai−aj|}. But A and B are ordered subset of Xn, therefore, |bi−bj| =
|ai − aj| =⇒ bi − bj = ai − aj. Thus,

[A] = {B ⊆ Xn : ∀bi, bj ∈ B and ai, aj ∈ A bi = ai + (bj − aj)}. (3.7)

Let lj = bj−aj (∀j ∈ {1, 2, . . . r}). Then, bi− bj = ai−aj =⇒ bi−ai =
bj − aj. Hence,

li = lj (∀i, j ∈ {1, 2, . . . r}). (3.8)
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Since, bj ∈ B ⊆ Xn, then bj ≤ n, which implies that lj = bj − aj ≤
n− aj. Thus,

lj ≤ n− aj. (3.9)

Also, 1 ≤ b1 =⇒ 1− a1 ≤ b1 − a1 = l1. This implies

1− a1 ≤ l1. (3.10)

From Equation (3.10), (3.9) (3.8), we have

1− a1 ≤ lj ≤ n− ar. ∀j ∈ {1, 2, . . . r}. (3.11)

Lemma 3.3. Let Xn be a chain and ∼ as defined in (3.5) be an equiv-
alence relation on Xn. Then for any A ⊆ Xn,

[A] = {B ⊆ Xn : ∀bi ∈ B; bi = ai+l, 1−a1 ≤ l ≤ n−ar} (i = {1, 2, . . . r})

Proof. It follows from Equation (3.7) and Equation (3.11) �

We shall call a given subset of Xn, a 1-subset if such subset contains
the element 1. Obviously, if an ordered subset contains 1, then this “1”
will always be the the first element of the set.
Lemma 3.4. Let ∼ as defined in (3.5) be an equivalence relation on
Xn, then in each equivalent class of ∼, there exist a unique 1-subset.

Proof. Let A = {a1, a2, . . . , ar} with ai < ai+1 (1 ≤ i ≤ r), be a subset
of Xn. If A is a not a 1-subset, then a1 must be equal to (1 + c) for
some c ∈ {1, 2, . . . n − 1}. Define a set B = {bi : bi = ai − c}, then
clearly B is a 1-subset and B ∼ A.

Next, we show that this 1-subset is unique in [A]. Suppose by the way
of contradiction, that there exist another set say D = {1, d2, d3, . . . dr}
which is also a 1-subset in [A]. Then, D ∼ B, implies that ∀j ∈
{1, 2, . . . , r} , |dj − 1| = |bj − 1| =⇒ dj − 1 = aj − 1 =⇒ dj = aj ∀j ∈
{1, 2, . . . , r}, which implies that D = B, hence a contradiction. There-
fore B is unique in [A]. �

Remark 3.5. For a given 1-subset, say A = {1, a2, . . . ar}, if A has total
jump of zero (that is all the elements of A are consecutive in Xn), then
ar = r, and if A has total jump of 1 (that is there exist two numbers
in A with a missing digit between them), then ar = r + 1. In general,
if a 1-subset A has a total jump of m(0 ≤ m ≤ n − r), then it’s last
element ar would be equals to r + m, therefore A can be written as
A = {1, a2, . . . r +m}.

The next lemma tells us the number of subsets in each equivalent
class of the equivalence relation defined in (3.5).
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Lemma 3.6. Let Xn be finite chain and ∼ be the equivalence relation
on Xn. Then the number of subsets in each equivalent class is n− (r+
m)+1, where r is the cardinality of the subsets and m is the total jump
in each class.

Proof. Let A ⊆ Xn and [A] be its equivalent class. Suppose without
lost of generality we consider A to be the 1-subset in that class, then
by Lemma (3.3) and Remark (3.5),

[A] = {B ⊆ Xn : ∀bi ∈ B; bi = ai + l, 0 ≤ l ≤ n− (r +m)}.

That is to say all the other elements of [A] will be obtained by trans-
lating it with a constant l (l = {0, 2, . . . , r}) from A. Therefore, the
other of [A] is n− (r +m) + 1.

