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ESSENTIAL SUBHYPERMODULES AND THEIR
PROPERTIES

BEHNAM TALAEE ∗

Abstract. Let R be a hyperring (in the sense of [8]) and M be a hy-

permodule on R. In this paper we will introduce and study a class of

subhypermodules of M . We will study the intersection of this kind of sub-

hypermodules and give some suitable results about them. We will proceed

to give some interesting results about the complements, direct sums and

independency of this kind of subhypermodules.

1. Introduction

The concepts of hypergroups, hyperrings and hypermodules and some

generalizations of them were introduced by some authors, see for examples

[1, 3, 4, 5, 6, 7, 8, 11, 12].

A hyperstructure is a nonvoid set H together with a function . : H×H −→
P ∗(H), where . is called a hyperoperation and P ∗(H) is the set of all nonempty

subsets of H.

For A,B ⊆ H and x ∈ H we define

A.B =
⋃

a∈A,b∈B

a.b, x.B = {x}.B, A.x = A.{x}.

Definition 1.1. A hyperstructure H with a hyperoperation ”+” is called a

canonical hypergroup if the following hold for H;

(i) (x+ y) + z = x+ (y + z) for all x, y, z ∈ H;

(ii) x+ y = y + x for all x, y ∈ H;
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(iii) There exists an element 0 such that 0 + x = {x}, where {x} is the single

ton set with element x, for every x ∈ H;

(iv) For each x ∈ H there exists a unique element x′ ∈ H, such that 0 ∈ x+x′.

(we denote x′ by −x and it is called the opposite of x). Also we write

x− y instead of x+ (−y);

(v) If z ∈ x+ y, then y ∈ z − x for all x, y, z in H.

Note that 0 is unique and for every x ∈ H we have x + 0 = 0 + x = {x}.
We identify a singleton set {x} by x.

A nonempty subset G of a canonical hypergroup H is called a canonical sub-

hypergroup of H if G is a canonical hypergroup.

Canonical hypergroups were studied by J. Mittas in [11].

A non-void set R with a hyperoperation ”+” and with a binary operation

”.” is called a hyperring if

(R1) (R,+) is a canonical hypergroup;

(R2) (R, .) is a multiplicative semigroup having 0, suchthat x.0 = 0.x = 0

for all x ∈ R;

(R3) z.(x+ y) = z.x+ z.y and (x+ y).z = x.z + y.z for all x, y, z ∈ R.

If the operation ”.” in (R2) is commutative, then R is called a commutative

hyperring.

For more details about the theory of hyperrings see [5, 6].

2. Hypermodules

Throughout this paper R is a commutative hyperring and all related hyper-

modules are R–hypermodules.

Definition 2.1. ([7]) A left hypermodule over a unitary hyperring R is a canon-

ical hypergroup (M,+) together with an external composition . : R ×M −→
M , denoted by (r,m) 7→ rm ∈ M , such that for all (x, y) ∈ M2 and all

(r, s) ∈ R2, the following hold;

(M1) r.(x+ y) = r.x+ r.y;

(M2) (r + s).x = r.x+ s.x;

(M3) (rs).x = r.(s.x);

(M4) 1.m = m and 0.m = 0, for each m ∈M .
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A nonempty subset N of a hypermodule M is called a subhypermodule of M

if (N,+) is a canonical subhypergroup of (M,+) and N is a hypermodule over

R, under external composition ”.” from R×N to N . By N ≤M , we mean N

is a subhypermodule of M .

Lemma 2.2. Let M be a hypermodule and N be a nonvoid subset of M . Then

N is a subhypermodule of M if and only if for every x, y ∈ N and r ∈ R we

have rx+ y ⊆ N .

Proof. Suppose that N is a subhypermodule of M . Let x, y ∈ N and r ∈
R. Since N is a hypermodule over R, so rx ∈ N . Also since (N,+) is a

subhypergroup of (M,+), rx+ y ⊆ N .

For converse it suffices to show that (N,+) is a subhypergroup of (M,+). This

follows from the fact that rx+ y ⊆ N for every x, y ∈ N and every r ∈ R. �

We refer to [2] for more information about hypermodules and subhypermod-

ules.

Let M,N be two R–hypermodules. A function f : M −→ N is called a

homomorphism if for every x, y ∈M and every r ∈ R the following hold

(1) f(x+ y) = f(x) + f(y);

(2) f(rx) = rf(x),

and f is called a weak homomorphism if

(1) f(x+ y) ⊆ f(x) + f(y);

(2) f(rx) = rf(x).

