NON-REDUCED RINGS OF SMALL ORDER AND THEIR MAXIMAL GRAPH

A. SHARMA * AND A. GAUR

ABSTRACT. Let R be a commutative ring with nonzero identity. Let $\Gamma(R)$ denotes the maximal graph corresponding to the non-unit elements of R, that is, $\Gamma(R)$ is a graph with vertices the non-unit elements of R, where two distinct vertices a and b are adjacent if and only if there is a maximal ideal of R containing both. In this paper, we investigate that for a given positive integer n, is there a non-reduced ring R with n non-units? For $n \leq 100$, a complete list of non-reduced decomposable rings $R = \prod_{i=1}^k R_i$ (up to cardinalities of constituent local rings R_i 's) with n non-units is given. We also show that for which n, $(1 \leq n \leq 7500)$, $|Center(\Gamma(R))|$ attains the bounds in the inequality $1 \leq |Center(\Gamma(R))| \leq n$ and for which n, $(2 \leq n \leq 100)$, $|Center(\Gamma(R))|$ attains the value between the bounds.

1. Introduction

The maximal graph G(R) associated to R was introduced by the authors [3] in 2013. The authors considered G(R) as a simple graph whose vertices are elements of R, and two distinct vertices a and b are adjacent if and only if there is a maximal ideal of R containing both. In [4], the authors defined $\Gamma(R)$ as the restriction of G(R) to the non-unit elements of R, that is, $\Gamma(R)$ is a simple graph whose vertices are the non-unit elements of R such that two distinct vertices a and b are adjacent if and only if $a, b \in \mathfrak{m}$ for some maximal ideal \mathfrak{m} of R. $\Gamma(R)$

MSC(2010): Primary: 13M99; Secondary: 05C99

Keywords: Non-reduced ring, Jacobson radical, maximal graphs, center, median.

Received: 17 April 2018, Accepted: 12 June 2018.

*Corresponding author .

was also named as maximal graph of R as the units in R are just the isolated vertices in G(R).

This paper is inspired by a simple question: Given any positive integer n, is there a commutative ring with nonzero identity having n non-units? One can easily verify that a ring R has a finite number $n \geq 2$ of non-units only if R is finite. So, to answer this question, we need to consider finite rings only.

Of course, the question is somewhat trivial if one removes the requirement that the ring must have an identity. Letting A_k denote the additive group \mathbb{Z}_k with the trivial multiplication $(xy = 0 \text{ for all } x, y \in A_k)$, then A_k has k non-units. Thus, for this paper, all rings considered will be finite with nonzero identity. We use \mathbb{F}_k to denote the finite field with k elements.

Restricting the question to local rings (rings which have a unique maximal ideal, including fields) can give examples only for certain values of n. For a finite local ring R with \mathfrak{m} its maximal ideal, $|R| = p^{k\alpha}$ and $|\mathfrak{m}| = p^{(k-1)\alpha}$ for some prime p and some positive integer k. Hence, one must look beyond local rings to answer this question in general.

For finite commutative rings with nonzero identity, every non-unit is zero-divisor. In [6], it was shown that there is no commutative ring with nonzero identity and 1210 non-units. Moreover, for $1 \le n \le 7500$, n = 1210, n = 3342, and n = 5466 are the only positive integers for which there is no commutative ring R with nonzero identity and n non-units [6]. Now, there are few other questions:

- For which positive integer n, do there exist only reduced rings with n non-units?
- Given a positive integer n, do there exist non-reduced rings with n non-units?
- If we determine a non-reduced ring R with n non-units, then what is the value of |J(R)|, where J(R) denotes the Jacobson radical of R. Whether it depends on prime factorization of n or not?

In Section 2, we find some conditions on |J(R)| such that for a given positive integer n, there does not exist a non-reduced ring with n non-units. In Section 3, we present tables listing all non-reduced decomposable rings $R = \prod_{i=1}^k R_i$ (up to cardinalities of constituent local rings R_i 's) with n non-unit elements, where $2 \le n \le 100$. In Section 4, we discuss that for which positive integer n, $1 \le n \le 7500$, $|Center(\Gamma(R))|$ attains the bounds in the inequality $1 \le |Center(\Gamma(R))| \le n$ and for which n, $1 \le n \le 100$, $|Center(\Gamma(R))|$ attains the value between the

bounds. Throughout the paper, ring shall mean a finite commutative ring with nonzero identity.

2. Non-reduced Rings

We begin the section with some results which are established for zero-divisors. In view of the fact that every non-unit is a zero-divisor in a finite ring R, we are restating them for non-units.

