ترجیح طعمه و سوئیچینگ با التوری سبز Chrysoperla carnea و روی شتهی سبز Aphis gossypii مربکات

محیوبه مرادی ـ مهدی حسن‌پور ۹۷، علی گلی‌زاده ـ سید علی اصغر فتحی ۱

- گروه گیاه‌پرورشکی، دانشگاه کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

(تاریخ دریافت: ۹۸/۱۱/۳۰)
(تاریخ پذیرش: ۹۸/۹/۲۰)

چکیده

پژوهشی بر روی شتهی Chrysoperla carnea بالعده سبز Aphis gossypii با تکنیک انتخاب معنا نشان داد که تشکیل دهنده سبز مربک این میوه از این دو مورد مطالعه قرار گرفت. در آزمایش روش برگ پرتاب‌های انجام شد. نتایج نشان داد که وقتی شته‌های مربکات با شتهی جالایی به‌طور تصادفی انتخاب کردند، طعمه واگذاری داده که در انتخاب مربکات با شته‌های مختلف از شتهی جالایی: شته‌های مربکات تفاوت معنی‌داری در میزان مقدار جالایی بیشتری را داشتند. در روش واگذاری معنی‌دار طعمه، واگذاری میزان در دو مورد و سوم شکارگر بین شتهی سبز مربکات بیشتری بود که در روش واگذاری طعمه، جالایی بیش از دو مورد در میان میان مقدار داد. گروه واگذاری طعمه و تراکم آن روی ویژگی‌های زیرداری اثراتی بر التوری سبز می‌تواند.

واژه‌های کلیدی: کنترل بیولوژیک، برهمکش شکارگر، آزمون های انتخابی و غیر انتخابی، شاخ‌های ترجیح

hassanpour@uma.ac.ir
مقه‌مهم‌های درختان مرکبات همکاران، ترجمه طعم و سینجه‌گی بال‌شیری‌های سیز روسی در اثر سیز مرکبات و شته‌های

بر اکثر کشورهای بین‌المللی، ابزار انبوه و قابلیت سازگاری با در مزرعه‌نوسیبی سایر کشورگاه‌ها بیشترین
توخواش را به عنوان یکی از مهم‌ترین در کنترل خشک‌سالی آفتاب به رافیه‌کاره‌ی علی (2003; 2012) آمده است.

ویژه‌نگار فیتوکسیژن‌های متفاوت از خانواده Toxoptera aurantii Boyer de Fonscolombe و Toxoptera citricida Kirkaldy
بوده و به طور مستقیم و غیر مستقیم به مرکبات Aphis gossypii Glover Aphis spiraelola Patch

در دنیای طبیعت و فیزیولوژی مشاهده شده است. در کنترل آنها شامل Aphis gossypii A. spiraelola

رکورد‌های بیشترین فراوانی و وضعیت بیشتر یا کنترل گونه‌ای است. Miyauchi (2006)

به طور معمول برای کنترل جمعه‌شده از اکوسیستم‌های کشاورزی، حشره‌کش‌های مختلف مورد استفاده قرار می‌گیرد. اما در طی بیشتر

مورد استفاده از حشره‌کش‌ها باعث مزگ و میزان تلفات

می‌شود. این تحقیق به دست آمده که احتمال این است که در کنترل آتاق‌های در اکوسیستم‌های

در کنترل طیف‌ها موفقیت داشته و باعث افزایش کنترل جمعه‌ی آنها در کنترل گونه‌های مختلف در فرار و ترکیبی از

عوامل و یا عوامل دیگری باشد. (Eubank and Denno, 2000) در کنترل جغدی‌ها شکارگرگاهی عاینه‌ای برای فهم کارایی

حشرات به عنوان عوامل کنترل بیولوژیکی ضروری است. (Eubank and Denno, 2000) (Alaee and Allahyari, 2013)

کنترل بیولوژیکی بدون مطالعه کردن ترکیب غذایی عوامل کنترل بیولوژیکی به ویژه دردماشی‌های طبیعی که قرار است در

محیط‌های طبیعی انتقال کند، دارای اهمیت کاربردی می‌باشد. (2013) به طور معمول، دارا بودن ترکیب تیپ به یک نوع طبیعی ویژه، یکی

برای انتخاب آن عامل برای کنترل آن طبیعی خاص به شمار می‌رود (Butler and O’Neil, 2008).

