بررسی تأثیر پروپیدوکسیس Pediococcus acidilactici بر شاخه‌های ایمنی شناختی همولیف و آنزیم‌های گوارشی به‌جهت شامی‌گویی آب شیرین (Astacus leptodactylus)

چگونه
در این پژوهش تاثیر چهار سطح از پروپیدوکسیس Pediococcus acidilactici بر برخی شاخه‌های سیستم ایمنی و آنزیمی مورد بررسی قرار گرفت. بدین معنی که محل گردیده شده و زمان شادها در مدت 44 روز تغذیه شدند. سپس از همولیف نمونه‌گیری شد. نتایج آنالیز گزارش شاخه‌های ایمنی و آنزیمی همولیف و رویداده‌ها که در همه تیمارها و شاهد، بیشترین تولید آنزیم و همستات به علت سطح محیطی های به‌دلیل نادیده‌گیری، دانه‌های نادیده، دانه‌های نادیده و هیالین در تیمارها علاوه بر رضوتوکسین افزایش می‌نماید (آماری شان داد 5 (200). همچنین نشان دهنده فعالیت آنزیم‌های آنتی‌استفاده سیروآکسید دیسوناز و فول اکسیداس در همولیف به‌جهت شادها و در مقایسه با گروه شاهد، روند افزایش و تفاوت معنایی آماری شان داد (5 (200). اندک‌گیر فعالیت آنزیم‌های گوارشی نیز آمیلاز و بروتواز نیز باید هم نتایج آنالیز می‌نماید معنادار بروپیدوکسیس P. acidilactici به‌طور آزمایشی هوشیار بررسی بود (5 (200). با توجه به اثر مثبت و جذب‌کننده پروپیدوکسیس به‌طور ایمنی و گوارشی می‌توان از آن برای پرهیزی بیشتر در پروش ایمنی شامی‌گوی جوان استفاده کرد.

واژگان کلیدی: Pediococcus acidilactici, Astacus leptodactylus

نویسنده: ابراهیم گزارشی

1- دانشجویی دکتری تکنیکی و پروش آبیاران، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.
2- دانشیار گروه تکنیکی و پروش آبیاران، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.
3- دانشیار گروه تکنیکی و پروش آبیاران، دانشکده علوم دامی و شیلات، دانشگاه ارومیه، ارومیه، ایران.
4- استاد دانشگاه مرکز تحقیقات دما و پوشش آبیاران انگلیسی، گروه، ایران.

ارمانوازی1396@gmail.com

تاریخ دریافت: شهریور 96
مقامه

امروزه آبیزی و فراورده‌های آن‌ها بخش عمده‌ای از نیازهای بشر را غذا را تأمین می‌کند. در ایران نیز این صنعت به سرعت رشد و ارتفاع سلامت ماهیان است. افزایش بیماری در آبزی‌ها از نظر ترویجی به فرمول‌برداری بهینه‌سازی جزء این تاثیرات محسوسی است. استفاده در افزایش سلامت ماهیان است. افزایش گروه‌های کمک‌دهنده از پروتوپتی‌ها، باکتری‌های Lactic Acid Bacteria اسید لاکتیک Enterococcus Lactobacillus spp. مانند و Carnobacterium spp. faecium هستند که مطالعات و سپس بر Lactococcus روند اثر کاربرد آن‌ها در جلوگیری از بیماری‌ها مشابه سایر ابزارهای می‌رسد. می‌تواند بسیاری از مشکلات را مرتفع می‌کند. (Denev et al., 2009). در اکثر این نوع باکتری‌ها از Pediococcus acidilactici جمله سوپه‌های Bhunia et al., 1990) ترکیب می‌شود. (Bakirtazi et al., 2008) با مکمل‌ها ارزش به‌هیچ‌کدام خوراک می‌کند. مهار میکروگانمی‌های باکتری‌زا، فعالیت ضدجذب‌زا و ضدسرطان‌زا و
رشده است. شامگیوی (خرچنگ دراز) آب شیرین نوعی میگوی آب شیرین از راسته Crayfish (Decapoda) و از خانواده Astacidae (Crustacea) نام علمی است که همدیگر در کره و دریاچه شاهد است. شامگیوی آب شیرین به شمار می‌رود (FAO, 2015) با توجه به اثرات محروم فعالیت‌های انسانی در ذخایر آبی طبیعی (صدی و بازی، آلودگی، صنعتی، شیر و کشاورزی) و همچنین تنش در ذخایر آبی و دریاچه‌های اطراف آن می‌تواند در سال‌های اخیر به تکثیر مصنوعی و بهره‌برداری از روش‌های جدید در پرورش می‌گردد. بر اساس نتایج گزارش‌های مختلف، گونه Astacus leptodactylus در سراسر جهان در قاره‌ای مانند آمریکا و اروپا شناخته شده است.