- [5, Theorem 2] Let R be a commutative ring of cardinality α having n non-units, where $1 < n \le \alpha$. Then $\alpha < n^2$.
- [5, Theorem 3] Suppose that p is prime and s and t are integers such that 0 < s < t. Then there exists a local ring of order p^t having maximal ideal of cardinality p^s if and only if t-s divides s.
- [7, Proposition 2.1] Let R be a finite commutative reduced ring.
 - (1) If k is the smallest positive integer such that $|R| < 2^k$, then R is a product of k-1 or fewer fields.
 - (2) Suppose R has n non-units. Let k be the smallest positive integer such that $n < 2^k 1$. Then R is a product of k 1 or fewer fields.

If R is a finite ring with maximal ideals $\mathfrak{m}_1, \mathfrak{m}_2, \ldots, \mathfrak{m}_k$, then $R \cong \prod_{i=1}^k R_i$, where R_i is a finite local ring with maximal ideal, say \mathfrak{n}_i for all i. Also, $|R_i| = p_i^{m_i \alpha_i}$ for some prime p_i , where m_i is the length of R_i and $|R_i/\mathfrak{n}_i| = p_i^{\alpha_i}$ for all i. If $\mathfrak{m}_i = R_1 \times \cdots \times R_{i-1} \times \mathfrak{n}_i \times R_{i+1} \times \cdots \times R_k$, then

$$|\mathfrak{m}_i| = p_i^{(m_i - 1)\alpha_i} \prod_{\substack{j=1 \ j \neq i}}^k p_j^{m_j \alpha_j} = p_i^{-\alpha_i} |R|$$

for all i, and

$$|J(R)| = |\cap_{i=1}^k \mathfrak{m}_i| = \prod_{i=1}^k p_i^{(m_i - 1)\alpha_i}.$$

Also

$$|\bigcup_{i=1}^k \mathfrak{m}_i| = |J(R)| \left\{ \prod_{i=1}^k p_i^{\alpha_i} - \prod_{i=1}^k (p_i^{\alpha_i} - 1) \right\}$$
 (2.1)

In the next two propositions we show that under certain conditions there does not exist any finite, non-reduced ring R with n non-units.

Proposition 2.1. Let p and q be distinct primes, $p^l < q$ and $n = p^l q$ for some $l \in \mathbb{N}$. Then there does not exist any finite, non-reduced ring R with n non-units and |J(R)| = q.

Proof. Suppose that R is a finite ring with p^lq non-units. Let |J(R)| = q and $p^l < q$. Since R is a finite ring, it will have finitely many maximal ideals, say k. Then, in the decomposition of R as a finite direct product of finite local rings, that is, $R \cong \prod_{i=1}^k R_i$, all R_i 's are field except one, say R_k , which is a local ring with maximal ideal of cardinality q, and hence by [5, Theorem 3], $|R_k| = q^2$.

Thus, equation (2.1) becomes

$$p^{l} = q \prod_{i=1}^{k-1} p_i^{\alpha_i} - (q-1) \prod_{i=1}^{k-1} (p_i^{\alpha_i} - 1)$$
 (2.2)

which is not possible as $p^l < q$. Thus there does not exist a non-reduced ring with $p^l q$ non-units and |J(R)| = q.

Proposition 2.2. Let p, q, and r be distinct primes, p < q < r and n = pqr. Then there does not exist any finite, non-reduced ring R with n non-units satisfying the following:

- (i) |J(R)| = r if pq < r;
- (ii) |J(R)| = qr;
- (iii) |J(R)| = pr.

Proof. Suppose that R is a finite ring with pqr non-units. Since R is a finite ring, it will have finitely many maximal ideals, say k.

Let us assume that |J(R)| = r. Then, in the decomposition of R as a finite direct product of finite local rings, that is, $R \cong \prod_{i=1}^k R_i$, all R_i 's are field except one, say R_k , which is a local ring with maximal ideal of cardinality r, and hence by [5, Theorem 3], $|R_k| = r^2$.

Thus, equation (2.1) becomes

$$pq = r \prod_{i=1}^{k-1} p_i^{\alpha_i} - (r-1) \prod_{i=1}^{k-1} (p_i^{\alpha_i} - 1)$$
 (2.3)

which is not possible as pq < r.

Next assume that |J(R)| = qr. Then, in the decomposition of R as a finite direct product of finite local rings, that is, $R \cong \prod_{i=1}^k R_i$, all R_i 's are field except two, say R_{k-1} , R_k , which are local rings with maximal ideals of cardinality q and r, respectively and hence by [5, Theorem 3], $|R_{k-1}| = q^2$, $|R_k| = r^2$.

