
Bases for polynomial-based spaces

Maryam Mohammadi†∗ and Maryam Bahrkazemi‡

†Faculty of Mathematical Sciences and Computer, Kharazmi University,

Tehran, Iran.

‡School of Mathematics, Iran University of Science and Technology,

Tehran, Iran.

Emails: m.mohammadi@khu.ac.ir, maryam bahrkazemi@alumni.iust.ac.ir

Journal of Mathematical Modeling

Vol. 7, No. 1, 2019 , pp. 21-34 JMM
�
�

�
�

�
�

�
�

Abstract. Since it is well-known that the Vandermonde matrix is ill-
conditioned, this paper surveys the choices of other bases. These bases
are data-dependent and are categorized into discretely `2-orthonormal and
continuously L2-orthonormal bases. The first one is defined via a decompo-
sition of the Vandermonde matrix while the latter is given by a decomposi-
tion of the Gramian matrix corresponding to monomial bases. A discussion
of various matrix decomposition (e.g. Cholesky, QR and SVD) provides a
variety of different bases with different properties. Special attention is given
to duality. Numerical results show that the matrices of values of the new
bases have smaller condition numbers than the common monomial bases. It
can also be pointed out that the new introduced bases are good candidates
for interpolation.
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1 Introduction

Interpolation by polynomials or other functions is a rather old method in
applied mathematics. This is already indicated by the fact that, apparently,
the word “interpolation” itself has been introduced by Wallis as early as
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1655 as it is claimed in [6]. The concept of interpolation is the selection of
a function p(x) from a given class of functions in such a way that the graph
of y = p(x) passes through a finite set of given data points. Polynomial
interpolation theory has a number of important uses. Its primary use is
to furnish some mathematical tools that are used in developing methods
in the areas of approximation theory, numerical integration, and the nu-
merical solution of differential equations. A second use is in developing
means for working with functions that are stored in tabular form [2]. If
the underlying interpolating basis is the usual family of monomials then
the polynomial interpolation leads to solving a linear system involving the
Vandermonde matrix. Vandermonde matrix is an n × n matrix where the
first row is the first point x0 evaluated at each of the n monomials, the
second row is the second point x1 evaluated at each of the n monomials,
and so on. In [7] it is proved that the Vandermonde matrix of a large size
is badly ill-conditioned unless its knots are more or less equally spaced on
or about the circle C(0, 1) = {x : |x| = 1}. Several representations for the
interpolating polynomial exist: Lagrange, Newton, orthogonal polynomials
etc. Each representation is characterized by some basis functions. Trans-
formations between the basis functions which map a specific representation
to another is investigated in [4] . In this paper, the choices of other bases
are surveyed. These bases are data-dependent and are categorized into dis-
cretely `2-orthonormal and continuously L2-orthonormal bases. The first
one is defined via a decomposition of Vandermonde matrix while the latter
is given by a decomposition of the Gramian matrix corresponding to mono-
mial bases. A discussion of various matrix decomposition (e.g. Cholesky,
QR and SVD) provides a variety of different bases with different proper-
ties. The rest of the paper is organized as follows. Some basic definitions
and theorems are given in Section 2. We describe general data-dependent
bases in Section 3. There is a discussion about dual of the new bases and
the relation between value matrices of new bases and their dual in Section
4. Section 5 dedicates discretely `2-orthonormal bases. These bases are
defined via SVD and QR decomposition of the Vandermonde matrix. In
Section 6, continuously L2-orthonormal bases are presented. These bases
are given by SVD and Cholesky decomposition of the Gramian matrix cor-
responding to monomial bases. In Section 7, we provides some numerical
examples to verify the effectiveness of the new bases. The paper ends with
a brief conclusion.
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2 Preliminaries

Given function values with xi 6= xj for i 6= j and (xi, fi), i = 1, . . . , n where
fi = f(xi). There exists a unique polynomial Pn ∈ Pn of degree less than
or equal to n which interpolates these values, i.e.

Pn(xi) = fi, i = 0, 1, . . . , n. (1)

Several representations of Pn are known. In this paper we consider the
monomials among all of them. Consider the monomials

m(x) = [m0(x),m1(x), . . . ,mn(x)] = [1, x, x2, . . . , xn],

and the representation

Pn(x) = a0 + a1x+ · · ·+ anx
n.

The coefficients a = (a0, a1, . . . , an)T are determined by the interpolation
condition (1), as the solution of the linear system Aa = f with the Van-
dermonde matrix

A =


1 x0 · · · x0

n

1 x1 · · · x1
n

...
...

. . .
...