ر فی وتی اثر و انتخاب عوامل کنترل

پیوندیک از جمله شکارگرگاه‌ها بودارد (Waage, 1990) یکی از این مطالعات به عنوان یکی از روش‌های

از طریق در کنترل جمعه‌ی مرنگ و غیر مستقیم به مرکبات

روابط بین دو یا چند گونه مختلط طعمه را داشته باشند اغلب یکی

از گونه‌ها را به گونه‌ی دیگر ترکیب می‌دهد. این امر موجب

می‌شود طعمه‌ای مرجع بیشتر از حد اندازه مورد تغذیه

شکارگر قارچ کردن (Jervis, 2005) (Jervis, 2005)

نخجستگی متفاوت، زمان متفاوت سه‌هم شده در انواع

زیستگاه‌ها و توانایی طعمه‌ای مختلف در فرار و ترکیبی از

عوامل و یا عوامل دیگری باشد. (Hassell, 1978)

در کنترل جغدی‌ها شکارگرگاهی عاینه‌ای برای فهم کارایی

حشرات به عنوان عوامل کنترل بیولوژیکی ضروری است. (Eubank and Denno, 2000) (Alaee and Allahyari, 2013)

کنترل بیولوژیکی بدون مطالعه کردن ترکیب غذایی عوامل کنترل بیولوژیکی به ویژه دردماشی‌های طبیعی که قرار است در

محیط‌های طبیعی انتقال کند، دارای اهمیت کاربردی می‌باشد. (2013) به طور معمول، دارا بودن ترکیب تیپ به یک نوع طبیعی ویژه، یکی

برای انتخاب آن عامل برای کنترل آن طبیعی خاص به شمار می‌رود (Butler and O’Neil, 2008).
ترجيح یک شکارگر نسبت به یک طعمه در مقایسه با طعمه‌ای دیگر ممکن است تحت تأثیر تراکم نسبی طعمه‌هایی که در اختیار شکارگر قرار می‌گیرد، تغییر کند. این وقایع به نام سولویچینگ نامیده می‌شود به همکاری کاراپی دشمنان طبیعی است، هنگامی رخ می‌دهد که شکارگر به طعمه‌هایی که از تراکم بلاپایی بروخوردار است، بیشتر حمله نمی‌کند و طعمه‌های تراکم کمتر را نادیده بگیرد.

(Vogt et al., Hassanpour et al., 2015) می‌نویسند که طعمه‌ای در تراکم کمتر، از شکارگری در امان مانده و طعمه‌ای در تراکم بیشتر مورد حمله و تغییر قرار می‌گیرد. در این شرایط که نسبت طعمه‌ای نیز تراکم بالاتر مورد تغییر قرار می‌گیرد، شکارگر قرار می‌گیرد، هیچ کدام از دو گونه طعمه نه متفاوت می‌شوند و در جمع‌آوری آنها بیش از حد افزایش می‌یابد (Oaten and Murdoch, 1975; Symondson et al., 2002).

در این تحقیق، برای مطالعه کاراپی بالاتری در carnea درودی گونه، به دست ثانی‌سازی سپرک و شته‌های گروهی برخی ویژگی‌های رفتاری این شکارگر شامل ترجیح غذاهای و سولویچینگ مورد بررسی قرار گرفت. نتایج حاصل از این تحقیق می‌تواند بخشی از روابط شکارگر-شکار

می‌باشد.

مواد و روش‌ها

شرایط پروپر حشرات و انجام آزمایش‌ها دمای ۲۷±۲ درجه سلسوس، رطوبت نسبی ۵۵±۵ درصد و دوره نوری ۱۶ ساعت و روزانه ۸ ساعت نارسایی بود.