Thus, equation (2.1) becomes

$$p = qr \prod_{i=1}^{k-2} p_i^{\alpha_i} - (q-1)(r-1) \prod_{i=1}^{k-2} (p_i^{\alpha_i} - 1)$$
 (2.4)

which is not possible as p < q, p < r. Thus there does not exist a non-reduced ring with pqr non-units and |J(R)| = qr. Similarly for |J(R)| = pr, there does not exist a non-reduced ring.

Remark 2.3. Thus equation (2.1) gives a useful criteria to determine the non-existence of a non-reduced ring with $n = p_1 p_2 \cdots p_m$ non-units and appropriate |J(R)|.

3. The List

In this section, we present tables listing all non-reduced decomposable rings $R = \prod_{i=1}^k R_i$ (up to cardinalities of constituent local rings R_i 's) having n non-units, where $2 \le n \le 100$. For n = 1, we have a field, which is a reduced ring. Next, if $n = p^s$, where p is prime and s is a positive integer, then by [2, Theorem 2], we have either local rings of order p^t , 0 < s < t or reduced ring for $1 \le s < 3$. For $s \ge 3$, we have non-reduced decomposable rings listed in the table:

Table 1. $n = p^s$

Non-units	R	Non-units	R	Non-units	R
$2^3 = 8$	$\mathbb{F}_3 imes \mathbb{Z}_4$	$2^4 = 16$	$\mathbb{F}_3 \times \mathbb{Z}_8$	$2^5 = 32$	$\mathbb{F}_3 \times \mathbb{Z}_{16}$
			$\mathbb{Z}_4 imes \mathbb{F}_7$		$\mathbb{F}_5 \times \mathbb{F}_4[x]/(x^2)$
					$\mathbb{F}_7 imes \mathbb{Z}_8$
					$\mathbb{F}_2 \times \mathbb{Z}_4 \times \mathbb{F}_5$
$2^6 = 64$	$\mathbb{F}_3 imes \mathbb{Z}_{32}$	$3^3 = 27$	$\mathbb{F}_7 \times \mathbb{Z}_9$	$3^4 = 81$	$\mathbb{F}_7 imes \mathbb{Z}_{27}$
	$\mathbb{Z}_4 imes \mathbb{F}_{31}$				$\mathbb{Z}_9 imes \mathbb{F}_{25}$
	$\mathbb{F}_4[x]/(x^2) \times \mathbb{F}_{13}$				
	$\mathbb{F}_7 imes \mathbb{Z}_{16}$				
	$\mathbb{F}_2 \times \mathbb{F}_5 \times \mathbb{Z}_8$				
	$\mathbb{Z}_4 \times \mathbb{Z}_4 \times \mathbb{F}_5$				
	$\mathbb{F}_2 \times \mathbb{F}_3 \times \mathbb{F}_3 \times \mathbb{Z}_4$				

Now, suppose n is not a prime power. First we consider simple prime factorization n = pq. We may also assume that p < q. Then by Proposition 2.1, there does not exist a non-reduced ring with |J(R)| = q. Let us find a non-reduced ring with |J(R)| = p. Now, if |J(R)| = p, then the equation (2.1) becomes

$$q = p \prod_{i=1}^{k-1} p_i^{\alpha_i} - (p-1) \prod_{i=1}^{k-1} (p_i^{\alpha_i} - 1)$$
 (3.1)

Thus, for the existence of a non-reduced ring with pq non-units and |J(R)| = p < q, p and q should satisfy the equation (3.1). To elaborate this, consider the following example:

Suppose $n = 2 \cdot 3 = 6$. Since $n \le 2^3 - 1$, by [7, Proposition 2.1], we have $k \le 2$. Thus, the equation (3.1) becomes

$$3 = p_1^{\alpha_1} + 1.$$

This implies that $p_1 = 2$ and $\alpha_1 = 1$. Thus $\mathbb{F}_2 \times \mathbb{Z}_4$ is non-reduced ring with n = 6 and |J(R)| = 2.

By applying the same argument to $n \in \{22, 38, 51, 69, 74, 78, 82, 94, 95\}$, we conclude that there does not exist a non-reduced ring with n non-units.

We now give a list of non-reduced decomposable rings with n ($2 \le n \le 100$) non-units, where $n \notin \{22, 38, 51, 69, 74, 78, 82, 94, 95\}$ and is not a prime power.