A homomorphism f is called a monomorphism (monic), if f is one to one.

f is called an epimorphism (epic), if f is onto and f is called isomorphism if

it is epic and monic.

For two hypermodules M,N and a homomorphism f : M −→ N , it is easy

to see that f(0) = 0.

Proposition 2.3. Let M,N,K be R–hypermodules, f : M −→ N a ho-

momorphism and g : M −→ K an epimorphism. Moreover suppose that

Ker(g) ⊆ Ker(f). Then there exists a homomorphism h : K −→ N such

that f = hog, and the following hold

(1) If f is epic, then h is epic.

(2) If Ker(f) = Ker(g) then h is monic.

(3) If f is epic and Ker(f) = Ker(g), then h is an isomorphism.

Proof. See [9, Theorem 3.1]. �
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Let M be a hypermodule over a hyperring R and N ≤M . Consider M/N =

{m+N | m ∈M}, then M/N becomes a hypermodule over R under hyperop-

erations defined by + : M/N×M/N −→ P ∗(M/N) and . : R×M/N −→M/N

such that m+N +m′+N = {x+N | x ∈ m+m′} and r.(m+N) = rm+N

for m,m′ ∈M and r ∈ R. Note that m+N = N if and only if m ∈ N .

For a hypermoduleM and a subhypermoduleN ofM there exists a canonical

epimorphism π : M −→M/N defined by π(m) = m+N with Ker(π) = N .

By R− hmod, we mean the category of all hypermodules over hyperring R.

The following result is an immediate consequence of Proposition 2.3.

Corollary 2.4. Let M,N be R–hypermodules. If f : M −→ N is a homomor-

phism and K ≤M . Then

(1) If K ⊆ Ker(f), then there exists a unique homomorphism f̄ : M/K −→
N such that f̄(m+K) = f(m) for every m ∈M .

(2) If f is epic, then f̄ is epic.

(3) If K = Ker(f), then f̄ is monic.

(4) If f is epic and K = Ker(f), then f̄ is an isomorphism.

Proposition 2.5. Let M,N be R–hypermodules and f : M −→ N be a homo-

morphism. Then the following are equivalent:

(1) f is monic;

(2) Ker(f) = 0;

(3) For every hypermodule K and for homomorphisms g, h : K −→ M , if

fog = foh, then g = h.

Proof. See [9, Theorem 3.3]. �

Proposition 2.6. For two hypermodules M,N and homomorphism f : M −→
N , the following are equivalent:

(1) f is epic;

(2) For every hypermodule K and for homomorphisms g, h : N −→ K, if

gof = hof , then g = h.

Proof. See [9, Theorem 3.4]. �

By Proposition 2.5 and Proposition 2.6, we conclude that monomorphisms

(resp. epimorphisms) in R–hmod are homomorphisms which are one to one

(resp. onto).

Lemma 2.7. Let M be an R–hypermodule. If {Mα}α∈A is an indexed set of

subhypermodules of M and S ⊆M . Then
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(1)
∑

AMα = {t | t ∈
∑

F⊆Amα; for some finite subset F ⊆ A and mα ∈
Mα} is a subhypermodule of M .

(2) < S >= {t | t ∈
∑n

i=1 risi for some ri ∈ R, si ∈ S and n ∈
N} =

⋂
{N | N ≤M,N ⊇ S} is a subhypermodule of M .

(3)
∑

AMα =<
⋃
AMα >.

Proof. 1. Since 0 ∈
∑

AMα, so
∑

AMα 6= ∅. Let x, y ∈
∑

AMα and r ∈ R. So

there exist finite subset F,G of A such that x ∈
∑

F⊆Amα and y ∈
∑

G⊆Amβ,

for some mα ∈Mα and mβ ∈Mβ. Therefore

rx+ y ⊆
∑
F⊆A

rmα +
∑
G⊆A

mβ ⊆
∑
A

Mα

Now by Lemma 2.2,
∑

AMα is a subhypermodule of M .

(2) follows from (1) and (3) follows from (1) and (2). �

3. Essential Subhypermodules

Definition 3.1. Let M be a hypermodule and N ≤ M , then N is called an

essential subhypermodule of M (denoted by N�M) if N∩K 6= 0 for all nonzero

subhypermodule K of M ; or equivalently N ∩K = 0 implies that K = 0 for

every K ≤M .

For two hypermodules M,N , a monomorphism f : M −→ N is called an

essential monomorphism if Im(f) �N .