به‌طور کلی شته‌های سپرک و شته‌های جالیوس و پروپر آنها برای ایجاد جمعیت اولیه شته‌های سپرک و شته‌های جالیوس، ابتدا شته‌های بالا و گیاه‌های آلوهانه به هم یکی از این شته‌ها از نظر مغذی محتوای آنتی‌شکارگر قابل توجه در استان مازندران جمع آوری شد. پس از اطمینان از صحت گونه‌ها،
که به منظور تهیه سوادکاری به قطع ۲ سانتی‌متر رمی‌سرویش آنها ایجاد و یا پارچه‌ی توری در کنار گیاهانه شده‌بود، انجام شد. جهت انجام این کار برای رونمایی داخل هر فرهنگ توری مقداری زل آگاهی در رونمایی نسخه‌ها و قابلیتی در سرد و گرمی شدن تمام زل، یک برگ کامل پر فراق به مساحت تقریبی ۱۵٪ متری بیان می‌شود. این طوری که پیشرفت در این‌ها می‌تواند با راههای (ترکیبی از سنین سرویش و چهارم) شش سیز مربوطات و شیتی گنجایش داشته شده‌شده می‌باشد. اگرکه در ترافیک‌های ۶۰ و ۶۰ هم‌بینه برای بارور سیز یا سرویش شکارگی (با استفاده از ملکوم روی برگ به صورت چندانگاه متقابل شد. سپس شکارگی در سوی سر و در سنین پالووی سیز، که قبل از شروع آزمایش به مدت ۲۴ ساعت گردنگ نگه داشته شده باشد به رونمایی بدون آن با در ترافیک‌های سیز و گنجایش با سوی نادریابی شکارگی از داخل فیلتر پری‌های و با شمارش تعداد زندگی مناده، تعداد طعمه‌ها خورده‌شد.

\[\beta_1 = \frac{\log \left(\frac{A_1}{A_2} \right)}{\log \left(\frac{A_3}{A_4} \right) + \frac{\log \left(\frac{A_5}{A_6} \right)}{\log \left(\frac{A_7}{A_8} \right)}} \]

در این معادله، \(\beta_1 \) ترکیب شکارگی برای طعمه‌ای نوع اول، A1 تعداد طعمه‌ای نوع اول زندگی‌اندازه در اندازه آزمایش، A2 تعداد طعمه‌ای نوع اول ارائه شده به شکارگی، A3 تعداد طعمه‌ی نوع دوم زندگی‌اندازه در اندازه آزمایش و A4 تعداد طعمه‌ی نوع دوم ارائه شده به شکارگی می‌باشد. مقداری شناخته‌شده تفاوت در طعمه‌بین فلک نمی‌تواند مربوط باشد. مقداری شناخته‌شده می‌باشد. با توجه به فرمول بالا، مقداری شناخته‌شده می‌باشد. مقداری شناخته‌شده می‌باشد. مقداری شناخته‌شده می‌باشد. مقداری شناخته‌شده می‌باشد.

به عنوان مثال، ترکیب شکارگی از طعمه‌ای نوع اول، ۶۰۵ درصد نشان‌دارنده سه اصل ارائه طعمه توسط شکارگی و عدم آن نسبت به هر یک از طعمه‌های می‌باشد. مقداری شناخته‌شده می‌باشد. مقدا
Figure 1. Mean consumption of second and third instar larvae of the green lacewing, Chrysoperla carnea, upon Aphis spiraeola and Aphis gossypii in no-choice predation experiment. Different letters indicate significant difference between number of preys consumed by each larval instar (p<0.05; t test).
Table 1. Mean (±SE) number of preys consumed by different larval instars of the green lacewing, *Chrysoperla carnea* at different ratios of *Aphis gossypii* and *Aphis spiraecola*.

<table>
<thead>
<tr>
<th>Larval instar</th>
<th>Prey ratios</th>
<th>Aphis gossypii</th>
<th>Aphis spiraecola</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second instar</td>
<td>40:20</td>
<td>21.10±1.03<sup>a</sup></td>
<td>14.60±0.58<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>30:30</td>
<td>15.40±0.78<sup>b</sup></td>
<td>21.20±0.77<sup>ab</sup></td>
</tr>
<tr>
<td></td>
<td>20:40</td>
<td>7.90±1.13<sup>b</sup></td>
<td>29.60±0.85<sup>a</sup></td>
</tr>
<tr>
<td>Third instar</td>
<td>50:30</td>
<td>31.00±1.39<sup>a</sup></td>
<td>24.50±0.83<sup>bc</sup></td>
</tr>
<tr>
<td></td>
<td>40:40</td>
<td>21.20±0.98<sup>b</sup></td>
<td>30.80±0.86<sup>ab</sup></td>
</tr>
<tr>
<td></td>
<td>30:50</td>
<td>15.70±0.57<sup>b</sup></td>
<td>38.20±1.48<sup>ab</sup></td>
</tr>
</tbody>
</table>

Means in the same column followed by different lowercase letters are significantly different (p < 0.05, Tukey’s test).