 \overline{R} RNon-units \overline{R} Non-units Non-units $2 \cdot 7 = 14$ $2 \cdot 3 = 6$ $\mathbb{F}_2 \times \mathbb{Z}_4$ $\mathbb{Z}_4 \times \mathbb{F}_4$ $\mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{Z}_4$ $2 \cdot 5 = 10$ $2 \cdot 13 = 26$ $\mathbb{F}_2 imes \mathbb{F}_4 imes \mathbb{Z}_4$ $2 \cdot 17 = 34$ $\mathbb{Z}_4 \times \mathbb{F}_{16}$ $2 \cdot 23 = 46$ $\mathbb{Z}_4 \times \mathbb{F}_4 \times \mathbb{F}_4$ $2 \cdot 31 = 62$ $2 \cdot 29 = 58$ $\mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{Z}_4 \times \mathbb{F}_4$ $\mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{Z}_4$ $2 \cdot 43 = 86$ $\mathbb{F}_4 \times \mathbb{Z}_4 \times \mathbb{F}_8$ $3 \cdot 5 = 15$ $\mathbb{F}_3 \times \mathbb{Z}_9$ $3 \cdot 7 = 21$ $3 \cdot 11 = 33$ $\mathbb{F}_5 \times \mathbb{Z}_9$ $\mathbb{Z}_9 \times \mathbb{F}_{11}$ $\mathbb{Z}_9 \times \mathbb{F}_{17}$ $3 \cdot 29 = 87$ $\mathbb{Z}_9 \times \mathbb{F}_{27}$ $3 \cdot 13 = 39$ $3 \cdot 19 = 57$ $\mathbb{F}_3 \times \mathbb{F}_3 \times \mathbb{Z}_9$ $\mathbb{F}_3 \times \mathbb{F}_5 \times \mathbb{Z}_9$ $3 \cdot 31 = 93$ $\mathbb{Z}_9 \times \mathbb{F}_{29}$ $5 \cdot 7 = 35$ $\mathbb{F}_3 \times \mathbb{Z}_{25}$ $5 \cdot 11 = 55$ $\mathbb{F}_7 \times \mathbb{Z}_{25}$ $\begin{array}{c}
\mathbb{F}_9 \times \mathbb{Z}_{25} \\
\mathbb{F}_7 \times \mathbb{Z}_{49}
\end{array}$ $\mathbb{F}_{13} \times \mathbb{Z}_{25}$ $\mathbb{F}_5 \times \mathbb{Z}_{49}$ $5 \cdot 13 = 65$ $5 \cdot 17 = 85$ $7 \cdot 11 = 77$ $7 \cdot 13 = 91$

