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NON-REDUCED RINGS OF SMALL ORDER AND
THEIR MAXIMAL GRAPH

A. SHARMA * AND A. GAUR

ABSTRACT. Let R be a commutative ring with nonzero identity.
Let T'(R) denotes the maximal graph corresponding to the non-unit
elements of R, that is, I'(R) is a graph with vertices the non-unit
elements of R, where two distinct vertices a and b are adjacent if
and only if there is a maximal ideal of R containing both. In this
paper, we investigate that for a given positive integer n, is there a
non-reduced ring R with n non-units? For n < 100, a complete list
of non-reduced decomposable rings R = Hle R; (up to cardinali-
ties of constituent local rings R;’s) with n non-units is given. We
also show that for which n, (1 < n < 7500), |Center(T'(R))| at-
tains the bounds in the inequality 1 < |Center(I'(R))| < n and for
which n, (2 <n <100), |Center(I'(R))| attains the value between
the bounds.

1. INTRODUCTION

The maximal graph G(R) associated to R was introduced by the
authors [3] in 2013. The authors considered G(R) as a simple graph
whose vertices are elements of R, and two distinct vertices a and b are
adjacent if and only if there is a maximal ideal of R containing both.
In [1], the authors defined I'(R) as the restriction of G(R) to the non-
unit elements of R, that is, I'(R) is a simple graph whose vertices are
the non-unit elements of R such that two distinct vertices a and b are
adjacent if and only if a,b € m for some maximal ideal m of R. T'(R)

MSC(2010): Primary: 13M99; Secondary: 05C99
Keywords: Non-reduced ring, Jacobson radical, maximal graphs, center, median.
Received: 17 April 2018, Accepted: 12 June 2018.
*xCorresponding author .
35



36 SHARMA AND GAUR

was also named as maximal graph of R as the units in R are just the
isolated vertices in G(R).

This paper is inspired by a simple question: Given any positive in-
teger n, is there a commutative ring with nonzero identity having n
non-units? One can easily verify that a ring R has a finite number
n > 2 of non-units only if R is finite. So, to answer this question, we
need to consider finite rings only.

Of course, the question is somewhat trivial if one removes the require-
ment that the ring must have an identity. Letting A; denote the addi-
tive group Zj with the trivial multiplication (zy = 0 for all z,y € Ag),
then Aj has k non-units. Thus, for this paper, all rings considered will
be finite with nonzero identity. We use F, to denote the finite field
with £ elements.

Restricting the question to local rings (rings which have a unique
maximal ideal, including fields) can give examples only for certain val-
ues of n. For a finite local ring R with m its maximal ideal, |R| = p*
and |m| = p*=De for some prime p and some positive integer k. Hence,
one must look beyond local rings to answer this question in general.

For finite commutative rings with nonzero identity, every non-unit
is zero-divisor. In [0], it was shown that there is no commutative ring
with nonzero identity and 1210 non-units. Moreover, for 1 < n < 7500,
n = 1210, n = 3342, and n = 5466 are the only positive integers for
which there is no commutative ring R with nonzero identity and n
non-units [6]. Now, there are few other questions:

e For which positive integer n, do there exist only reduced rings
with n non-units?

e Given a positive integer n, do there exist non-reduced rings with
n non-units?

o [f we determine a non-reduced ring R with n non-units, then
what is the value of |J(R)|, where J(R) denotes the Jacobson
radical of R. Whether it depends on prime factorization of n
or not?

In Section 2, we find some conditions on |J(R)| such that for a given
positive integer n, there does not exist a non-reduced ring with n non-
units. In Section 3, we present tables listing all non-reduced decompos-
able rings R = Hle R; (up to cardinalities of constituent local rings
R;’s) with n non-unit elements, where 2 < n < 100. In Section 4, we
discuss that for which positive integer n, 1 < n < 7500, |Center(I'(R))|
attains the bounds in the inequality 1 < |Center(I'(R))| < n and for
which n, 2 < n <100, |Center(I'(R))| attains the value between the
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bounds. Throughout the paper, ring shall mean a finite commutative
ring with nonzero identity.

2. NON-REDUCED RINGS

We begin the section with some results which are established for
zero-divisors. In view of the fact that every non-unit is a zero-divisor
in a finite ring R, we are restating them for non-units.

e [0, Theorem 2| Let R be a commutative ring of cardinality o
having n non-units, where 1 < n < o. Then o < n?.

e [0, Theorem 3] Suppose that p is prime and s and t are integers
such that 0 < s < ¢. Then there exists a local ring of order p’
having maximal ideal of cardinality p® if and only if ¢t — s divides
S.

e [7, Proposition 2.1] Let R be a finite commutative reduced ring.

(1) If k is the smallest positive integer such that |R| < 2%, then
R is a product of k — 1 or fewer fields.

(2) Suppose R has n non-units. Let & be the smallest positive
integer such that n < 2¥ — 1. Then R is a product of k — 1
or fewer fields.

If R is a finite ring with maximal ideals my,ms,..., mg, then R =
Hle R;, where R; is a finite local ring with maximal ideal, say n; for
all i. Also, |R;| = p""** for some prime p;, where m; is the length of R;
and |Rl/ﬂ1’ :p?l for all . Ifmz = Rl X XRifl xXn; XR1'+1 Xoeee XRk,
then

k
o (mi—1)ay mioy o —ay
|ml| =D; Hpj =D;
j=1
j#i

R|

for all 7, and
k
IR = Py m = T
i=1

Also

wgmbuwﬁnw—ﬂwun} 2.1)

In the next two propositions we show that under certain conditions
there does not exist any finite, non-reduced ring R with n non-units.