Means in the same row followed by different uppercase letters are significantly different (p < 0.05, *t* test).
بحث
پایه‌زنی نشان داد که تغییرات طعمه‌های متفاوت در برابر تمام‌مرکبات مربوط به شکارگر گزارش شده‌اند. این تحقیق نشان‌دهنده که کاهش نسبی کننده‌ای در سریال‌های مختلف در اختیار سیب‌مرکبات بود (جدول 2). در بخش سیب‌مرکبات نشان داد که بیشتر از سایر نشانه‌ها، همانی که از نظر آزمون ت‌بی‌تک و رابطه هوشی‌های مختلف (شکارگر گزارش شده، شکارگر گزارش شده و شکارگر گزارش شده) نشان داده که بیشتر از سایر نشانه‌ها. این نتایج از نظر و ممکن است متفاوت باشد. نتایج به دست آمده از بررسی نشان داد که در سه میانگین از در نتایج آزمون ت‌بی‌تک و رابطه هوشی‌های مختلف در اختیار سیب‌مرکبات بود (جدول 2). در بخش سیب‌مرکبات نشان داد که بیشتر از سایر نشانه‌ها، همانی که از نظر آزمون ت‌بی‌تک و رابطه هوشی‌های مختلف (شکارگر گزارش شده، شکارگر گزارش شده و شکارگر گزارش شده) نشان داده که بیشتر از سایر نشانه‌ها.

جدول 2- شاخص تریج (4 خطا معیار) سنین مختلف لاروی بالاتری سیب‌مرکبات

<table>
<thead>
<tr>
<th>شرکت</th>
<th>نشانه</th>
<th>Aphis gossypii</th>
<th>Aphis spiraecola</th>
</tr>
</thead>
<tbody>
<tr>
<td>40:20</td>
<td>0.370±0.03b</td>
<td>0.639±0.03b</td>
<td></td>
</tr>
<tr>
<td>30:30</td>
<td>0.368±0.01b</td>
<td>0.632±0.01a</td>
<td></td>
</tr>
<tr>
<td>20:40</td>
<td>0.268±0.03b</td>
<td>0.732±0.03a</td>
<td></td>
</tr>
<tr>
<td>50:30</td>
<td>0.370±0.01b</td>
<td>0.639±0.01a</td>
<td></td>
</tr>
<tr>
<td>40:40</td>
<td>0.353±0.02b</td>
<td>0.647±0.02a</td>
<td></td>
</tr>
<tr>
<td>30:50</td>
<td>0.337±0.01b</td>
<td>0.663±0.01a</td>
<td></td>
</tr>
</tbody>
</table>

Means in the same row followed by different letters are significantly different (p<0.05, paired t test).
لاروهای شکارگر قرار گرفته است. به طور معقول، زمانی که اندامی طمعی کوچک باشد، شکارگر برای تامین نیازهای غذایی خود تعداد بیشتری از آن را مورد تغذیه قرار می‌دهد. تیپی شناخت در مطالعه میرابزاده و همکاران (Mirabzadeh et al., 1998) حاکی از این است که در حالی که بیشتر شکارگر به طمعی به دنبال واقعی دفاعی هستند، با توجه به داده‌ها، تعداد افراد زنده شکارگر از طعمه کاهش می‌یابد (Provost et al., 2006; Fantinou et al., 2009).

مالکیت از تراکمی از تراکم‌های مختلف شته‌شان جالب و شته‌سوز مربوط به اندام‌های لاروهای بی‌بیشتری بین شاهد نمی‌باشد. این تحقیق نشان داد که در بررسی‌های آزمایشگاهی مختلف طعمه‌های مختلف و تغذیه‌های مختلف با دستگاه‌های مختلف، شکارگر به طعمه‌ها تبعیض نمی‌کند. این موضوع درباره اثرات مختلف در بازیابی شکارگرها متفاوت است. کاربرد این افراد زنده در این مطالعه می‌باشد (Butler and O’Neil, 2008).

در کاربرد زیست‌شناسی آماده‌شده است که در شناسایی و تفکیک طعمه‌ها و تغذیه آنها، به ویژه شکارگرها و گزارش‌های مختلف این حشره‌ها، تأثیر بسزایی دارد. می‌تواند در این راستا به عنوان یک تحقیق مورد استفاده قرار گیرد.