Table 2. n = pq

Table 3. $n = p^2q$

Non-units	R	Non-units	R	Non-units	R
$2^2 \cdot 3 = 12$	$\mathbb{F}_2 imes \mathbb{Z}_8$	$2^2 \cdot 5 = 20$	$\mathbb{F}_4 \times \mathbb{Z}_8$	$2^2 \cdot 7 = 28$	$\mathbb{Z}_4 \times \mathbb{F}_{13}$
	$\mathbb{Z}_4 imes \mathbb{Z}_4$		$\mathbb{F}_2 \times \mathbb{F}_4[x]/(x^2)$		$\mathbb{F}_4 \times \mathbb{F}_4[x]/(x^2)$
	$\mathbb{Z}_4 imes \mathbb{F}_5$		$\mathbb{Z}_4 imes\mathbb{F}_9$		$\mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{Z}_8$
	$\mathbb{F}_2 \times \mathbb{Z}_9$		$\mathbb{F}_2 imes \mathbb{F}_3 imes \mathbb{Z}_4$		$\mathbb{F}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_4$
					$\mathbb{F}_3 \times \mathbb{F}_3 \times \mathbb{Z}_4$
$2^2 \cdot 11 = 44$	$\mathbb{F}_8 \times \mathbb{F}_4[x]/(x^2)$	$2^2 \cdot 13 = 52$	$\mathbb{Z}_4 \times \mathbb{F}_{25}$	$2^2 \cdot 17 = 68$	$\mathbb{Z}_8 \times \mathbb{F}_{16}$
	$\mathbb{F}_2 imes \mathbb{Z}_4 imes \mathbb{F}_7$		$\mathbb{F}_2 imes \mathbb{F}_4 imes \mathbb{Z}_8$		$\mathbb{F}_2 \times \mathbb{Z}_4 \times \mathbb{F}_{11}$
	$\mathbb{F}_3 \times \mathbb{Z}_4 \times \mathbb{F}_5$		$\mathbb{Z}_4 imes \mathbb{Z}_4 imes \mathbb{F}_4$		$\mathbb{F}_3 \times \mathbb{Z}_4 \times \mathbb{F}_8$
	$\mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_3 \times \mathbb{Z}_4$		$\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{F}_4[x]/(x^2)$		$\mathbb{Z}_4 \times \mathbb{F}_5 \times \mathbb{F}_5$
$2^2 \cdot 19 = 76$	$\mathbb{Z}_4 imes \mathbb{F}_{37}$	$2^2 \cdot 23 = 92$	$\mathbb{F}_2 \times \mathbb{F}_4 \times \mathbb{F}_4[x]/(x^2)$	$3^2 \cdot 2 = 18$	$\mathbb{Z}_4 \times \mathbb{F}_8$
	$\mathbb{F}_4[x]/(x^2) \times \mathbb{F}_{16}$		$\mathbb{F}_4 imes \mathbb{F}_4 imes \mathbb{Z}_8$		$\mathbb{F}_4 \times \mathbb{Z}_9$
	$\mathbb{F}_3 \times \mathbb{Z}_4 \times \mathbb{F}_9$		$\mathbb{Z}_4 imes \mathbb{F}_5 imes \mathbb{F}_7$		
	$\mathbb{Z}_4 imes \mathbb{F}_4 imes \mathbb{F}_7$		$\mathbb{Z}_4 \times \mathbb{F}_3 \times \mathbb{F}_{11}$		
			$\mathbb{F}_3 \times \mathbb{F}_3 \times \mathbb{F}_3 \times \mathbb{Z}_4$		
			$\mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_3 \times \mathbb{Z}_4$		
$3^2 \cdot 5 = 45$	$\mathbb{F}_3 \times \mathbb{Z}_{27}$	$3^2 \cdot 7 = 63$	$\mathbb{F}_3 \times \mathbb{Z}_{49}$	$3^2 \cdot 11 = 99$	$\mathbb{F}_3 \times \mathbb{F}_9[x]/(x^2)$
	$\mathbb{F}_5 imes \mathbb{Z}_{25}$		$\mathbb{F}_5 imes \mathbb{Z}_{27}$		$\mathbb{F}_9 imes \mathbb{Z}_{27}$
	$\mathbb{Z}_9 \times \mathbb{F}_{13}$		$\mathbb{Z}_9 imes \mathbb{F}_{19}$		$\mathbb{Z}_9 \times \mathbb{F}_{31}$
	$\mathbb{Z}_9 \times \mathbb{Z}_9$				
$5^2 \cdot 2 = 50$	$\mathbb{F}_2 \times \mathbb{Z}_4 \times \mathbb{F}_8$	$5^2 \cdot 3 = 75$	$\mathbb{Z}_9 \times \mathbb{F}_{23}$	$7^2 \cdot 2 = 98$	$\mathbb{F}_8 \times \mathbb{Z}_{49}$
			$\mathbb{F}_{11} imes\mathbb{Z}_{25}$		$\mathbb{F}_2 \times \mathbb{Z}_4 \times \mathbb{F}_{16}$

NON-REDUCED RINGS OF SMALL ORDER AND THEIR MAXIMAL GRAPH41

Table 4.
$$n = p^3 q$$

Non-units	R	Non-units	R	Non-units	R
$2^3 \cdot 3 = 24$	$\mathbb{F}_2 \times \mathbb{Z}_{16}$	$2^3 \cdot 5 = 40$	$\mathbb{F}_4 \times \mathbb{Z}_{25}$	$2^3 \cdot 7 = 56$	$\mathbb{F}_2 \times \mathbb{Z}_{49}$
	$\mathbb{Z}_4 imes \mathbb{Z}_9$		$\mathbb{F}_4 \times \mathbb{Z}_{16}$		$\mathbb{Z}_4 imes\mathbb{F}_{27}$
	$\mathbb{Z}_4 imes \mathbb{F}_{11}$		$\mathbb{Z}_4 \times \mathbb{F}_{19}$		$\mathbb{Z}_8 \times \mathbb{F}_{13}$
	$\mathbb{F}_5 imes \mathbb{Z}_8$		$\mathbb{Z}_8 \times \mathbb{F}_9$		$\mathbb{F}_4[x]/(x^2) \times \mathbb{F}_{11}$
	$\mathbb{F}_3 \times \mathbb{F}_4[x]/(x^2)$		$\mathbb{Z}_4 \times \mathbb{F}_4[x]/(x^2)$		$\mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{Z}_{16}$
	$\mathbb{Z}_4 imes \mathbb{Z}_8$		$\mathbb{F}_4[x]/(x^2) \times \mathbb{F}_7$		$\mathbb{F}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_8$
			$\mathbb{F}_2 \times \mathbb{F}_3 \times \mathbb{Z}_8$		$\mathbb{F}_2 \times \mathbb{Z}_4 \times \mathbb{F}_9$
			$\mathbb{F}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_4$		$\mathbb{F}_3 \times \mathbb{F}_3 \times \mathbb{Z}_8$
					$\mathbb{Z}_4 imes \mathbb{Z}_4 imes \mathbb{Z}_4$
					$\mathbb{F}_4 \times \mathbb{Z}_4 \times \mathbb{Z}_5$
$2^3 \cdot 11 = 88$	$\mathbb{Z}_4 \times \mathbb{F}_{43}$	$3^3 \cdot 2 = 54$	$\mathbb{F}_4 imes \mathbb{Z}_{27}$		
	$\mathbb{F}_4 \times \mathbb{F}_8[x]/(x^2)$		$\mathbb{Z}_9 \times \mathbb{F}_{16}$		
	$\mathbb{F}_{19} \times \mathbb{F}_4[x]/(x^2)$		$\mathbb{F}_2 \times \mathbb{F}_4 \times \mathbb{Z}_9$		
	$\mathbb{F}_2 imes \mathbb{F}_7 imes \mathbb{Z}_8$				
	$\mathbb{F}_3 \times \mathbb{F}_5 \times \mathbb{Z}_8$				
	$\mathbb{Z}_4 \times \mathbb{Z}_4 \times \mathbb{Z}_7$				
	$\mathbb{F}_2 \times \mathbb{F}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_4$				
	$\mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_3 \times \mathbb{Z}_8$				