Proposition 3.2. Let M be a hypermodule over hyperring R and K ≤ M .

Then the following are equivalent:

(1) K �M ;

(2) The inclusion map iK : K −→M is an essential monomorphism.

(3) For every hypermodule N and for every homomorphism h : M −→ N ,

Ker(h) ∩K = 0 implies that Ker(h) = 0.

Proof. Straightforward. �

Proposition 3.3. A monomorphism f : L −→ M in R–hmod is essential if

and only if for all homomorphism h in R–hmod, if hof is monic, then h is

monic.

Proof. Suppose that f : L −→ M is an essential monomorphism and hof is

monic. Then Im(f) ∩Ker(h) = 0 and hence Ker(h) = 0. So h is monic.

For converse suppose that Im(f) ∩ K = 0 for K ≤ M . Now consider the

canonical epimorphism πK : M −→ M/K, then clearly πKof : L −→ M/K is

monic. Hence, πK is monic; i.e. K = 0 and so Im(f) �M . �
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Proposition 3.4. Let M be a hypermodule and K ≤ N ≤M . Then

(1) K �M if and only if K �N and N �M .

(2) H ∩K �M if and only if H �M and K �M .

Proof. (1) =⇒: Suppose that K ∩ L = 0 for subhypermodule L of N , then

L ≤M and so L = 0. Also, K �M implies N �M , since K ≤ N .

⇐=: Suppose that K � N and N �M . Let L be a subhypermodule of M

such that K ∩ L = 0. Then K ∩ (L ∩N) = 0, thus L ∩N = 0 and so L = 0.

(2) =⇒ is clear.

For converse suppose that (H ∩K)∩L = 0. Since K�M , we have K ∩L = 0

and similarly L = 0. Hence H ∩K �M , as required. �

Proposition 3.5. Let M,N be R–hypermodules, X ≤ N and f : M −→ N a

monomorphism. If X �N , then f−1(X) �M .

Proof. Suppose that f−1(X) ∩ K = 0 for subhypermodule K of M . We will

show that X ∩ f(K) = 0. Let x ∈ X ∩ f(K), then x = f(y) for some y ∈ K
and so y ∈ f−1(X) ∩K = 0. Thus x = f(0) = 0, that is X ∩ f(K) = 0. Now

X �N , so we have f(K) = 0. Since f is monic, this implies K = 0. �

Let M be a hypermodule over the hyperring R and x ∈ M . Then it is not

difficult to see that Rx = {rx | r ∈ R} is a subhypermodule of M .

Lemma 3.6. Let M be a hypermodule over hyperring R. Then a subhyper-

module K of M is essential in M if and only if for every 0 6= x ∈ M , there

exists r ∈ R, such that 0 6= rx ∈ K.

Proof. Obvious. �

Proposition 3.7. Let M,N be two hypermodules over hyperring R and g :

M −→ N be a monomorphism. Then for each homomorphism f : K −→
M , gof is an essential monomorphism if and only if g and f are essential

monomorphisms.

Proof. Suppose that g is a monomorphism and gof : K −→ N is an essential

monomorphism. Let L be a subhypermodule of M such that Im(f) ∩ L = 0.

Then g(Im(f)∩L) = 0. Now we show that g(Im(f)∩L) = g(Im(f))∩ g(L).

Clearly g(Im(f)∩L) ⊆ g(Im(f))∩g(L). For converse let x ∈ g(Im(f))∩g(L),

then x = g(f(y)) = g(z) for some y ∈ K and z ∈ L, so 0 ∈ g(f(y)) −
g(z) = g(f(y) − z). Thus there exists a ∈ f(y) − z such that g(a) = 0,

i.e a ∈ Ker(g) = {0}. Hence 0 ∈ f(y) − z and so f(y) = z. Therefore,

0 = g(Im(f) ∩ L) = g(Im(f)) ∩ g(L) and hence Im(gof) ∩ g(L) = 0. Since
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gof is an essential monomorphism, this implies g(L) = 0 and consequently

L = 0 (since g is monic). These implies f is an essential monomorphism (since

gf is monic clearly f is monic). Finally, since Im(gof) ⊆ Im(g), g must be

an essential monomorphism.

For converse suppose that h : N −→ P is a homomorphism, such that hogof

is monic. It suffices show that h is monic. Suppose that Ker(h) 6= 0. WE have

Im(g) ∩Ker(h) 6= 0 and hence Ker(hog) 6= 0. Now Im(f) ∩Ker(hog) 6= 0,

since f is an essential monomorphism. Let 0 6= x = f(k) such that hog(f(k)) =

0 for some k ∈ K. Since hogof is monic, we have k = 0, a contradiction by

f(k) 6= 0. Hence Ker(h) = 0. �

A sequence 0 −→ A
f−→ B

g−→ C −→ 0 of hypermodules is called exact if f

is one to one, g is onto and Im(f) = Ker(g).