1 xn · · · xn
n

 ,

and the right hand side f = (f0, f1, . . . , fn)T . With this notation, the in-
terpolating polynomial becomes Pn(x) = m(x) · a. Since the Vandermonde
matrix is badly ill-conditioned and dense, this tends to instability of solu-
tions in the interpolation system. So we are looking for another bases in
order to decrease condition number of coefficient matrices of the interpola-
tion system. For simplicity we work with [x0, xn] = [−1, 1], because every
interval [a, b] can be easily transferred to [−1, 1]. The following theorems
and definitions are used in the next sections [1, 3, 5].

Definition 1. Let (E,µ) be a measure space and 0 < p <∞. The vector
space Lp(E) consists of measurable functions f : E → R such that

‖f‖P =

∫
E
|f(x)|pdµ(x) <∞.

Example 1. Some important examples of Lp-spaces are provided by con-
sidering the counting measure on N. In this case, the functions on N are
denoted as sequences and integration is replaced by summation. These Lp-
spaces are called the little Lp-spaces, and they are denoted by `p. In other
words, if 0 < p <∞, then `p consists of all sequences X = (x1, x1, . . .) such

that
∑∞

n=1 |xn|p <∞, and in this case ‖X‖p = (
∑∞

n=1 |xn|p)
1
p .
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Remark 1. L2(E) is an inner product space under the inner product

〈f, g〉 =

∫
E
f(x)g(x)dµ(x), ∀ f, g ∈ L2(E).

Remark 2. `2 is an inner product space under the inner product

〈X,Y 〉 =
∞∑
k=1

xkyk,

for all X = (x1, x2, . . .) and Y = (y1, y2, . . .) in `2.

Definition 2. The matrix A is said to be positive definite if for every
nonzero vector x ∈ Rn, xTAx > 0.

Definition 3. The Gramian matrix of a set of vectors {u0, . . . , un} is
a symmetric matrix of inner products, whose entries are given by (Gij =
〈ui, uj〉)0≤i,j≤n.

Example 2. Gramian matrix corresponding to monomial bases in the
space L2[−1, 1] is given by

Gm =


〈m0,m0〉 〈m0,m1〉 · · · 〈m0,mn〉
〈m1,m0〉 〈m1,m1〉 · · · 〈m1,mn〉

...
...

. . .
...

〈mn,m0〉 〈mn,m1〉 · · · 〈mn,mn〉



=


∫ 1
−1 1dx · · ·

∫ 1
−1 x

ndx
...

. . .
...∫ 1

−1 x
ndx · · ·

∫ 1
−1 x

2ndx

 .

Theorem 1 (QR Decomposition). Let A ∈ Rm×n, m ≥ n. There
exists an orthogonal matrix Q and an upper triangular matrix R such that
A = QR.

Theorem 2 (Cholesky Decomposition). For a symmetric positive def-
inite matrix A, there exists a unique decomposition A = LLT , where L is
a lower triangular matrix with positive diagonal entries.

Theorem 3 (Singular Value Decomposition (SVD)). Let A ∈ Rm×n

with rank(A) = r. Then the eigenvalues of n × n symmetric matrix ATA
are real and nonnegative. Let these eigenvalues be denoted by σ2

i , where
σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

n then σ1, . . . , σn are called the singular values of A.
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Every m × n matrix A can be decomposed into A = UΣV T , where Um×m
and Vn×n are orthogonal and Σ is an m × n rectangular diagonal matrix
with r nonzero elements, which are the nonzero singular values of A. This
decomposition is called Singular Value Decomposition or SVD.

Definition 4. [Dual basis in inner product spaces] Let (E, 〈., .〉) be
an inner product space of dimension n with basis Φ = [φ1, . . . , φn]. Any
e ∈ E can be represented as a linear combination

e = Φ.α =

n∑
i=1

αi.φi,

for some coefficient vector α ∈ Rn. The dual space E∗ consists of all linear
functionals on E, and among these one has the dual functionals λj such
that λj .φi = δij . With data map Λ = [λ1, . . . , λn], the duality statement is
simply

ΛTΦ = I,

where I the n × n identity matrix. Since Φ is a basis (hence linearly
independent), then Λ is also linearly independent, and therefore a basis
for the n-dimensional space E∗. By the Riesz Representation Theorem,
every linear functional on E has a representer in E. That is, for each
λj , there exists Dj ∈ E such that λj = 〈., Dj〉. Therefore, we associate
Λ = [λ1, . . . , λn] with the representers D = [D1, . . . , Dn]. Since Λ is linearly
independent in E∗ and dual to Φ, then D is linearly independent in E and
also dual to Φ. That is, 〈Dj ,Φi〉 = δij . Hence, D is a so-called dual basis.