�

To see what we have been explaining clearly, consider the following
example:

Example 3.7. Let X9 = {1, 2, . . . , 9}. Below is the list of subsets of
X9 with cardinality r = 5:

{1, 2, 3, 4, 5} {1, 3, 4, 5, 6} · · · {1, 2, 3, 4, 6} · · · {1, 2, 3, 4, 9} · · · {1, 6, 7, 8, 9}
{2, 3, 4, 5, 6} {2, 4, 5, 6, 7} · · · {2, 3, 4, 5, 7}...
{3, 4, 5, 6, 7} {3, 5, 6, 7, 8} · · · {3, 4, 5, 6, 8}
{4, 5, 6, 7, 8} {4, 6, 7, 8, 9} · · · {4, 5, 6, 7, 9}
{5, 6, 7, 8, 9}

(3.12)

In the example above, each column of subsets represents a distinct
equivalent class. The subsets in the first column has total jump of zero,
while subsets in the second (third, fourth and fifth) up to next column
have the total jump of 1 each. Thus, two different equivalent classes
of ∼ can have the same total jumps. The following lemma will give us
the exact number of equivalent classes with the same total jumps.

Lemma 3.8. Let Xn = {1, 2, . . . , n}. For a fix r (1 < r ≤ n) and
m (0 ≤ m ≤ n − r), the number of different equivalent classes with
total jump of m and cardinality r is

(
r+m−2
r−2

)
.

Proof. Let the 1−subset {1, . . . , r+m} represents each equivalent class
with total jump of m. Now, between 1 and r + m we have r + m − 2
elements in Xn and r − 2 elements in the 1-subset. So, to select a
particular 1−subset we only need to select r−2 elements from this r+
m− 2. Therefore, the total number of those 1−subsets is

(
r+m−2
r−2

)
. �
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Remark 3.9. (a) Note that for m = 0, we have just 1 (class), while
for m = n − r ( which is the maximum number m can reach)
we have

(
n−2
r−2

)
number of classes. And that is the number of

subsets of the form {1, . . . , n} that characterized elements of
ODPn that are not in 〈N〉.

(b) Observe also that, by Lemma (3.6), those subsets {1, . . . , n} are
the only elements in their own respective equivalent classes (i.
e., the order of their equivalent classes is just one).

Now, take the 1-subset in each equivalent class and fixed it as domain
and define an order-preserving partial isometry mapping with the re-
maining sets in that equivalent class, with the exception of the 1-subset
itself (that is excluding the mapping of the 1-subset into itself). Then
by Lemma (3.6) we will have n − (r + m) number of order-preserving
partial isometries in each class. It should be observed that, subsets of
the form {1, . . . , n} define no mapping in their own equivalent classes,
while in the remaining equivalent classes mappings defined there are
all nilpotents.

Let G be the set of all mappings having 1-subset as domain, then
we have the following lemma which we need in proving the proposition
that follows it.

Lemma 3.10. Let α ∈ G. Then for any β, γ ∈ Wr, α = βγ implies
that either β is in G and γ is not, or γ is in G and β is not.

Proof. Let α ∈ G and β, γ ∈ Wr such that α = βγ. By the way of
contradiction, suppose that neither β ∈ G nor γ ∈ G. Then by our
assumption that α = βγ, and β, γ ∈ Wr (having the same height), we
have that

dom α = dom β
im β = dom γ
im γ = im α.

(3.13)

Now dom α = dom β (which is a 1-subset) and β not in G, implies
that dom β = im β which also implies from Equation(3.13) that dom γ
is a 1-subset. But γ also not in G, therefore dom γ = im γ. And so,
we have: dom α = dom β = im β = dom γ = im γ = im α, which
implies that dom α = im α contradicting our assumption that α is in
G. Therefore, if α = βγ, then either β or γ must be in G.

Next, we show that both β and γ cannot be in G at the same time.
It is clear that, if both β and γ are in G, then their domain sets must
be 1-subset and their image sets are not. And so, im β 6= dom γ, which
implies that βγ 6= α. �
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The next Proposition will give us the minimal generating set for the
subsemigroup Wr, an inverse subsemigroup of M(n, r).