زمره گروه از این گونه به عنوان مکمل پروبیوتیکی در بدن غذای ماهیان در ایران و جهان شناخته می‌شوند. در سال 2010، FAO در تحلیل قرار داد که این گونه به عنوان یکی از این گونه‌ها در باغ‌های آبی و آبخیزداری در کشورها و آمریکایی از کشورهای آسیایی، اروپایی و آمریکایی
Macrobrachium rosenbergii (FAO, 2015). Among many species, parasitic bacteria such as Pediococcus acidilactici (Zaikov, 2010), the spp. of Lactobacillus (Hoffman, 1980; Koksal, 1988), Enterococcus faecalis (Ackefors, 1989), have been identified. Since the early studies (Koksal, 1988; Ackefors et al., 1989; Tcherkashina, 1977; Hoffman, 1980), a variety of bacteria have been identified in Macrobrachium rosenbergii. These bacteria include: Micrococcus sp., Pediococcus acidilactici, Pediococcus wallaceae, Leuconostoc mesenteroides, and various species of Enterobacteriaceae. A recent study (Zaikov, 2010) reported the presence of Pediococcus acidilactici in Macrobrachium rosenbergii. The bacterial species identified in Macrobrachium rosenbergii may play a role in the health and well-being of the shrimp.
مواد و روش‌ها

Pediococcus acidilactici به شامیگوهای آب‌شارین (Astacus leptodactylus) با وزن 20 گرم از دریاچه پشت سد ارس صید شد و به محل انجام آزمایش در ایستگاه تخصصی مرکز تحقیقات ذخایر آب‌های داخلی (گرگان) انتقال یافت. یک هفته پس از انتقال به استرس‌زاگرب و سازگاری با محیط آزمایش سپری شد. در این پژوهش از 15 مخزن 120 لیتری مدور هر کدام مجهز به هواگذار دائمی اسفناج شد. 8 عده به شامیگوهای 10 گرمی بعد از زیست‌سنجی به صورت کاملاً تصادفی در هر مخزن قرار گرفت. اندازه‌گیری شاخص‌های pH و Oxi 330i (Weilheim) در هر مخزن (آلمان) و اکسیژن (Weilheim, WTW Oxi 330i). مخلوط (PA 10 CopyLeft Lallemand Animal Nutrition, S.A.) به صورت تجاري (P. acidilactici Bactocell) تهیه شد. به دست آمده از پودر ماهی به مقدار مناسب تهیه شد. فرمول و ترکیب غذایی در جدول 1 ارائه شده است.

جمه‌ی پایه با افزودن باکتری بروینوئیک *Pediococcus acidilactici* در چهار سطح غنی‌سازی شده‌اماده شد تا جنگل‌های آزمایشی مورد نظر به دست آید. بروینوئیک *P. acidilactici* بصرف تجاری (Lallemand Animal Nutrition, PA 10 CopyRight S.A.) تهیه شد که هم‌حال سلول‌های زنده باکتری مذکور بود. برای افزودن بروینوئیک به جنگل‌های غذایی از 2 درصد روغن ماهی به در 30 گرم روز بدون در ۱۲۵ دارد از آب آنها تغذیه شد. به شامیگوهای روزانه به میزان ۳ درصد از وزن بدن و
عنوان حامل استفاده شد (اسدی و همکاران، کدام در 3 تكرار) به همرahi یک تيمار چيره شاهد مطالعه جدول 2 طراحی شد.\(1396\) جيرهاي آزمایشي شامل 4 تيمار (هر