3 General data-dependent Bases

Let X = {x0, x1, . . . , xn}, any basis u0, . . . , un of Pn can be arranged into
a row vector

U(x) = (u0(x), . . . , un(x)) ∈ Rn+1.

and it can be expressed by monomial bases m(x) and a coefficient or con-
struction matrix CU via

U(x) = m(x).CU , (2)

uk(x) =

n∑
j=0

mj(x)cjk, 0 ≤ k ≤ n.

Here we just note that the full set of possible bases U can be parametrized
by arbitrary matrices CU . Thus we shall express formulas for features of
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bases U mainly in term of CU , but there are other parameterizations as
well as we shall see.

The evaluation operator E based on the set X will map functions f
into columns

E(f) = fi = (f(x0), . . . , f(xn))T ∈ Rn+1,

of values on X, and rows of functions into matrices, such that

E(m) = E(mj(xi))0≤i,j≤n = A, (3)

is the Vandermonde matrix. Similarly, for a general basis U we can form
the value matrix

VU = E(U) = (uj(xi))0≤i,j≤n =

 u0(x0) u1(x0) · · · un(x0)
...

...
. . .

...
u0(xn) un(xn) · · · un(xn)

 . (4)

From the identity

VU = E(U) = E(m).CU = A.CU , (5)

for the monomial bases m, the decomposition (5) is A = A.I. Note that
(5) also shows that we could as well parametrized the set of bases U via the
value matrices VU , using CU = A−1.VU to come back to the parametrization
via CU .

4 Functionals and duality

In this section we discuss dual basis U∗ of U . We find value matrix VU∗

and also find the relationship between VU∗ and VU . At first the functionals
λj are defined. Interpolants Pn(x) to values E(f) of some function f can
be written as

Pn(x) = m(x).a,

with a coefficient vector a ∈ Rn+1 satisfying the linear system

A.a = E(f).

This is well-known, but also follows immediately from,

E(Pn(x)) = E(m).a = A.a = E(f),
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using our notation. For general bases, the interpolant takes the form

Pn(x) = m(x).A−1.E(f) = U(x). C−1
U .A−1.E(f)︸ ︷︷ ︸

=ΛU (f)

=

n∑
i=0

ui(x)λj(f),

with a column vector

ΛU (f) = (λ0(f), . . . , λn(f))T = C−1
U .A−1.E(f), (6)

of values of linear functionals. By using theReisz Representation Theorem,
for each λj , there exists u∗j such that

ΛU (.) = (λ0, λ1, . . . , λn)T = (〈., u∗0〉, . . . , 〈., u∗n〉)T . (7)

Therefore, we associate ΛU = (λ0, . . . , λn)T with representers

U∗ = (u∗0, . . . , u
∗
n).

Hence, U∗ is a dual basis of U . Now, we find the value matrix VU∗ of the
dual basis U∗. For this purpose, we use the following theorem in [5].

Theorem 4. Let (E,Φ, D) be an inner product space of dimension n over
the field R with basis Φ and dual basis D. Then, D = ΦC with

C = (ΦTΦ)−1,

a symmetric positive-definite n× n matrix.

Theorem 5. The dual basis U∗ to a data-dependent basis U satisfies

VU∗ = (V T
U )−1,

〈ui, u∗j 〉 = δij , 0 ≤ i, j ≤ n.

Proof. According to Theorem 4 and considering C ∈ R(n+1)×(n+1), we have

U∗ = UC = U(UTU)−1 = UU−1(UT )−1 = (UT )−1.

By using evaluation operator, we get

E(U∗) = (E(U))−T ,

VU∗ = (V T
U )−1.
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Now, by considering (6) and (7), we have

〈ui, u∗j 〉 = λj(ui)

= eTj ΛU (ui)

= eTj ΛU (Uei)

= eTj ΛU (U)ei

= eTj C
−1
U A−1︸ ︷︷ ︸
V −1
U

E(U)︸ ︷︷ ︸
VU

ei

= eTj ei = δij , 0 ≤ i, j ≤ n.

This proves the last assertion and shows that the functionals of ΛU always
are a biorthogonal basis with respect to U .

5 Discretely `2-orthonormal bases

Discrete `2(X) inner products form a Gramian Γu via

ΓU =
(
〈ui, uj〉`2(X)

)
0≤i,j≤n = (

n∑
k=0

ui(xk)uj(xk))0≤i,j≤n

= V T
U VU = CT

UA
TACU . (8)

Theorem 6. Each data-dependent discretely `2-orthonormal basis arises
from a decomposition

A = Q.B,

with Q = VU orthogonal matrix and B = C−1
U = QT .A.