Table 5. $n = p^4 q, p^5 q$

Non-units	R	Non-units	R	Non-units	R
$2^4.3 = 48$	$\mathbb{F}_2 \times \mathbb{Z}_{32}$	$2^4.5 = 80$	$\mathbb{F}_9 \times \mathbb{Z}_{16}$	$2^5 \cdot 3 = 96$	$\mathbb{F}_2 imes \mathbb{Z}_{64}$
	$\mathbb{Z}_4 imes \mathbb{F}_{23}$		$\mathbb{F}_4 imes \mathbb{Z}_{32}$		$\mathbb{Z}_4 imes\mathbb{F}_{47}$
	$\mathbb{F}_5 \times \mathbb{Z}_{16}$		$\mathbb{Z}_8 \times \mathbb{F}_{19}$		$\mathbb{F}_5 imes \mathbb{Z}_{32}$
	$\mathbb{Z}_8 imes \mathbb{Z}_9$		$\mathbb{F}_4[x]/(x^2) \times \mathbb{F}_{17}$		$\mathbb{Z}_8 imes \mathbb{F}_{23}$
	$\mathbb{Z}_8 \times \mathbb{F}_{11}$		$\mathbb{Z}_8 \times \mathbb{F}_4[x]/(x^2)$		$\mathbb{Z}_9 imes \mathbb{Z}_{16}$
	$\mathbb{Z}_8 imes \mathbb{Z}_8$		$\mathbb{F}_3 \times \mathbb{F}_8[x]/(x^2)$		$\mathbb{F}_{11} imes \mathbb{Z}_{16}$
	$\mathbb{F}_4[x]/(x^2) \times \mathbb{F}_9$		$\mathbb{F}_2 \times \mathbb{F}_4(+)\mathbb{F}_4[x]/(x^2)$		$\mathbb{Z}_4 imes \mathbb{Z}_{32}$
	$\mathbb{Z}_4 \times \mathbb{Z}_{16}$		$\mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{Z}_{25}$		$\mathbb{Z}_8 imes \mathbb{Z}_{16}$
			$\mathbb{F}_2 \times \mathbb{Z}_4 \times \mathbb{F}_{13}$		$\mathbb{F}_3 \times \mathbb{F}_4(+)\mathbb{F}_4[x]/(x^2)$
			$\mathbb{F}_2 \times \mathbb{F}_3 \times \mathbb{Z}_{16}$		$\mathbb{F}_5 \times \mathbb{F}_8[x]/(x^2)$
			$\mathbb{F}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_8$		$\mathbb{F}_3 \times \mathbb{F}_3 \times \mathbb{F}_4[x]/(x^2)$
					$\mathbb{F}_4 \times \mathbb{Z}_4 \times \mathbb{F}_9$
					$\mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_3 \times \mathbb{Z}_9$

