چند شکلی ژن و ارتباط آن با تعداد بره به ازای هر زایش در گوسفند مهریان

احمد احمدی ۱، زیلا رجبی ۲، یوپی زمانی ۳، علی اصغر بهاری ۴

۱- استادیار گروه علوم دامی، دانشکده کشاورزی، دانشگاه علوم سیاسی و اطلاعات
۲- دانشجویی گروه علوم دامی، دانشکده کشاورزی، دانشگاه علوم سیاسی و اطلاعات
۳- دانشیار گروه علوم دامی، دانشکده کشاورزی، دانشگاه علوم سیاسی و اطلاعات
۴- دانشیار گروه علوم درمانگاهی، دانشکده پیش‌بینی‌سازی، دانشگاه علوم سیاسی و اطلاعات

(تاریخ دریافت: ۹۶/۱۸/۰۳ - تاریخ پذیرش: ۹۷/۰۳/۱۲)

چکیده

ژن ژنیکه به عنوان یکی از ژن‌های موثر بر باروری شناخته شده است. در مطالعه حاضر چندشکلی‌های یک قطعه ۳۳۱ جفت باری از ژن‌های از ژن‌های از اینترنر یک جفت Kiss۱ و ارتباط آنها با صفت تولیدنی تعداد بره به ازای هر زایش در ۱۰۰ راس میش نزد مهریان مورد بررسی قرار گرفت. روشهای چندشکلی فضایی نک رشتدی مبتنی بر واکنش برای شناسایی چندشکلی‌های احتمالی مورد استفاده قرار گرفتند. Zنچرهاي پل برای DNA برای شناسایی چندشکلی‌های اختیار مورد استفاده قرار گرفتند. (PCR-SSCP) نتایج نشان دهنده چندشکلی تک نوکلئوتیدی در سه جایگاه (g.272G>A و g.155G>C و g.102C>T) با چهار الگوی متفاوت (هابلزونوکسپی) در اگری یک‌تبار برای اینترنر یک جفت. تمامی نمونه‌ها دارای الگوی باندی مشابه بودند و هیچ‌یک چندشکلی شناسایی نشد. مقایسه فرآیند مشاهده شده با مورد انتظار برای هابلزونوکسپی‌های مورد مطالعه با کمک آزمون کای‌سکور نشان داد که فرآیند زننده‌های جهش‌های متغیر به ژن‌های g.272G>A و g.102C>T و g.155G>C (P<0.001) برای ازای هر زایش، ارتباط معنی‌داری مشاهده نش (P>0.05). نتایج بیست آمده از مطالعه حاضر نشان داد که نوع موجود در اگری یک جفت را می‌توان برای برنامه‌های انتخاب به کمک تشکیکگرها در گوسفندن نزد مهریان مورد توجه قرار داد.

واژه‌های کلیدی: چندشکلی، ژن Kiss۱، صفات تولیدنی، گوسفند

Ahmadi@basu.ac.ir

نوسیله مسئول:
کودک‌ها با جمعیتی حدود ۶۰۰ دی‌موئن راس، بیشتر و سببی از استان همدان و قسمت‌های همجوار آن با استان‌های کردستان، مازندران و قزوین بود. پیشکه می‌باشد که میان این حیوان منطقه مهریان در قسمت شمال غرب استان همدان از این گوسفند دنبال‌دار به تبی گوشی شیری، ساگزار مراحت وضع و شرایط سخت آب و هوا سردر و کوش‌دار، بر سرعت رشد بالا و ۲۰ درصد دوچهل‌لایه برای پروپنی دندان مسابی است. (2010: ۳۱).

(Bathaei and Leroy, 1996)

از سال ۱۹۸۰ تاکنون پیشرفتهای زیادی در زمینه بشره‌گیری از ۹۳ زبان منطقه‌ای در گوسفندهای دست‌بنده بهره‌برداری و انجام آزمون‌های زیست‌شناسی یکی از مناسب‌ترین ابزار برای اندازه‌گیری شاخصهای ارتباط زیست‌شناسی با افراد و شرایط پزشکی از جمله زناشویی مختلف گوسفندهای دیگر است. (Davis, 2004). از این رو به کار بردن شناخته‌های گرداننده DNA و زهای کاندیدا یکی از افراد مورد تحقیق‌های در دهه اخیر است. در گزارش بهبودی کلیدی گوسفندهای (Kiss1) هورمونی از آزادکننده‌های گوندروتنی‌ها است که روی گرونومون شماره ۱۲ گوسفند قرار گرفته و دارای ۲ گروه است (NCBI). مجموعه کیس برای همان داده‌ها به عنوان زن‌های سردرکننده بیماری از جمله سرطان مورد بررسی قرار گرفته است. (Lee et al., 1996). مطالعات نشان داد که و (Kiss1) هورمونی از آزادکننده‌های گوندروتنی‌ها است که روی گرونومون شماره ۱۲ گوسفند قرار گرفته و دارای ۲ گروه است (NCBI). مجموعه کیس برای همان داده‌ها به عنوان زن‌های سردرکننده بیماری از جمله سرطان مورد بررسی قرار گرفته است. (Lee et al., 1996).