Proposition 3.11. Let G be the set of all mappings having 1-subset
as domain. For n ≥ 4 and 1 < r ≤ n − 1, the set G is the minimal
generating set for Wr as an inverse semigroup.

Proof. We first show that G is a generating set for Wr, we then show
that it is indeed the minimal generating set. Let α be defined as in (2.1)
be an element of Wr. Then by Remark (2.8) α must be one of the
four types. Now, if α is of type I, then by Lemma (3.4), there ex-
ists a 1-subset say {1, c2, . . . , cr} which will be of the same class with
{a1, a2, . . . , ar} and {b1, b2, . . . , br} and that(

a1 a2 . . . ar
1 c2 . . . cr

)(
1 c2 . . . cr
b1 b2 . . . br

)
= α

If α is of type II then α−1 is in G and if α is of type III then α is in
G. Now if α is of type IV , that is

α =

(
1 a2 . . . ar
1 a2 . . . ar

)
,

(ar 6= n). Then, there exist a subset say {c1, c2, . . . , cr} where ci =
ai + 1 (i = 1, 2, . . . , r), which is in the same equivalent class with
{1, a2, . . . , ar} such that(

1 a2 . . . ar
c1 c2 . . . cr

)(
c1 c2 . . . cr
1 a2 . . . ar

)
= α.

Now let G′ ⊆ Wr such that 〈G′〉 = Wr and suppose that there exist
some α′ ∈ G say

α′ =

(
1 a2 . . . ar
b1 b2 . . . br

)
such that α′ is not in G′. Then, since α′ ∈ Wr and 〈G′〉 = Wr there
exist some β, γ ∈ G′ such that βγ = α′.

Claim: {β, γ} generates no other non-zero element in Wr apart from
α′ and (α′)−1.

Proof of the claim: Let β, γ ∈ G′ such that βγ = α′, by Lemma (3.10)
either β in G or γ in G, but not both.
Case I: β ∈ G; then β and γ must be of the form:

β =

(
1 a2 . . . ar
c1 c2 . . . cr

)
and γ =

(
c1 c2 . . . cr
b1 b2 . . . br

)
(c1 6= 1).

Therefore, γβ = β−1γ = β−1γ−1 = 0 in Wr, and βγ−1 = α′ if
{c1, c2, . . . , cr} = {b1, b2, . . . , br}, otherwise is 0, while γ−1β−1 = (α′)−1.
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Case II: γ ∈ G; Then β and γ must be of the form:

β =

(
1 a2 . . . ar
1 a2 . . . ar

)
and γ =

(
1 a2 . . . ar
b1 b2 . . . br

)
(b1 6= 1).

It follows that
βγ = β−1γ = α′,

βγ−1 = β−1γ−1 = 0 = γβ,

γ−1β = γ−1β−1 = (α′)−1.

In both cases, {β, γ} generate only α′ and (α′)−1. Therefore, |G′| ≥ |G|.
Hence, G is the minimal generating set for Wr. �

To find the generating set for M(n, r), we need the following propo-
sition:

Proposition 3.12. For n ≥ 4, let Jr = {α ∈ ODPn : |im α| = r}
be the set of all elements of ODPn whose height is exactly r and N be
the set of all nilpotents in ODPn. Then 〈Jr ∩N〉 ⊆ 〈Jr+1 ∩N〉 for all
1 < r ≤ n− 3.

Proof. Let α =

(
a1 a2 . . . ar
b1 b2 . . . br

)
be an element of 〈Jr ∩N〉, essen-

tially we consider two cases (that is when α is nilpotent and when α is
idempotent).

Case (I): If α is an idempotent, then α is either of type or type IV .
Suppose α is of type I, let

t = max{x : x ∈ X\dom α}
and

s = max{x : x ∈ X\dom α andx 6= t}
then t 6= 1 and s 6= 1 (since |X\dom α| ≥ 3).