Table 6. $n = p^2 q^2, p^3 q^2$

Non-units	R	Non-units	R	Non-units	R
$2^2 \cdot 3^2 = 36$	$\mathbb{F}_2 imes \mathbb{Z}_{27}$	$2^2 \cdot 5^2 = 100$	$\mathbb{Z}_4 \times \mathbb{F}_{49}$	$2^3 \cdot 3^2 = 72$	$\mathbb{Z}_4 imes \mathbb{Z}_{27}$
	$\mathbb{Z}_4 imes \mathbb{F}_{17}$		$\mathbb{F}_{16} imes \mathbb{Z}_{25}$		$\mathbb{F}_8 imes \mathbb{Z}_{16}$
	$\mathbb{F}_8 imes \mathbb{Z}_8$		$\mathbb{F}_2 imes \mathbb{F}_8 imes \mathbb{Z}_8$		$\mathbb{F}_4[x]/(x^2) \times \mathbb{Z}_9$
	$\mathbb{Z}_4 \times \mathbb{F}_3 \times \mathbb{F}_4$		$\mathbb{Z}_4 \times \mathbb{Z}_4 \times \mathbb{F}_8$		$\mathbb{Z}_8 imes \mathbb{F}_{17}$
			$\mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{Z}_4 \times \mathbb{F}_7$		$\mathbb{F}_2 \times \mathbb{F}_8[x]/(x^2)$
					$\mathbb{F}_3 \times \mathbb{F}_4 \times \mathbb{Z}_9$
					$\mathbb{F}_3 \times \mathbb{F}_4 \times \mathbb{Z}_8$
					$\mathbb{F}_2 \times \mathbb{F}_3 \times \mathbb{F}_4[x]/(x^2)$
					$\mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{Z}_4 \times \mathbb{F}_5$

Table 7. n = pqr, p^2qr

Non-units	R	Non-units	R
$2 \cdot 3 \cdot 5 = 30$	$\mathbb{F}_2 imes \mathbb{Z}_{25}$	$2^2 \cdot 3 \cdot 5 = 60$	$\mathbb{Z}_4 \times \mathbb{Z}_{25}$
	$\mathbb{F}_8 imes \mathbb{Z}_9$		$\mathbb{Z}_4 imes \mathbb{F}_{29}$
	$\mathbb{F}_2 imes \mathbb{F}_2 imes \mathbb{Z}_9$		$\mathbb{F}_8 imes \mathbb{Z}_{25}$
	$\mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{Z}_4$		$\mathbb{F}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_9$
			$\mathbb{F}_3 \times \mathbb{Z}_4 \times \mathbb{F}_7$
			$\mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_4$
			$\mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{Z}_8$
$2 \cdot 3 \cdot 7 = 42$	$\mathbb{F}_2 \times \mathbb{F}_3 \times \mathbb{Z}_9$	$2^2 \cdot 3 \cdot 7 = 84$	$\mathbb{Z}_4 imes \mathbb{F}_{41}$
			$\mathbb{F}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_9$
			$\mathbb{F}_2 \times \mathbb{F}_3 \times \mathbb{F}_4 \times \mathbb{Z}_4$
$2 \cdot 3 \cdot 11 = 66$	$\mathbb{Z}_4 imes \mathbb{F}_{32}$	$3^2 \cdot 2 \cdot 5 = 90$	$\mathbb{F}_2 \times \mathbb{F}_9[x]/(x^2)$
	$\mathbb{F}_2 \times \mathbb{F}_5 \times \mathbb{Z}_9$		$\mathbb{F}_8 imes\mathbb{Z}_{27}$
	$\mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{Z}_9$		$\mathbb{F}_2 imes \mathbb{F}_2 imes \mathbb{Z}_{27}$
			$\mathbb{F}_2 \times \mathbb{F}_7 \times \mathbb{Z}_9$
			$\mathbb{F}_4 \times \mathbb{F}_4 \times \mathbb{Z}_9$
$2 \cdot 5 \cdot 7 = 70$	$\mathbb{F}_4 \times \mathbb{Z}_{49}$		

4. Center and Median

4.1. **Center.** We begin this section with the following definition from [1].

Definition 4.1. Center: The set of vertices with minimum eccentricity of a graph G is called the center of G. It is denoted by Center(G).

Note that if R is a commutative ring with nonzero identity having n non-units, then maximal graph $\Gamma(R)$ has n vertices. As $\Gamma(R)$ may be a complete graph for some n, we have the following inequality:

$$1 \le |Center(\Gamma(R))| \le n \tag{4.1}$$

In the view of (6), the following question may arises:

Question 4.2. Given a positive integer n do there exist maximal graphs $\Gamma(R)$ of order n such that

- (1) $|Center(\Gamma(R))|$ attains the bounds in the Inequality (6)?
- (2) $1 < |Center(\Gamma(R))| < n$?

Note that for any maximal graph $\Gamma(R)$ of order n, the following are equivalent:

- (i) $|Center(\Gamma(R))| = n$.
- (ii) $\Gamma(R)$ is a complete graph.

(iii) R is a local ring.