Proposition 3.8. Assume that both rows in the following commutative dia-

gram are exact and moreover γ is monic.

0 −→ A
f−→ B

g−→ C −→ 0

↓α ↓β ↓γ
0 −→ A′

f ′−→ B′
g′−→ C ′ −→ 0

If f ′ is an essential monomorphism, then so is f .

Proof. Let 0 6= K ≤ B. We consider two cases:

Case 1: β(K) 6= 0; Since Im(f ′)�B′ , in this case we have β(K)∩Im(f ′) 6= 0.

So there exists 0 6= x ∈ Im(f ′) = Ker(g′) such that x = β(k) for some

0 6= k ∈ K. Now 0 = g′(x) = g′(β(k)) = γ(g(k)). Since γ is monic, g(k) = 0.

Hence 0 6= k ∈ Ker(g) = Im(f).

Case 2: β(K) = 0; therefore in this case we obtain 0 = g′(β(K)) = γ(g(K)),

so g(K) = 0. Thus K ⊆ Ker(g) = Im(f).

In both above cases we obtain f is an essential monomorphism. �

Definition 3.9. Let M be a hypermodule and N a subhypermodule of M .

Then the subhypermodule N ′ of M is called a complement of N in M if N ′ is

maximal with the property N ∩N ′ = 0.

By Zorn,s Lemma, every subhypermodule of an arbitrary hypermodule has

a complement.

We say two subhypermodule K,N of M are independent, if K ∩ N = 0. If

N,K are independent then N +K is denoted by N ⊕K.

Also a subhypermodule N of M is called a direct summand of M if M =

N ⊕N ′ for some N ′ ≤M .
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A hypermodule M is called indecomposable if whenever M = M1⊕M2, then

M1 = 0 or M2 = 0.

Lemma 3.10. (Modularity Law) Suppose that M is a hypermodule and A,B,C

are subhypermodules of M such that B ≤ A. Then A∩ (B+C) = B+(A∩C).

Proof. Clearly B + (A ∩ C) ⊆ A ∩ (B + C).

For converse let x ∈ A ∩ (B + C). Then x = a ∈ b + c for some a ∈
A, b ∈ B and c ∈ C. So we have c ∈ a − b ⊆ A, and hence c ∈ A ∩ C. But

x ∈ b+ c ⊆ B + A ∩ C. Thus A ∩ (B + C) ⊆ B + (A ∩ C). �

The condition B ⊆ A in Lemma 3.10 is necessary. That is in general we have

not A∩ (B+C) = (A∩B) + (A∩C). For example consider the hypermodule

M = {(x, y) | x, y ∈ Z} as Z-hypermodule with trivial hyperoperations and

let A = {(x, x) | x ∈ Z}, B = {(x, 0) | x ∈ Z} and C = {(0, x) | x ∈ Z}. Then

A ∩ (B + C) = A, but (A ∩B) + (A ∩ C) =< (0, 0) >6= A.

Proposition 3.11. Let M be a hypermodule and N ≤M . Moreover let N ′ be

a complement of N in M . Then

(i) N ⊕N ′ EM .

(ii) (N ⊕N ′)/N ′ EM/N ′.

Proof. (i) Suppose that K ≤ M and (N ⊕ N ′) ∩ K = 0. We show that

N ∩ (N ′ ⊕ K) = 0 and then we conclude K = 0, by maximality of N ′. To

see N ∩ (N ′ ⊕K) = 0, let x ∈ N ∩ (N ′ ⊕K). Then there exist n ∈ N, n′ ∈
N ′ and k ∈ K such that x = n ∈ n′+k. Thus k ∈ n−n′ ⊆ N ⊕N ′ and so k ∈
K ∩ (N ⊕N ′) = 0. Hence x = n ∈ n′+ 0 = {n′}; i.e, x = n = n′ ∈ N ∩N ′ = 0.

Therefore N ∩ (N ′ ⊕K) = 0.

(ii) Suppose thatN ′ ≤ L and (N⊕N ′)/N ′∩L/N ′ = N ′. Then (N⊕N ′)∩L ≤
N ′ and by Lemma 3.10, N ′⊕(N∩L) ≤ N ′. Hence N∩L ≤ N ′ and so L∩N = 0.