Proof. By the formula (8), put ΓU = CT
UA

TACU = I, and set Q = A.CU .

We conclude that every discretely `2-orthonormal basis is obtained by
decomposition of the Vandermonde matrix. Thus, we have two special
cases:

• QR Decomposition
A standard QR decomposition A = QR into an orthogonal matrix Q
and an upper triangular matrix R will lead to a basis with CU = R−1,
VU = Q. This is nothing but the Gram-Schmidt orthonormalization
of the monomial bases.
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• SVD
The second case comes from rescaling an SVD basis. In fact any
SV D(A) = QΣQ̃T , with an orthogonal matrix Q and a diagonal
matrix Σ having the singular values of A on its diagonal, can be
splitted into A = Q.B with B = ΣQ̃T .

Remark 3. For discretely `2-orthonormal bases, the value matrix becomes
orthonormal, while the ill-conditioning is completely shifted into the con-
struction matrix.

6 Continuously L2-orthonormal bases

The Gramian matrix of the continuously L2-orthonormal bases in the space
L2[−1, 1] is given by

GU =
(
〈ui, uj〉L2[−1,1]

)
0≤i,j≤n = (〈

n∑
k=0

mk(x)cki,

n∑
L=0

mL(x)cLj〉)0≤i,j≤n

=


〈

n∑
k=0

mk(x)ck0,

n∑
L=0

mL(x)cL0〉 · · · 〈
n∑

k=0

mk(x)ck0,

n∑
L=0

mL(x)cLn〉

...
. . .

...

〈
n∑

k=0

mk(x)ckn,

n∑
L=0

mL(x)cL0〉 · · · 〈
n∑

k=0

mk(x)ckn,

n∑
L=0

mL(x)cLn〉



=



n∑
k=0

n∑
L=0

ck0cL0〈mk(x),mL(x)〉 · · ·
n∑

k=0

n∑
L=0

ck0cLn〈mk(x),mL(x)〉

...
. . .

...
n∑

k=0

n∑
L=0

ckncL0〈mk(x),mL(x)〉 · · ·
n∑

k=0

n∑
L=0

ckncLn〈mk(x),mL(x)〉


= CT

UGmCU , (9)

where

Gm =

 〈m0,m0〉 · · · 〈m0,mn〉
... · · ·

...
〈mn,m0〉 · · · 〈mn,mn〉

 ,

is the Gramian matrix corresponding to monomials in the space L2[−1, 1]
and

CU =


c00 c01 · · · c0n

c10 c11 · · · c1n
...

...
. . .

...
cn0 cn1 · · · cnn

 .
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Theorem 7. The Gramian matrix corresponding to monomials in the inner
product space L2[−1, 1] is a symmetric positive definite matrix.

Proof. It is evident that Gm is symmetric. We need to prove that Gm is
positive definite. For every x ∈ Rn+1 we have,

xTGmx =
∑
i,j

xiGijxj =
∑
i,j

xi〈mi,mj〉xj =
∑
j

〈
∑
i

ximi,mj〉xj

= 〈
∑
i

ximi,
∑
j

mjxj〉 = 〈y, y〉 = ‖y‖22 ≥ 0.

Now assume that y = 0. Since m(x) is a basis, we have xi = 0, and so
x = 0. Then Gm is symmetric and positive definite.

Theorem 8. Each data-dependent continuously L2-orthonormal basis arises
from a decomposition

Gm = BT .B, with B = C−1
U . (10)

Proof. By using (9), we have GU = CT
U .Gm.CU = I. Therefore Gm =

(C−1
U )TC−1

U .

We conclude that every continuously L2-orthonormal basis is obtained
by decomposition of the Gramian matrix Gm. Thus, we have two special
cases:

• Cholesky Decomposition
By using Cholesky decomposition, we have Gm = L.LT with a non-
singular lower triangular matrix L. Considering (10), we get VU =

A.CU = A.(L−1)
T

.

• SVD
The other case is induced by SVD in the form Gm = QΣQT with an
orthogonal matrix Q and a diagonal matrix Σ having the eigenvalues
of Gm on its diagonal. This SV D basis satisfies

B =
√

ΣQT , CU = Q(
√

Σ)−1, VU = AQ(
√

Σ)−1.