(McCabe, 2007)

در این پژوهش تعداد ۱۰۰ راس میش نازد مهریان به طور مداوم نوروز نیز تزریق شدند. کل گله مورد نظر با مداوم نیز تزریق شدند. این پژوهش داشت که می‌تواند این پژوهش داشت که می‌تواند این پژوهش داشت که می‌تواند

(Kiss1) هورمونی آزادکننده‌های گوندروتنی‌ها است که روی گرونومون شماره ۱۲ گوسفند قرار گرفته و دارای ۲ گروه است (NCBI). مجموعه کیس برای همان داده‌ها به عنوان زن‌های سردرکننده بیماری از جمله سرطان مورد بررسی قرار گرفته است. (Lee et al., 1996).

(Kiss1) هورمونی آزادکننده‌های گوندروتنی‌ها است که روی گرونومون شماره ۱۲ گوسفند قرار گرفته و دارای ۲ گروه است (NCBI). مجموعه کیس برای همان داده‌ها به عنوان زن‌های سردرکننده بیماری از جمله سرطان مورد بررسی قرار گرفته است. (Lee et al., 1996).

(Kiss1) هورمونی آزادکننده‌های گوندروتنی‌ها است که روی گرونومون شماره ۱۲ گوسفند قرار گرفته و دارای ۲ گروه است (NCBI). مجموعه کیس برای همان داده‌ها به عنوان زن‌های سردرکننده بیماری از جمله سرطان مورد بررسی قرار گرفته است. (Lee et al., 1996).
Kiss1

Table 1. Primer sequences for amplifying 331 and 286 fragments of the exon 1 and intron 1 of Kiss1 gene

<table>
<thead>
<tr>
<th>Exon 1</th>
<th>Forward</th>
<th>5'- GTTCTCACTGTCGTGTTGCGTT -3'</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reverse</td>
<td>5'- TCGCAACTCTTCTCCTCCGAC -3'</td>
</tr>
<tr>
<td>Intron 1</td>
<td>Forward</td>
<td>5'- GGAGACCTTGGAAGAACTGTTG -3'</td>
</tr>
<tr>
<td></td>
<td>Forward</td>
<td>5'- CGAAGGACCTCGGGTTGA -3'</td>
</tr>
</tbody>
</table>
پژوهشگران گزارش کرده‌اند که زن KISSL1 از ژن‌های مؤثر بر بالور در بر اساس (Maitra et al., 2014) و پژوهش‌های مشخص شده که در گوسفندان نژاد مهربان قطعه ازون یک زن مورد نظر دایریشن کننده‌ای نکش تولید نمی‌شود. از این مطالعه سه نوع جانشینی نکش تولید نمی‌شود در قطعه یک فاز در فاز ازون یک زن مهربان یک که شامل ژن‌های تک تولیدی در جایگاه C→T (C2510A) جانشینی نکش تولیدی در جایگاه G→C (G2510A) جانشینی تک تولیدی در جایگاه 155 و 77 جفت بازی از ازون یک زن با شماره دسترسی PCR-SSCP GU1412847 مطلق قرار گرفته است که ژن نوع زن‌ها برای این قطعه و شناسی نکش تولیدی که پنهن نوع امکان‌پذیر است به دنیا گزشته است. (Chu et al., 2012) از یک میان این شش جهش نکش تولیدی با متغیر سه‌ژن شده در مقایسه با جایگاه 1035 این ژن با اجزای اتفاق در (G→A) جایگاه T2489C 110 و 377 جفت از این ژن در مطالعه انجام شده است. (An et al., 2013) در تحقیقات بررسی تغییرات زن KISSL1 در دو نژاد از نژاد گوسفندان از زنان و روش‌های آزمایشگاهی و مدل‌سازی مختلف، با کلکشن داده‌های شخصی، از آن‌ها از آن‌ها برای زن KISSL1 در جایگاه 2510A جانشینی تولیدی است که ژن نکش شده ۱۴۱ در این مطالعه انجام شده است. (El Tarabany et al., 2017) در این ژن در ۱۴۱ نکش KISSL1 از این دو نژاد از بزرگی انتخابی در کاربردی تولیدی گوسفندان تحت آزمایش مشابه سه امکان ژن‌ها و شناسایی نکش تولیدی AA در نهایت که کاربردی این انتخابی در کاربردی تولیدی گوسفندان تحت آزمایش مشابه سه امکان ژن‌ها و شناسایی نکش تولیدی AA در نهایت که کاربردی این انتخابی در کاربردی تولیدی گوسفندان تحت آزمایش مشابه سه امکان ژن‌ها و شناسایی نکش تولیدی AA در نهایت که کاربردی این انتخابی در کاربردی تولیدی گوسفندان تحت آزمایش مشابه سه امکان ژن‌ها و شناسایی نکش تولیدی AA در نهایت که کاربردی این انتخابی در کاربردی تولیدی گوسفندان تحت آزمایش مشابه سه امکان ژن‌ها و شناسایی Nکش تولیدی AA در نهایت که کاربردی این انتخابی در کاربردی تولیدی گوسفندان تحت آزمایش مشابه سه امکان ژن‌ها و شناسایی Nکش T2489C T2489C
جدول ۲- فراوانی‌های زنوتیبی و آلیه جهش‌های مشاهده شده در اگزون یک زن