Now suppose without lost of generality that t is between ai and ai+1

and s is between aj and aj+1. Define β and γ as

β =

(
a1 a2 . . . aj aj+1 · · · ai t ai+1 . . . ar
b1 b2 . . . bj bj+1 · · · bi t bi+1 . . . br

)
and

γ =

(
b1 b2 . . . bj s bj+1 · · · bi bi+1 . . . br
b1 b2 . . . bj s bj+1 · · · bi bi+1 . . . br

)
It is clear that both β and γ are elements of 〈Jr+1 ∩N〉 and α = β γ.

If α is of type IV , we let t = min{x : x ∈ X\dom α} and s =
min{x : x ∈ X\dom α and x 6= t} (clearly t 6= n and s 6= n) then β
and γ are elements of 〈Jr+1 ∩N〉 and α = βγ.
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Case (II) If α is a nilpotent: Suppose ai > bi ∀i, then by Corol-
lary (2.7) α is either of type I(a1 6= 1 and b1 6= 1), or type II(a1 6= 1,
b1 = 1 and br 6= n). If α is of type I, we must have that a1 > b1 > 1.
Define

β =

(
a1 − 1 a1 a2 . . . ar
b1 − 1 b1 b2 . . . br

)
,

then br < ar ≤ n and 1 ≤ b1 < a1. Therefore, β is in 〈Jr+1 ∩N〉. Also,
define γ as

γ =

(
b1 b2 . . . bi t bi+1 . . . ar
b1 b2 . . . bi t bi+1 . . . br

)
where t = min{x : x ∈ X\im β}. It is clear that t 6= n (since
|X\im β| ≥ 2), therefore, γ is also in 〈Jr+1 ∩N〉 and α = βγ.

But if α is of type II, we first consider a case where α has 0 total
jump and ar = n (note that a1 ≥ 3 since h(α) ≤ n− 3) and define

β =

(
a1 − 1 a1 a2 . . . ar

1 2 3 . . . r + 1

)
and

γ =

(
2 3 . . . r + 1 r + 2
1 2 . . . r r + 1

)
.

Otherwise we let t = max{x : x ∈ X\dom α} and define

β =

(
a1 a2 . . . ai t ai+1 . . . ar
1 b2 . . . bi tβ bi+1 . . . br

)
where tβ = bi − ai + t. And let s = min{x : x ∈ X\im β} and define

γ =

(
1 b2 · · · bj s bj+1 · · · bi bi+1 . . . br
1 b2 · · · bj s bj+1 · · · bi bi+1 . . . br

)
Note that tβ = bi − ai + t < t ≤ n. Therefore, β, γ ∈ 〈Jr+1 ∩ N〉 and
α = βγ.

Now suppose ai < bi ∀i, then α is either of type I or type III. If α
is of type I, then α−1 is also of type I with ai < bi, and if α is of type
III, then α−1 is of type II with ai < bi. In both cases α = γ−1β−1

where β, γ are as defined in the respective previous cases.
�

Remark 3.13. Observe that by the above Proposition, for 1 < r ≤ n−2
the set G is the minimal generating set for the whole M(n, r) as well.
Now, the task of finding the rank of M(n, r) is reduced to just finding
the cardinality of the set G.

But before then, we cite the following lemma from [1] which we need
in proving the theorem.
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Lemma 3.14 ([1]). For r, s, t ∈ N such that r > s,

r−s∑
i=0

(
r − i
s

)(
i+ t

t

)
=

(
r + t+ 1

s+ t+ 1

)
.

Theorem 3.15. For n ≥ 4 and 1 < r ≤ n− 2, the rank of M(n, r) as
an inverse semigroup is (

n− 1

r

)
.

Proof. From Lemma (3.8) and paragraph after Remark (3.9) the num-
ber of elements of G for any given total jump of m is

(n− (r +m))

(
r +m− 2

r − 2

)
.

Observe that subsets that characterized elements in G have total jumps
m ranging from 0 to n− (r+ 1) (since subsets that have m = n− r are
subsets of the form {1, . . . , n} which are not in G). Therefore,

|G| =
n−(r+1)∑
m=0

(n− (r +m))

(
r +m− 2

r − 2

)

=

(n−r)−1∑
m=0

(
(n− r)−m

1

)(
m+ (r − 2)

r − 2

)
Applying Lemma (3.14) we have |G| =

(
n−1
r

)
. �

Corollary 3.16. The rank of M(n, n− 2) is n− 1.