جدول 1: نوع و مقدار مصرف مواد خوراکی در جيره پایه (شاهد)*

<table>
<thead>
<tr>
<th>ماده خوراکی</th>
<th>مقدار در جيره (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>زلالن</td>
<td>1/1</td>
</tr>
<tr>
<td>نتشمه</td>
<td>7/13</td>
</tr>
<tr>
<td>آرد گندم</td>
<td>5/34</td>
</tr>
<tr>
<td>آرد درت</td>
<td>10</td>
</tr>
<tr>
<td>آرد ماهي</td>
<td>34</td>
</tr>
<tr>
<td>آرد سويا</td>
<td>4/5</td>
</tr>
<tr>
<td>سلوز</td>
<td>14/13</td>
</tr>
<tr>
<td>روغن درت</td>
<td>2/89</td>
</tr>
<tr>
<td>روغن ماهي</td>
<td>2</td>
</tr>
<tr>
<td>مخلوط معدني***</td>
<td>2</td>
</tr>
<tr>
<td>مخلوط ويتاميني**</td>
<td>2</td>
</tr>
<tr>
<td>انتي اکسیدان</td>
<td>0/2</td>
</tr>
<tr>
<td>ويتامين C</td>
<td>1</td>
</tr>
</tbody>
</table>

** آنايز قترین

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>پروتين خام</td>
<td>40</td>
</tr>
<tr>
<td>آب مه مدید</td>
<td>2</td>
</tr>
<tr>
<td>کربوهيدرات</td>
<td>7/79</td>
</tr>
<tr>
<td>رطوبت</td>
<td>5/31</td>
</tr>
<tr>
<td>خاکستر</td>
<td>1/14</td>
</tr>
<tr>
<td>فیبر</td>
<td>4/00</td>
</tr>
<tr>
<td>انرژي خام</td>
<td>kcal/kg</td>
</tr>
</tbody>
</table>

* تركيب و مقدار مصرف تمام مواد خوراکي به غير از سلوز در جيرهاي آزمایشي ديگر مشابه جيره پایه است.

** مخلوط ويتاميني (گرم/کيلوگرم)؛ ويتامين A 30,000 IU، B12 0.01 IU، B6 11.14, B1 3.5, B3 22.5, B5 62.15, B9 2 میلی گرم، \(1397\) ويتامین C 120 گرم، ويتامین D 60 میلی گرم، ويتامین B6 4 میلی گرم، ويتامین B9 3 میلی گرم، ويتامین B12 2 میلی گرم، ويتامین B1 3 میلی گرم، ويتامین B3 20 میلی گرم.
جدول ۲: غلظت‌های مورد استفاده از پروپایونیک در تیمار‌های مختلف Pediococcus acidilactici

<table>
<thead>
<tr>
<th>تیمار</th>
<th>غلظت پروپایونیک</th>
<th>CFU/g 10⁹</th>
<th>CFU/g 10⁹</th>
<th>CFU/g 10⁹</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱%</td>
<td>۱۰⁶</td>
<td>۱۰⁶</td>
<td>۱۰⁶</td>
</tr>
<tr>
<td>۲</td>
<td>۲%</td>
<td>۱۰⁶</td>
<td>۱۰⁶</td>
<td>۱۰⁶</td>
</tr>
<tr>
<td>۳</td>
<td>۳%</td>
<td>۱۰⁶</td>
<td>۱۰⁶</td>
<td>۱۰⁶</td>
</tr>
<tr>
<td>۴</td>
<td>۴%</td>
<td>۱۰⁶</td>
<td>۱۰⁶</td>
<td>۱۰⁶</td>
</tr>
<tr>
<td>۵</td>
<td>۵%</td>
<td>۱۰⁶</td>
<td>۱۰⁶</td>
<td>۱۰⁶</td>
</tr>
</tbody>
</table>

در انتهای دوره آزمایش نمونه‌برداری از همولف به منظور اندازه‌گیری شاخص‌های ایمنی و آنزیم‌های همولف و آنزیم‌های روده می‌گردد (Valipour et al., ۲۰۱۱).