Similarly, the following are equivalent:

- (i) $|Center(\Gamma(R))| = 1$.
- (ii) There exists exactly one vertex $v \in V((\Gamma(R)))$ such that deg(v) = n 1.
- (iii) R is a reduced ring.

Therefore, for $1 < |Center(\Gamma(R))| < n$, R must be a non-reduced and non-local ring.

If $n = p^s$, where p is prime and s is a positive integer, then by [5, Theorem 3], there exists a local ring R with maximal ideal of cardinality p^s and hence $|Center(\Gamma(R))| = p^s$. If n is not a prime power, then there is no ring R with n non-units and $|Center(\Gamma(R))| = n$.

In [6], it was shown that for $1 \le n \le 7500$, there always exist a reduced ring except $n \in \{2, 1206, 1210, 1806, 3342, 5466, 6462, 6534, 6546, 7430\}$. Thus for $1 \le n \le 7500$, $n \notin \{2, 1206, 1210, 1806, 3342, 5466, 6462, 6534, 6546, 7430\}$ there always exist ring R such that $\Gamma(R)$ is of order n and $|Center(\Gamma(R))| = 1$.

In general, we cannot say that there always exist a maximal graph whose center attains the value between the bounds, that is, there exists a non-reduced ring having n non-units. However, from the list given in Section 3, we conclude that there does not exist a ring R for which $\Gamma(R)$ is of order n and $1 < |Center(\Gamma(R))| < n$ for $n \in \{22, 38, 51, 69, 74, 78, 82, 94, 95\}$. Clearly, for all the rings R listed in Section 3, we have $1 < |Center(\Gamma(R))| < n$.

4.2. **Median.** Let G be a connected graph. For any vertex x of G, the status of x, is the sum of the distances from x to all the other vertices of G, and is denoted by s(x), that is, $s(x) = \sum \{d(x,y) : y \in V(G)\}$. The set of vertices with minimal status is called the median of the graph. If G has no edges, then we shall say the median of G is V(G).

Although both the center and the median relate to the topic of centrality in a graph, they need not coincide. One can easily construct examples where the center is a proper subset of the median, or the median is a proper subset of the center. In general, finding the median of a graph is more involved than finding the center. However, the following theorem gives a relationship between the center and median, in the case of maximal graphs of finite commutative rings with identity.

Theorem 4.3. Let R be a finite commutative ring with nonzero identity. Then the median and center of $\Gamma(R)$ are equal.

Proof. Let $|V(\Gamma(R))| = n$. Then for any $x \in V(\Gamma(R))$, $s(x) \ge n - 1$ as $\Gamma(R)$ is a connected graph. Also, for all $x \in J(R)$, s(x) = n - 1, and

for all $x \in V(\Gamma(R)) \setminus J(R)$, $s(x) \ge n$. Since $Center(\Gamma(R)) = J(R)$, by [4, Proposition 2.8], the result follows.

Remark 4.4. Note that $Center(\Gamma(R)) = J(R) = Median(\Gamma(R))$, by Theorem 4.3 and [4, Proposition 2.8].

Acknowledgements

The first author was supported by a grant from CSIR India, No. 09/045 (1142)/2011-EMR-I and the second author was supported by R & D grant, University of Delhi, Delhi. The authors would like to thank the referee for the careful reading.

References

- R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Springer, 2012.
- 2. M. Behboodi and R. Beyranvand, On the Structure of Commutative Rings with $p_1^{k_1} \cdots p_n^{k_n}$ ($1 \le k_i \le 7$) Zero-Divisors, Eur. J. Pure Appl. Math., (2) **3** (2010), 303-316.
- 3. A. Gaur and A. Sharma, Maximal graph of a commutative ring, Int. J. Algebra, (12) 7 (2013), 581-588.
- 4. A. Gaur and A. Sharma, Eulerian graphs and automorphisms of a maximal graph, Indian J. Pure Appl. Math., (2) 48 (2017), 233-244.
- 5. R. Gilmer, Zero-divisors in commutative rings, Amer. Math. Monthly, (5) 93 (1986), 382-387.
- 6. S. P. Redmond, *Counting zero-divisors*, In: Lee, J., ed. Commutative Rings: New Research. Hauppauge, NY: Nova Science Publishers, 2009.
- S. P. Redmond, On zero-divisor graphs of small finite commutative rings, Discrete Math., 307 (2007), 1155–1166.

Arti Sharma

Department of Mathematics, University of Delhi, Delhi, India.

Email: anjanaarti@gmail.com

Atul Gaur

Department of Mathematics, University of Delhi, Delhi, India.

Email: gaursatul@gmail.com