Proof. Follows directly by substituting for r = n−2 in Theorem (3.15)
above. �

Theorem 3.17. Let 〈N〉 be the nilpotent generated subsemigroup of
ODPn. Then, the rank of 〈N〉 as an inverse subsemigroup is n.

Proof. Let 〈N〉 be the nilpotent generated subsemigroup of ODPn,
from the above corollary, the rank of M(n, n−2) is n−1, and elements
of 〈N〉 that are not in M(n, n − 2) are those of 〈N〉 ∩ Jn−1 (since the
only element of ODPn with height n is the identity element which is
clearly not in 〈N〉.

Let

η =

(
1 2 . . . n− 1
2 3 . . . n

)
Garba in [3] have shown that, the only elements of 〈N〉 ∩ Jn−1 are

η, η−1, η−1η, and ηη−1.
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which are generated by a single element η, therefore, the rank of 〈N〉
is (n− 1) + 1 which is equal to n. Hence the proof. �

4. Rank of Ideals of ODPn.

We extend the result obtained in section three to compute the rank
of ideals of ODPn. Although, Alkharousi [1] investigated the rank
of ODPn among other things and shown that; ODPn as an inverse
semigroup has rank n. We want to generalize this result to find the
rank of the ideal L(n, r) defined in Equation (3.1). To do that, we
first study elements of ODPn that are neither nilpotents nor can be
expressed as product of nilpotents (i. e., elements of ODPn that are
not in 〈N〉). We have seen from Remark (2.8), these elements are
partial identities of the form(

1 . . . n
1 . . . n

)
.

It is clear that, multiplying any two element of this form will yield
another element of the same form, as such we have the following lemma:

Lemma 4.1. Let EN = {α ∈ ODPn : α is not in 〈N〉}, then EN is
a subsemigroup of ODPn.

Now, for (1 < r ≤ n), let D(n, r) = {α ∈ EN : |im α| ≤ r} and
Qr = D(n, r)\D(n, r− 1) be the subsemigroup of Kr generated by the
elements of EN , then we have the following:

Lemma 4.2. Let Kr be the Rees quotient semigroup on L(n, r), and
let Wr and Qr be subsemigroups of Kr generated by nilpotent elements
and elements of EN respectively. Then Kr is a disjoint union of Wr

and Qr.

Proof. It follows from Remark (2.8) and the fact that Wr and Qr are
complement to each other. �

Suppose we extend the set G constructed in section three (i. e.,
the set of all nilpotent elements in Wr whose domain is a 1-subset) to
another set Z = G∪Qr, (i. e., by adding elements of Qr) then we have:

Lemma 4.3. Let α be in Qr then for any β, γ ∈ Kr, α = βγ if and
only if α = β = γ

Proof. Let α be in Qr such that α = βγ for some β, γ ∈ Kr, since
h(α) = h(βγ) we have that

dom α = dom β
im β = dom γ
im γ = im α.

(4.1)
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From the above equations, and the fact that α ∈ Qr, we have {1, n} ⊆
dom(β), which implies from Lemma (1.3) that dom β = im β. Also,
{1, n} ⊆ im γ implies that im γ = dom γ. Therefore, dom α =
dom β = im β = dom γ = im γ = im α, which implies that α = β = γ.

Conversely suppose that α = β = γ, then, since α is an idempotent;
βγ = αα = α2α. �

Next, we have a proposition analogue to Propostion(3.11)

Proposition 4.4. For n ≥ 4 and (1 < r ≤ n−1), let Z be the union of
Qr the set of all nilpotents in Kr whose domain is a 1-subset (Qr ∪G)
then Z is a minimal generating set for Kr as an inverse semigroup.