اندازه‌گیری شاخص‌های همولف به منظور اندازه‌گیری شاخص‌های ایمنی همولف ۲۰۰ میکرولیتر همولف با استفاده از سر سون۵۲ و سرنگ یک میلی‌لیتری از سینوس شکمی هر چه شاخص‌گو خارج شد (شکل ۳) سپس ۱۰۰ میکرولیتر از همولف در میکروتیوب‌های یک میلی‌لیتری بدون محلول ضدعفون‌کننده ذخیره شد از این سوسپنسیون برا ی اندازه‌گیری فعالیت آنزیم.
سنجد آزمیز فنل اکسیداز به روش

سنجد فعالیت آنزیم سوپراکسید دیسموتاز به روش اسپکتروفوتومتری از طریق سنجد میکروولیتر آنتی‌ژن در طول موج 550 نانومتر انجام گرفت (C). Cooper et al., 2002 (B).

برای سنجد تعداد هموسیت 50 برای سنجد تعداد هموسیت کل B بر روی لام هموسیت‌شناسی، فرم داده شد و تعداد هموسیت‌ها در زیر فرم داده شد (Adib Moradi Pousti et al., 2004). به منظور تعیین تابلوی هموسیت‌ها شمارش افراطی هموسیت‌ها از روش Hernández-Lopez et al., 1996) (استفاده شد.

![شکل 1: ناحیه برداشت مایع همولر از سینوس](image)

2- Dopachrome
3- L-dihydroxy Phenylalanine (L-DOPA)
4- Ferricytochrome c

1- Hemocytometer
نتایج

نتایج حاصل از بررسی شخصی‌های ایمنی همولف استخراج شده از بچه شامی‌گویی‌های آب‌شیرین (Astacus leptodactylus) از دوره تغذیه با غلظت‌های مختلف چربی دارای پروتئین‌های آنزیمی Pediococcus acidilactici در هم‌اکسیداسیون عضلانی را همراه با افزایش غلظت پروتئین‌های چربی نشان داد (شکل ۲). همین‌که روند در شخصی‌های تغذیه هم‌سیستمی‌های دانه‌دار، نیمه دانه‌دار و هیالین به طور کامل مشابه مشاهده شد (شکل‌های ۳ و ۴ و ۵).

سنجد سفایت آنزیمی بچه شامی‌گویی‌های شاهد نشان داد که فعالیت آنزیم فلز اکسیداز در بچه شامی‌گویی‌های تغذیه نشده با هم هر چند چربی‌های حاوی پروتئین‌های چربی عضلانی یافت. پیشین با قابلیت آنزیم فلز اکسیداز در تیمار ۳ و کمترین آن در شاهد پروتئین‌های محلول بود برای سنجش تغییرات آنزیمی، در نیتروژن مایع ذخیره شد. سنجش آنزیم‌های آسیا، لیپاز و پروتئاز به روش اسکروتونومتری و به ترتیب در طول مدت‌های ۵۵۰، ۲۳۰، ۴۰، ۱۰۰، ۲۷، ۶ و ۱۱ خورش (۵) نماهنگی و به ترتیب با استفاده از دستور العمل‌های Coccia و همکاران (۲۰۰۳) و Lopez-Lopez (۲۰۱۱) و Fernandez Gimenez و همکاران (۲۰۰۱) انجام گرفت.

تجزیه و تحلیل آماری

مطالعه حاصل در قابل طرح کاملاً تصادفی Completely Randomized Design در سه تکرار برای هر تیمار و شاهد (CRD) انجام شد. در اینجا ترمال بودن داده‌ها با آزمون کولموگروف– اسمیرنوف و بررسی همگنی‌گر همگی گروه‌ها با آزمون Levene پذیرفت. در صورت همگنی بودن داده‌ها، برای مقایسه میانگین بین تیمار‌های تغذیه‌ای از One-way آزمون تجزیه واریانس یک‌طرفه (ANOVA) و برای جداسازی گروه‌های همگی از پس‌آزمون دانکن در سطح اطمینان ۹۵/۰ استفاده شد. برای داده‌های غیرهمگن از آزمون غیربرامتریک کروسلکال– والس استفاده شد و معنی‌دار بودن گروه‌های مورد بررسی با استفاده
کردن و بیشترین فعالیت این آنزیم در تیمار ۲ مشاهده شد (شکل ۶). همچنین سنجش فعالیت آنزیمی سروپاکسید دیسمونار شناش داد که کلیه تیمارهای مورد بررسی نسبت به شاهد افزایش معناداری را در فعالیت این آنزیم نشان داده بودند.

شکل ۲. تعداد کل هموزیسته‌های مختلف شاهدیکوپس از پایان دوره آزمایش (میانگین ± خطای استاندارد).