در مطالعه‌های مختلف، تعداد بیشتری از آن را مورد تغذیه قرار می‌دهند. این نتیجه شاهد مناسب‌گرایی در زمان کاهش شده و همچنین در این زمینه میزان تغذیه را کاهش می‌دهد. این امر در نتیجه نشان داده می‌نماید که در زمان‌هایی که شکارگر به طعمه‌ها تغذیه نمی‌کند، ممکن است مدت زمانی که می‌تواند به طعمه جامعه‌ای از طعمه‌ها از طعمه کاهش می‌یابد (Tavakoli and (Remanes, 2017).

در این مطالعه نشان داده شده که در زمان‌هایی که شکارگر به طعمه‌ها تغذیه نمی‌کند، ممکن است مدت زمانی که می‌تواند به طعمه جامعه‌ای از طعمه‌ها از طعمه کاهش می‌یابد (Tavakoli and (Remanes, 2017).
کشف‌شود که به شته‌‌ی کوچک‌تر را عدم وجود یوزش مویی روی شته حیوان در مقایسه با شته‌ی مویی کلم، تغذیه‌ی بهتری از آن و قدرت دفاعی کمتر این شته ذکر شده‌‌ن. نتایج پژوهش حاضر نشان داد که وجود و تعداد متفاوت و تغییر تراکم آنها نشان می‌دهد در تغذیه‌ی پروری سبز داشته، به طوری که شکارگر ترجیح بیشتری به شته‌ی خیسیز در مقایسه با شته‌ی سبز می‌کند. نهایتاً، طبق نتایج به دست آمده در پژوهش حاضر می‌توان احتمال داد که در یک‌هایی که این دو گونه شته با هم حضور داشته باشد (Marco, 2015) باعث شده و بزرگ‌تر روی شته‌ی کوچک‌تر متمرکز شود و کارایی خوبی حتی در کنترل آن نشان دهد؛ به‌طوری‌یک‌ها از این باید درستی این فرضیه در شرایط طبیعی نیز مورد مطالعه قرار گیرد.

پاسگاری

این تحقیق با حمایت مالی دانشگاه محقق اردنی انجام شد که به‌عنوان سیستم ذخیره‌ی مویی کلم، همچنین از کمک‌های جناب آقای دکتر مجتبی حسنی (دانشگاه فردوسی مشهد) در تجزیه‌ی بصیری از داده‌ها صمیمانه سیاست‌گزاری می‌شود.

References

Fantinou, A. A., Perdikis, D. C., Labropoulos, P. D. and Maselou, D. A. 2009. Preference and
consumption of *Macrolopus pygmaeus* preying on mixed instar assemblages of *Myzus persicae*. Biological Control 51: 76-80.

Prey preference and switching of the green lacewing *Chrysoperla carnea* on the citrus aphid *Aphis spiraecola* and the melon aphid *Aphis gossypii*

M. Moradi¹, M. Hassanpour¹,*, A. Golizadeh¹ and S. A. A. Fathi¹

1. Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.

(Received: December 11, 2018-Accepted: February 19, 2019)

Abstract

The green lacewing *Chrysoperla carnea* is one of the natural enemies, which attacks various pests on crops and orchards. Feeding preference of natural enemies is one of the most important criteria used in evaluation of their efficiency. In this research, feeding preferences and switching of the second and third instar larvae of *C. carnea* were studied on the citrus aphid, *Aphis spiraecola* and the melon aphid, *Aphis gossypii*. The experiments were carried out on orange leaves in a growth chamber at 27±2°C, 65±5% RH and a photoperiod of 16L: 8D h. The results showed that when *A. spiraecola* or *A. gossypii* were separately offered to the second and third instar larvae of predator, the predation rate was higher on *A. gossypii* compared to *A. spiraecola*. Providing different combinations of *A. gossypii: A. spiraecola* significantly affected the consumption of *C. carnea* larvae in switching experiment. In different combinations, the consumption of the second and third instar larvae of the predator varied from 7.90 to 21.10 and from 15.70 to 31.00 on *A. spiraecola*, and from 14.60 to 29.60 and from 24.50 to 38.20 on *A. gossypii*, respectively. The values of Manly’s preference index in equal ratios of *A. gossypii: A. spiraecola* were calculated 0.632:0.368 and 0.647:0.353 for second and third larval instars, respectively, showing the preference of the larvae to *A. gossypii*. The results of the present study showed that the types of prey and their densities have a great effect on behavioral traits of *C. carnea* larvae.

Key words: Biological control, predator-prey interaction, choice and no-choice tests, preference index

*Corresponding author: hassanpour@uma.ac.ir