Thus L = N ′, by maximality of N ′. That is (N ⊕N ′)/N ′ EM/N ′.

�

Lemma 3.12. Suppose that M = M1 ⊕M2 is a hypermodule where M1,M2

are subhypermodules of M . Then for each m ∈M there exist a unique element

m1 ∈M1 and a unique element m2 ∈M2 such that m ∈ m1 +m2.

Proof. Obviously, for each m ∈ M there exist m1 ∈ M1 and m2 ∈ M2, such

that m ∈ m1 + m2. Now suppose that m ∈ m1 + m2 and m ∈ n1 + n2 for

some m1, n1 ∈M1 and m2, n2 ∈M2. Thus we have 0 ∈ m−m ⊆ (m1 +m2)−
(n1 + n2) = (m1 − n1) + (m2 − n2) and so there exist x ∈ m1 − n1 ⊆ M1 and
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y ∈ m2 − n2 ⊆ M2 such that 0 ∈ x + y. Hence x = −y ∈ M1 ∩M2 =< 0 >;

i.e, 0 ∈ m1 − n1 and 0 ∈ m2 − n2 that shows m1 = n1 and m2 = n2. �

Proposition 3.13. Let M = M1 ⊕M2 be a hypermodule. Then for each i =

1,2, there exists a weak epimorphism πi : M −→ Mi such that Im(πi) = Mi

and Ker(πi) = Mj, j 6= i.

Proof. Let m ∈ M . Then there exist m1 ∈ M1 and m2 ∈ M2 such that

m ∈ m1 +m2. Now define π1 : M −→M1 by π1(m) = m1.

By Lemma 3.12, π1 is well defined.

To see that π1 is a weak homomorphism, let m ∈M so that m ∈ m1+m2 for

some m1 ∈M1 and m2 ∈M2. Let r ∈ R. Then rm ∈ r(m1 + n1) = rm1 + rn1

and hence π1(rm) = rm1 = rπ1(m).

Now let n ∈M so that n ∈ n1+n2 for some n1 ∈M1 and n2 ∈M2. We show

that π1(m + n) ⊆ π1(m) + π1(n). Let x ∈ π1(m + n), so x = π1(y) for some

y ∈ m+n ⊆ (m1 +m2) + (n1 +n2) = (m1 +n1) + (m2 +n2). Thus there exist

k1 ∈ m1+n1 ⊆M1 and k2 ∈ m2+n2 ⊆M2 such that y ∈ k1+k2. Then we have

x = π1(y) = k1 ∈ m1 +n1 = π1(m)+π1(n); that is π1(m+n) ⊆ π1(m)+π1(n).

Obviously, f is epic.

Finally, let m ∈ M so that m ∈ m1 +m2 (m1 ∈ M1,m2 ∈ M2). By Lemma

3.12, we have π1(m) = 0 iff m1 = 0 iff m ∈ 0 +m2 = {m2}, iff m = m2 ∈M2;

i.e, Ker(π1) = M2.

�

Proposition 3.14. Suppose that M is a hypermodule and K1 ≤ M1 ≤ M ,

K2 ≤ M2 ≤ M such that M = M1 ⊕M2. Then K1 ⊕K2 E M1 ⊕M2 if and

only if K1 EM1 and K2 EM2.

Proof. Suppose that K1 ⊕ K2 E M1 ⊕M2 but K1 is not essential in M1. So

there exists a nonzero subhypermodule L1 of M1 such that K1 ∩ L1 = 0. This

implies (K1 +K2)∩L1 = 0 that is a contradiction. To see (K1 +K2)∩L1 = 0,

let x ∈ L1 ∩ (K1 + K2). Then there exist l1 ∈ L1, k1 ∈ K1 and k2 ∈ K2 such

that x = l1 ∈ k1 + k2. Thus k2 ∈ l1 − k1 ⊆ M1; i.e, k2 ∈ M1 ∩M2 = 0 and so

x = l1 ∈ k1 + 0 = {k1} that implies x ∈ L1 ∩K1 = 0. Similarly K2 EM2.

Conversely suppose that K1 E M1 and K2 E M2. Let 0 6= x ∈ M1 ⊕M2,

then x ∈ m1 +m2 for some m1 ∈ M1 and m2 ∈ M2. Since x 6= 0, at least one

of m1 and m1 must be nonzero. We consider two cases :

Case 1. m2 = 0 or m1 = 0: Suppose that m2 = 0, then m1 6= 0 and

by Lemma 3.6, there exists r1 ∈ R such that 0 6= r1m1 ∈ K1. Therefore
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r1x ∈ r1(m1 + 0) = {rm1} 6= 0 so that 0 6= r1x ∈ K1 ⊆ K1 ⊕ K2. Hence

K1 ⊕K2 EM1 ⊕M2 by Lemma 3.6. Similarly we have for m2 = 0.