Proof. We first show that the set Z is a generating set for Kr; Let α
be in Kr, by Lemma (4.2) α is either in Wr or in Qr. If α is in Wr,
then by Proposition (3.11), α is generated by elements of G ⊆ Z, and
if α is in Qr, then α is in Z

For the minimality of Z; we show that if Z ′ is any other generating
set for Kr, then |Z ′| ≥ |Z|. Now let Z ′ ⊆ Kr such that 〈Z ′〉 = Kr,
suppose that there exist say δ ∈ Z such that δ is not in Z ′, then δ must
come from Wr. For if δ is in Qr, then by Lemma (4.3) we cannot find
any other elements in Kr ⊇ Z ′ that can generate δ, contradicting our
assumption that Z ′ generates Kr. Now δ 6∈ Z ′ and 〈Z ′〉 = Kr imply
that δ = ηθ for some η, θ ∈ Z ′.

Claim: {η, θ} generates no other non-zero element in Kr apart from
δ and δ−1.
Proof of the claim: Let η, θ ∈ Z ′ such that ηθ = δ. Since δ, η and

θ are all in Kr, we must have dom δ = dom η and that implies that η
cannot be in Qr (since {1, n} * dom η). Also, (for the same reason)
im δ = im θ which implies that θ is not in Qr (since {1, n} * im θ).
Therefore, η and θ must be elements of Wr. Thus δ, η and θ are all
elements of Wr, hence, the result follows from Proposition (3.11). �

Next, we give an extension of Proposition (3.12) - where we will
see that, the set Z constructed above generates not only Kr but also
L(n, r); for r ≤ n− 1.

Proposition 4.5. For n ≥ 4 and r ≤ n − 2, let Jr = {α ∈ ODPn :
|imα| = r} be the set of all elements of ODPn whose height is exactly
r. Then 〈Jr ∩ ODPn〉 ⊆ 〈Jr+1 ∩ ODPn〉.

Proof. Let

α =

(
a1 a2 . . . ar
b1 b2 . . . br

)
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be an element of 〈Jr−1 ∩ ODPn〉, then |X\domα| ≥ 2. Now let t =
max{x : x ∈ X\domα} and s = min{x : x ∈ X\domα}, suppose
without lost of generality that t is between ai and ai+1 and s is between
aj and aj+1. Define β and γ as

β =

(
a1 a2 . . . aj aj+1 · · · ai t ai+1 . . . ar
a1 a2 . . . aj aj+1 · · · ai t ai+1 . . . ar

)
and

γ =

(
a1 a2 . . . aj s aj+1 · · · ai ai+1 . . . ar
b1 b2 . . . bj sγ bj+1 · · · bi bi+1 . . . br

)
where

sγ =

{
bj − aj + s, if s > a1;
bj+1 − aj+1 + s, if s < a1

then β and γ are elements of 〈Jr+1 ∩ ODPn〉 and βγ = α. Hence α is
in 〈Jr+1 ∩ ODPn〉. �

Observe here also that, the task of finding the rank of L(n, r) is
reduced just to finding the cardinality of the set Z

Theorem 4.6. For n ≥ 4 and 1 < r ≤ n − 1, the rank of L(n, r) as
an inverse semigroup is (

n− 1

r

)
+

(
n− 2

r − 2

)
.

Proof. Since Z is a disjoint union of G and Qr, it follows from Theo-
rem (3.15) and the fact that cardinality of Qr is

(
n−2
r−2

)
. Hence

|Z| =
(
n− 1

r

)
+

(
n− 2

r − 2

)
.

�

Corollary 4.7. [3, Theorem 3.2(a)] Let 1Xn be an identity element of
ODPn. Then the rank of ODPn\{1Xn} as an inverse semigroup is
n− 1.

Proof. Since the only element of ODPn height n is the identity element
{1Xn}, therefore, ODPn\{1Xn} = L(n, n−1), and computing the rank
of L(n, n− 1) from Theorem (4.6) we obtain n− 1. �

Corollary 4.8. [3, Theorem 3.2(b)] The rank of ODPn as an inverse
semigroup is n.

Proof. Follows from Corollary (4.7) above. �
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