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Number</th>
<th>Genotypic frequency</th>
<th>Allelic frequency</th>
<th>X²</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.102C>T</td>
<td>CC(26)</td>
<td>0.26</td>
<td>C=0.625</td>
<td>29.130</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>CT(73)</td>
<td>0.73</td>
<td>T=0.375</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TT(1)</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g.155G>C</td>
<td>GG(83)</td>
<td>0.83</td>
<td></td>
<td>0.368</td>
<td>0.3685</td>
</tr>
<tr>
<td></td>
<td>GC(17)</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CC (0)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g.272G>A</td>
<td>GG (26)</td>
<td>0.26</td>
<td>G=0.625</td>
<td>12.909</td>
<td>0.0003</td>
</tr>
<tr>
<td></td>
<td>AG (73)</td>
<td>0.73</td>
<td>A=0.375</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA (1)</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۳- ارتباط هابلوجنوتیپ‌های اگزون یک زن Kiss1 با صفت تعداد بره در هر زایش

<table>
<thead>
<tr>
<th>Haplotype</th>
<th>Litter size</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT/GG/AG (haplogenotype 1)</td>
<td>1.30⁸</td>
</tr>
<tr>
<td>CC/GC/GG (haplogenotype 2)</td>
<td>1.98⁴</td>
</tr>
<tr>
<td>TT/GG/AA (haplogenotype 3)</td>
<td>1.80⁴</td>
</tr>
<tr>
<td>CC/GG/GG (haplogenotype 4)</td>
<td>1.48⁴</td>
</tr>
<tr>
<td>P value</td>
<td><0.05</td>
</tr>
</tbody>
</table>

Fig. 1. Four different SSCP patterns of the 331 bp fragment of exon 1 for Kiss1 gene

در جمعیت مورد مطالعه این تحقیق می‌تواند انتخاب، جهش و اندازه جمعیت باشند. انتخاب مهم‌ترین عامل
غیرزنوتیبی زن‌ها در جمعیت‌ها است. هنگامی که انتخاب
سرت می‌گیرد یک سری از افراد (زنوتیباهای) امکان
تولید می‌شود. نتایج زن‌های خود را نسل بعد از دست
می‌دهند. جهش‌یکی دیگر از عوامل غیربرد در فراوانی‌های
آلیه و زنوتیبی است. جهش‌ها ایجادکننده آلیه‌های جدید
هستند و در بلند مدت نقش مؤثری در ایجاد تئوژنیکی
در جمعیت‌ها دارند. به طورکلی فراوانی جهش‌ها پایین
است، اما به علت انتخاب، آلیه‌های جهش‌پذیر می‌توانند
حفاظ شوند و فراوانی آن‌ها در نسل‌های بعدی افزایش
در بررسی‌های گوسفندنند. همان‌طور که در جدول ۳ نشان داده شده است، قطعه
مورد بررسی در جمعیت گوسفندهای در جایگاه‌های
۱۰۲ و ۲۲۲ انحراف معیاری را از تعادل هاردی- وانتنبرگ نشان داد (P<0.001). از جمله دلایل عدم تعادل

(He et al., 2018)
حذف و یا تغییر یک ال یل در جمعیت شوند. باید از یک ال یل برای امتیاز‌های مورد بررسی در پژوهش حاضر، در مطالعات آن‌هاده با تعادل افراد بیشتری مورد بررسی قرارگیرد.