Case 2. Both m1 and m2 are nonzero: By using Lemma 3.6, there exists

0 6= r1 ∈ R such that 0 6= r1m1 ∈ K1. If r1m2 ∈ K2, then r1x ∈ r1(m1 +m2) =

r1m1 + r2m2 ⊆ K1 ⊕K2 and by independency r1x 6= 0. If r1m2 6∈ K2, again

by Lemma 3.6, there exists r2 ∈ R such that 0 6= r2r1m2 ∈ K2 and hence

0 6= r2r1x ∈ r2r1m1 + r2r1m2 ⊆ K1 ⊕K2. Thus K1 ⊕K2 EM1 ⊕M2. �

Proposition 3.15. Let M be a hypermodule and K an essential subhypermod-

ule of M such that K = (K ∩M1) ⊕ (K ∩M2), whenever M = M1 ⊕M2. If

K is indecomposable, then so is M .

Proof. Suppose that M = M1 ⊕M2 is a decomposition of M . By hypothesis

K = (K∩M1)⊕(K∩M2). Since K is indecomposable, so we have K∩M1 = 0

or K ∩ M2 = 0 and hence M1 = 0 or M2 = 0, as K E M . That is M is

indecomposable. �

Let M be any hypermodule and {Mα}α∈A an indexed set of subhypermodules

of M . Then {Mα}α∈A is called independent if Mα∩ (
∑

β∈A\{α}Mβ) =< 0 > for

every α ∈ A. If {Mα}α∈A is independent then the sum
∑

α∈AMα is denoted

by
⊕

α∈AMα.

Lemma 3.16. Let M be any hypermodule and {Mα}α∈A an indexed set of

subhypermodule of M . Then the following statements are equivalent

1) {Mα}α∈A is independent;

2) {Mα}α∈F is independent for every finite subset F of A;

3) ({Mβ}β∈B)∩ ({Mγ}γ∈C) =< 0 >, for every pair B,C ⊆ A with B ∩C = 0.

Proof. Straightforward. �

Proposition 3.17. Suppose that M is a hypermodule and {Lα}α∈A is a set of

independent subhypermodules of M . Let {Mα}α∈A be a set of subhypermodules

of M such that Lα EMα; for each α ∈ A. Then the following hold

1) {Mα}α∈A is independent.

2)
⊕

α∈A Lα E
⊕

α∈AMα.

Proof. First we show that (1), (2) hold for every finite subset F of A. Let L1, L2

be independent and L1 EM1, L2 EM2. So we have (L1∩M2)∩L2 = L1∩L2 =

0, and hence L1∩M2 = 0 as L1 EM1. Moreover, (M1∩M2)∩L1 ≤ L1∩M2 = 0

that implies M1 ∩M2 = 0 as L1 E M1. Thus M1,M2 are independent. By

Proposition 3.14, L1 ⊕ L2 E M1 ⊕M2. By using induction, we see that (1),
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(2) hold for every finite subset F ⊆ A. Now by Lemma 3.16, {Mα}α∈A is

independent. To obtaining (2), let 0 6= x ∈
⊕

AMα. Then x ∈ mα1 + mα2 +

... + mαn for some mαi ∈ Mαi
and n ∈ N, where {α1, α2, ..., αn} ⊆ A. That is

x ∈
⊕n

i=1Mαi
. Since

⊕n
i=1 Lαi

E
⊕n

i=1Mαi
, by Lemma 3.6 there is an r ∈ R

such that 0 6= rx ∈
⊕n

i=1 Lαi
≤

⊕
α∈A Lα. Hence

⊕
α∈A Lα E

⊕
α∈AMα, that

completes the proof. �

4. Examples

Example 4.1. Consider Z–hypermodule Z with trivial hyperoperations. Then

every subhypermodule of Z is essential in Z and the corresponding inclusion

map is an essential monomorphism.

Example 4.2. Let M denote the Z–hypermodule Z/6Z with trivial hyperop-

erations. Then Z/6Z = 2Z/6Z⊕ 3Z/6Z and hence neither 2Z/6Z nor 3Z/6Z
is essential in Z/6Z.
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