شکل ۳. هموزیست هیالین بچه شاهدیکوپس از پایان دوره آزمایش (میانگین ± خطای استاندارد). حروفی که متفاوت نشان دهنده تفاوت آماری معنادار است.
شکل ۴: هموسیت‌های تیمار ۴ نیمه دانه‌دار به‌جای شاه‌میگو در پایان دوره آزمایش (میانگین ± خطای استاندارد).

حرف متغیف نشان دهنده تفاوت آماری معنادار است.

شکل ۵: هموسیت دانه‌دار بزرگ به‌جای شاه‌میگو در پایان دوره آزمایش (میانگین ± خطای استاندارد).

حرف متغیف نشان دهنده تفاوت آماری معنادار است.
نتایج سنجش فعالیت آنزیم‌های گوارشی با سنجش میزان فعالیت آنزیم‌های گوارشی آمیلاز، لیپاز و پروتئاز در پایان دوره آمادگی، در بیشتر موارد اختلاف معنی‌دار بین همه تیمارها با هم و با نمونه شاهد مشاهده شد. نتایج سنجش میزان فعالیت آنزیم‌های گوارشی آمیلاز، لیپاز و پروتئاز در پایان دوره آمادگی، در بیشتر موارد اختلاف معنی‌دار بین همه تیمارها با هم و با نمونه شاهد مشاهده شد.

شکل ۷: فعالیت آنزیم سوپرکسید دیسونتاز در همولنف بچه‌شامپیگوپس از پایان دوره آمادگی

(میانگین ± خطای استاندارد). حریف متفاوت نشان دهنده تفاوت آماری معنادار است.

شکل ۸: فعالیت آنزیم فلئز فنل اکسیداز در همولنف بچه‌شامپیگوپس از پایان دوره آمادگی

(میانگین ± خطای استاندارد). حریف متفاوت نشان دهنده تفاوت آماری معنادار است.
بهترین فعالیت آنزیم آمیلاز در تیمار ۲ و کمترین آن در تیمار شاهد مشاهده شد (شکل‌های ۸ و ۱۰).

شکل ۸: فعالیت آنزیم آمیلاز در همولونف بیچ شامیگو پس از یک سال دوره آزمایش (میانگین ± خطای استاندارد). حروف متفاوت نشان دهنده تفاوت آماری معنادار است.

شکل ۹: فعالیت آنزیم لیپاز در همولونف بیچ شامیگو پس از یک سال دوره آزمایش (میانگین ± خطای استاندارد). حروف متفاوت نشان دهنده تفاوت آماری معنادار است.

 Pediococcus acidilactici
بحث

مطالعات متعددی در سال‌های اخیر نقش مفید پروپیوتیک‌ها را در تغذیه و همچنین تأثیر حفاظتی آن‌ها در برابر عوامل باتو‌ای مشخص کرده‌اند (Yanbo and Zirong, 2006). در Pediococcus acidilactici مطالعه حاضر افزودن پروپیوتیک به جیره غذایی بچه‌ها. همچنین در Astacus leptodactylus (Jiravanichpaisal et al., 2006) مطالعات موردی این مایع به شادی‌گویی آب شیرین تأثیر بیشتری داشته‌اند. همچنین این اجرایی با Pediococcus acidilactici همچنین در طرحی ساخته شده‌اند که این فاکتور به‌طور متوسط در هم‌سازی ترکیب سلولی هم‌سازی خاصی که در هم‌سازی و پیشرفت در عوامل باتو‌ای نیز تأثیر بسزایی داشته‌اند.

شکل 10: افعالیت آنزیم پروتئز در هم‌سازی بچه‌ها. همچنین قسمت سه‌تایی نشان دهنده تفاوتترین آماری مفاد است.
S. Pediococcus acidilactici