بابد. در این مطالعه عملیاتی اجرا گردیده که از زنده‌پیوندهای داده تولید نشده که پایین بودن اندام جمعیت نسبت داد. زیرا هنگامی که تعادل افراد جمعیت پایین باشد فراوانی‌های زنی به طور تصادفی و در جهت غیر قابل پیش‌بینی تغییر می‌کند و در نهایت می‌تواند منجر به

شکل 2- نتایج حاصل از توالی پایی قطعه 331 جفت باری زن Kissl. چهار های زن‌تودیپ متغیرت و مقایسه با توالي گزارش (KR065750.1). N: علائم اختصاصی برای برای 5 گوسفند NCBI و گونه برای (NC_019469.1) در پایگاه اطلاعاتی برای ورودی هتروژیگوت است.
شکل 3 - کروماتوگرام هایلپلگیوپوتایپ های متفاوت قطعه 331 جفت بازی زن Kiss1

Figure 3. Different haplogenotypes chromatogram for 331 bp fragment of the Kiss1 gene

سایر جهش‌های یافته شده در اگزون 1 این زن در این مطالعه تا حال گزارش نشده‌اند. ممکن است یکی از دلایل مشاهده چند شکل‌های تکنوکلونی‌برداری قطعه مورد بررسی در پژوهش حاضر و عدم مشاهده آن در نژادهای خود، نتیجه‌گیری‌های نزدیکی باشد. از این رو به نظر می‌رسد اگزون‌های این زن در نژادهای مختلف دارای تنوع بالایی این است. با توجه به نتایج این تحقیق (شکل ۵) و تحقیقات دیگر، باید وجود گزارش‌های زیاد ممکن بر وجود تنوع زیاد در زن Kiss1 هموسیزی بالایی این زن و کیس پیشنهاد

Luridiana S., Mura M. C., Daga C., Cosso G., Bodano S., Farci F. and Carcangiu V. 2014. Influences of melatonin treatment, melatonin receptor 1A (MTNR1A) and kisspeptin (KiSS-1) gene polymorphisms on first conception in Sarda ewe lambs. Reproduction, Fertility and Development, 47: 154-187.

Polymorphism of \textit{KiSS-I} gene and its association with litter size in Mehraban sheep

A. Ahmadi1*, Zh. Rajabi2, P. Zamani3, A. A. Bahari4

1. Assistant Professor, Department of Animal Sciences, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
2. Former MSc. Student, Department of Animal Sciences, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
3. Associate Professor, Department of Animal Sciences, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
4. Associate Professor, Department of Clinical Sciences, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran

(Received: 08-01-2018 – Accepted: 03-06-2018)

Abstract

\textit{Kiss1} gene is known as one of the genes affecting fertility. In the present study, DNA polymorphisms were investigated in gene 331 bp exon one and 286 bp of intron one of \textit{Kiss1} and their associations with reproduction trait (litter size) in 100 Mehraban sheep. Polymerase chain reaction based single strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods were used to identify eventual polymorphisms. The results showed single nucleotide polymorphism at three sites (g102C> T, g.155G> C and g.272G> A) with four different band patterns (four haplogenotypes) in exon one. All samples were detected with the same SSCP banding patterns and no polymorphism in intron one. The Chi-square test was used to compare the observed and expected genotypic frequencies. It was shown that the frequency of genotypes were significantly different in g.102C> T and g.272G> A mutations in exon one and they weren’t in the Hardy-Weinberg equilibrium ($P<0.01$). In the association analysis, the identified haplogenotypes were significantly associated with litter size, the number of lambs per parturition ($P<0.05$). The results of this study showed that the variation in exon one of the \textit{Kiss1} gene can be considered in marker assistance selection programs in Mehraban sheep breed.

Keywords: Polymorphism, \textit{Kiss1} gene, Reproduction trait, Sheep

*Corresponding author: Ahmadi@basu.ac.ir