Remark 4. According to (5), the following relation holds between the con-
dition number of value matrices corresponding to new bases and monomials

cond(VU ) ≤ cond(A).cond(CU ). (11)
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Remark 5. Let

s(x) = α0u0(x) + α1u1(x) + · · ·+ αnun(x) = U(x).α,

be the interpolant of the new bases, where α = (α0, . . . , αn)T can be deter-
mined by solving the system of linear equations VU .α = f . If the values of
the new bases are needed at other points like X̃ = {x̃0, . . . , x̃m} ∈ [−1, 1],
we use

[s(x̃0), . . . , s(x̃m)]T = Ṽ .α,

where

Ṽ = (uj(x̃i))0≤j≤n, 0≤i≤m =

 u0(x̃0) · · · un(x̃0)
...

. . .
...

u0(x̃m) · · · un(x̃m)

 .

Then equation (2) leads to
Ṽ = Ã. CU ,

where

Ã =

 1 x̃0 · · · x̃n0
...

...
. . .

...
1 x̃m · · · x̃nm

 .

7 Numerical results

In this section we present the numerical results of condition numbers of
Vandermonde matrix and value matrices of the new bases as well as plots
of interpolants and relative errors distribution of the new bases. Codes are
written in MATLAB R2018a. We interpolate the function f(x) = ex in
[−1, 1] by using n uniform set of points

xi = (−1) +
2

n− 1
i, i = 0, 1, . . . , n− 1.

Condition numbers are calculated in 2-norm. Table 1 compares condi-
tion numbers of value and structure matrices of discretely `2-orthonormal
bases and Vandermonde matrix for different values of n. As we stated in
the Remark 3, Table 1 verifies that the condition number of value matrices
of discretely `2-orthonormal bases are equal to one and the ill-conditioning
is completely shifted into construction matrix. Table 2 compares condition
numbers of value and structure matrices of continuously L2-orthonormal
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Table 1: Comparing condition numbers of value and structures matrices
corresponding to discretely `2-orthonormal bases and Vandermonde matrix.
n κ(A) κ(VQR) κ(CQR) κ(VSV D) κ(CSV D)

5 63.8273 1 63.8273 1 63.8273

10 1.3959× 104 1 1.3959× 104 1 1.3959× 104

15 3.2800× 106 1 3.2800× 106 1 3.2800× 106

20 8.3138× 108 1 8.3138× 108 1 8.3138× 108

25 2.1314× 1011 1 2.1314× 1011 1 2.1314× 1011

Table 2: Comparing condition numbers of value and structures matrices
corresponding to continuously L2-orthonormal bases and Vandermonde ma-
trix.
n κ(A) κ(VChol) κ(CChol) κ(VSV D) κ(CSV D)
5 63.8273 4.8630 43.2480 4.8630 43.2480
10 1.3959× 104 40.2449 3.0730× 103 40.2449 3.0730× 103

15 3.2800× 106 727.4846 2.2989× 105 727.4846 2.2989× 105

20 8.3138× 108 1.6183× 104 1.7697× 107 1.6183× 104 1.7697× 107

24 7.0535× 1010 2.0493× 105 4.0956× 108 2.0668× 105 5.1674× 108

Figure 1: Logarithmic plots of relative errors of interpolation. Discretely
`2-orthonormal bases (right); Continuously L2-orthonormal bases (left).

bases and Vandermonde matrix for different values of n. It can be noted
from Table 2 that the condition number of value matrices by both SVD
and Cholesky decompositions increases as long as n increases, but they are
still much smaller than the condition numbers of the Vandermonde matrix.
The logarithmic plots of relative errors of interpolation are given in Figure 1
by using both discretely `2-orthonormal and continuously L2-orthonormal
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Figure 2: Plots of interpolants. Discretely `2-orthonormal bases (top);
Continuously L2-orthonormal bases (bottom).

bases. It can be seen that the errors are very close to zero. In Figure 2,
we plotted the interpolants of function f(x) = ex by using new bases for
different values of n. The numerical results are in good agreement with the
exact solution.

8 Conclusions

Since it is well-known that the Vandermonde matrix is ill-conditioned, we
had an account of the possibilities to construct bases of data-dependent
polynomial-based spaces. QR and SVD decomposition of the Vandermonde
matrix lead to discretely `2-orthonormal bases while Cholesky and SVD
decomposition of the Gramian matrix corresponding to monomial bases
lead to continuously L2-orthonormal bases. Dual of the new bases and
the relation between value matrices of new bases and their dual are also
investigated. Numerical results show that the matrices of values of the new
bases have smaller condition numbers than the common monomial bases. It
can also be pointed out that the new introduced bases are good candidates
for interpolation.
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