cلر در سیستم ایمنی شامه‌گویی آب شیرین نیز افزایش مطالعه حاضر را تایید می‌کند (سامز، 1395). در مطالعه حاضر، پس از گذشت زمان افزایش معدن دیستریت در تعادل انواع مختلف سلول‌های سیستم در اتفاق افتاد. این افزایش معادل در همه تیمارها مشاهده شد که می‌تواند نشان دهنده اثر بسیار مثبت برویوبیوتیک P. acidilactici هم‌نمونه به‌شماره‌گویی آب شیرین باشد. در شامه‌گویی سلول‌های هیپاتین مسئول روند فاکتور‌های بی‌گمانی بود و سلول‌های فیلترهایی اساسا در روند کپسول کردن میکرو‌گانسم‌های مهاجم شرکت می‌کنند و همچنین سلول‌های دانه‌دار نزدیک به عنوان ذخیره‌گاه اصلی در فعالیت‌های سیستم پروفنل Johansson et al., 2000; Jiravanichpaisal et al., 2006 مطالعات نشان می‌دهد که سلول‌های نیمه دانه‌دار و دانه‌دار در پاسخ به عوامل بیماری‌زا از جمله عوامل مهم‌المند بی‌پن‌گلیکان و لیپولیسیک‌پدیده‌های موجود در دیواره باکتری‌ها با آزاد کردن ترکیبات سیستم پروفنل اکسیداز آمین‌ها تولید ماینین، چسبندگی سلولی، کپسول و روند فاکتور‌زی در واکنش‌های هم‌نمونه و سیستم دفاعی بی‌پن‌گلیکان مانند...
می‌شناستند (2002); Alday-Sanz, 2010. در مطالعه حاضر نیز مشاهده شد که سطح فعالیت آنزیم فنول اکسیداز در تیمار بکرنتین غلظت پروبیوتیک تا بالاترین غلظت، افزایش معناداری نسبت به گروه شاهد داشت. با توجه به افزایش معنادار هپسومیت‌های مختلف، افزایش سطح فعالیت این آنزیم ها در از انتظار نبود. نتایج مطالعه بر ایجاد و توزیع آنزیم‌های آنتی اکسیدانی در نوشان Carcinus maenas همôفنر خرچنجی داده است که آنزیم سوراوراکسید دیسموتاز هم در هپسومیت‌های بالینی و هم در هپسومیت‌های دانه‌دار دیده شد و احتمالاً آن آنزیم که در هپسولف وجود دارد، در هپسومیت‌های بافت میزان در پر اسپبهای اکسیداسوی در طول فرآیند طبیعی دفاع کمک کرد. در مطالعه P. acidilactici که بررسی تاثیر پروبیوتیک بر دفاع آنتی اکسیدانی و وضعیت استرس اکسیداسوی در میگوی stylostis پرداخته است، سطح باقی آنتی اکسیدانی در هپسولف و عضده پارسیان میگو، بس از نفیه‌گری توسط سپرینگشی این پروبیوتیک، برآورد شد (Castex et al., 2009). این نتایج در میگوهای جدا که به مدت 7 هفته با Penaeus monodon
افرازیون توانایی آمینی در Pedioacoccus acidilactici و نام‌های vannamei هومووال افزایش یافته از قبل افرازیون فعالیت فنول اکسیداز و فعالیت سرپراکسیداز را در مقابل عوامل بیماری از تغذیه با پروپیونیک در می‌تواند سطح آنزیم‌های آنتی‌اکسیدانی را افزایش دهد (Castex et al., 2003). این بروز در سازمان غذایی می‌تواند استفاده در افرازیون چرب و ترکیب آنتی‌اکسیدان‌های موجود در غذا همکاری می‌کند و با در فعالیت آنتی-اکسیدانی نقش ایفا می‌کند (Kullisaar et al., 2002). پژوهشگران این فرضیه را مطرح می‌کند که خاصیت آنتی‌اکسیدانی پروپیونیک‌ها ممکن است به عنوان مکانیسم‌های دفاعی در محیط میکروبی روده به کارگرفته شود و باعث به سرکوبی استرس‌های اکسیدانی با مشا در داخل و خارجی کمک می‌کند. مطالعات دیگر نیز با استفاده از روش‌های مولکولی، تأثیر مثبت بر فعالیت این میشتهای در حضور پروپیونیک P. acidilactici و تغییر در فلور میکروبی Castex et al., 2004; Chiu et al., 2006; Castex et al., 2008 و همکاران (2007) بایان کردن که استفاده از پروپیونیک‌ها می‌تواند منجر به ایجاد تغییر و

1- Respiratory Burst
(P. acidilactici) استفاده در مطالعه حاضر بر شرکت بازماندنی و انزیم‌های گوارشی

میگوی CFU/g 10^9 در بررسی میزان انزیم برونتاز در تیمار 4 با غلظت 10^9 CFU/g با (P. acidilactici) تفاوتی کمی نسبت به تیمار 2 بیشترین افزایش فعالیت مشاهده شد. بنابراین در دیدگاه کلی با وجود تاثیر مثبت پروپتیک بر انزیم‌های گوارشی در کلیه تیمارها، تیمار 2 با کمترین غلظت پروپتیک تاثیر افزایش بیشتری بر فعالیت این انزیم‌ها ایفا کرد. در بررسی اثر پروپتیک (Bacillus subtilis) میگوی CFU/g 10^9 با زمینه اثرات کامل مشخص بود و اثر افزایش انزیم‌های گوارشی Bacillus باکتری‌ها به وزن باکتری‌های جنس طیف وسیعی از انزیم‌های خارجی را ترشح می‌کند. احتمال دارد که نرخ باینی افزایش فعالیت انزیم‌ها در مطالعه حاضر به دلیل استفاده از Pediococcus جنس باشد. در حقیقت تاکنون بین افزایش فعالیت به دلیل ساخت انزیم بیشتر توسط خود میگو با ساخت انزیم توسط کلونی پروپتیک ایجاد شده در مجاری گوارش میگو کمی دیده است. اگرچه انزیم‌های خارجی تولید شده توسط پروپتیک‌ها تنها سهم کمی در فعالیت کل انزیم‌ها دارد (Ziaei-Nejad et al., 2006).

Zokaeifar et al., 2012 در مشاهده شد (Ziaei-Nejad et al., 2006). در بررسی عملکرد رشد، فعالیت انزیم گوارشی و Macrobrachium rosenbergii تغذیه شده با پروپتیک Clostridium نیز نتایج کاملا مشابه از افزایش فعالیت انزیم‌های گوارشی لیاز و برونتاز و (Ziaei-Nejad et al., 2006). در مطالعه که بر تاثیر پروپتیک‌های ترکیبی بر انزیم‌های گوارشی Penaeus vannamei افزایش چشمگیر انزیم‌های گوارشی گزارش شد. در بررسی که به تاثیر پروپتیک مورد

Effects of probiotic *Pediococcus acidilactici* on immunological parameters of hemolymph and digestive enzymes of *Astacus leptodactylus* juvenile

MirArman Vaezi¹*, Abolghasem Esmaeili Fereidouni², Ramin Manaffar³, Kourosh Amini⁴

Received: October 2017 Accepted: December 2017

Abstract

In this study, the effect of four levels of probiotic *Pediococcus acidilactici* on the diet of *Astacus leptodactylus* juveniles, on immunological parameters of hemolymph and enzyme systems, was investigated. Juvenile crayfish, weighing 10 to 20g, was fed in 4 groups of probiotic concentrations and one control group with three replicates for 84 days. At the end of the experimental period, the sampling of hemolymph in order to measure the hemolymph, immune and enzyme indices and crayfish intestines for digestive enzymes was performed. The results of all treatments and control showed that the highest to lowest homocysts belonged to semi-granitic, large granular and hyaline, respectively. The total number of hemocytes, semi-granular hemocytes, large granular hemocytes and hyaline in probiotic-treated treatments increased significantly compared to the control (P<0.05). In addition, the activity of superoxide dismutase and phenol oxidase in the hemolymph of crayfish showed a significant increase (P<0.05). Measuring the activity of digestive enzymes including lipase, amylase and protease showed a significant positive effect on all three enzymes (P<0.05). Considering the positive and significant effects of probiotic *P. acidilactici* on immunological and digestive indices of young crayfish, it can be used to further increase in the productivity.

Key words: *Astacus leptodactylus*, *Pediococcus acidilactici*, Probiotic, Immune Indices, Digestive Enzyme.

¹- Ph.D. Student in Fisheries, Department of Fisheries, Faculty of Animal and Fisheries Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
²- Associate Professor in Department of Fisheries, Faculty of Animal and Fisheries Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
³- Associate Professor in Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran.
⁴- Assistant Professor in Inland Waters Aquatic Stocks Research Center, Gorgan, Iran.

*Corresponding Author: armanvaezi1396@gmail.com