Proposition 2.1. Let p and q be distinct primes, p' < q and n = plq
for some | € N. Then there does not exist any finite, non-reduced ring
R with n non-units and |J(R)| = q.
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Proof. Suppose that R is a finite ring with p'q non-units. Let [J(R)| = ¢
and p' < ¢. Since R is a finite ring, it will have finitely many maximal
ideals, say k. Then, in the decomposition of R as a finite direct product
of finite local rings, that is, R = Hle R;, all R;’s are field except one,
say Ry, which is a local ring with maximal ideal of cardinality ¢, and
hence by [5, Theorem 3], |Ry| = ¢*.

Thus, equation (2.1) becomes

k—1
p —qu (¢—1) H(p?"—l) (2.2)

which is not possible as p' < ¢. Thus there does not exist a non-
reduced ring with p'q non-units and |J(R)| = q. O

Proposition 2.2. Let p, q, and r be distinct primes, p < q < r and
n = pqr. Then there does not exist any finite, non-reduced ring R with
n non-units satisfying the following:

1) [J(R)| =7 if pg <r;
(ii) [J(R)| = qr;
(iii) |[J(R)| = pr.

Proof. Suppose that R is a finite ring with pgr non-units. Since R is a
finite ring, it will have finitely many maximal ideals, say k.

Let us assume that |J(R)| = r. Then, in the decomposition of R as
a finite direct product of finite local rings, that is, R = Hle R;, all
R;’s are field except one, say Ry, which is a local ring with maximal
ideal of cardinality r, and hence by [5, Theorem 3], |Ry| = r2.

Thus, equation (2.1) becomes

pq—THpZ (=1 ]Je -1 (2.3)

which is not possible as pg < r.

Next assume that |J(R)| = ¢r. Then, in the decomposition of R as a
finite direct product of finite local rings, that is, R = Hle R;, all R;’s
are field except two, say Rj_1, Ry, which are local rings with maximal
ideals of cardinality g and r, respectively and hence by [5, Theorem 3],
|Rk,1| = q2, |Rk‘ = 7’2.

Thus, equation (2.1) becomes

k—2
—qupz (¢—1)(r— 1)H(p§“ —1) (2.4)
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which is not possible as p < ¢,p < r. Thus there does not exist a
non-reduced ring with pgr non-units and |J(R)| = ¢r. Similarly for
|J(R)| = pr, there does not exist a non-reduced ring. O

Remark 2.3. Thus equation (2.1) gives a useful criteria to determine
the non-existence of a non-reduced ring with n = p1ps - - - p,, non-units
and appropriate |J(R)|.

3. THE LisT

In this section, we present tables listing all non-reduced decompos-
able rings R = H?Zl R; (up to cardinalities of constituent local rings
R;’s) having n non-units, where 2 < n < 100. For n = 1, we have a
field, which is a reduced ring. Next, if n = p°, where p is prime and s
is a positive integer, then by [2, Theorem 2|, we have either local rings
of order p!, 0 < s < t or reduced ring for 1 < s < 3. For s > 3, we
have non-reduced decomposable rings listed in the table:

TABLE 1. n =p°

Non-units R Non-units R Non-units R
23:8 ]F3XZ4 24:16 FgXZg 25:32 ]FgXZlG
Zy X F7 IF{, X F4[l]/($2)
IF7 X Zg
Fy x Zy x Fy
26 =64 ]F3 X 232 33 =27 F7 X Zg 34 =481 ]F7 X 227
Ly x F3; Zg x Fo5
Fyl2]/(2%) x Fu3
F7 X Zys
IFQ X F5 X Zg
Z4 X Z4 X F5

FQXFgXFgXZ4

Now, suppose n is not a prime power. First we consider simple
prime factorization n = pg. We may also assume that p < ¢. Then by
Proposition 2.1, there does not exist a non-reduced ring with |J(R)| =
q. Let us find a non-reduced ring with |J(R)| = p. Now, if |[J(R)| = p,
then the equation (2.1) becomes

k—1 k—1
S e | () (3.1)
i=1 i=1
Thus, for the existence of a non-reduced ring with pg non-units and
|J(R)| = p < q, p and ¢ should satisfy the equation (3.1). To elaborate
this, consider the following example:
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Suppose n =2 -3 = 6. Since n < 2% — 1, by [7, Proposition 2.1, we

have k < 2. Thus, the equation (3.1) becomes

3=pi" +1.
This implies that p; = 2 and a; = 1. Thus Fy x Z, is non-reduced ring
with n =6 and |J(R)| = 2.

By applying the same argument ton € {22, 38,51, 69,74, 78,82,94, 95},
we conclude that there does not exist a non-reduced ring with n non-
units.

We now give a list of non-reduced decomposable rings with n (2 <
n < 100) non-units, where n ¢ {22,38,51,69, 74,78,82,94,95} and is

not a prime power.

TABLE 2. n = pq

Non-units R Non-units R Non-units R
2:-3=6 F2><Z4 2-5=10 Z4><]F4 2.-7=14 FQXFQXZ4
2-13 =26 FQX]F4><Z4 2-17=34 Z4XF16 223 =46 Z4><]F4><]F4
2-29 =58 FQXFQXZ4XF4 2-31 =62 FQXFQXFQXIF2XZ4 2-43 = 86 F4><Z4><]F8
3-5=15 FSXZQ 3-7=21 F5><Zg 3-11=33 FQXZQ
3-13=39 Zg x Fqq 3-19=57 Zg x Fqi7 3-29=287 Zg x For

F3><]F3><Zg F3XF5XZQ

3-31=093 Zg X Fag 5-7=235 F3 X Zos 5-11 =55 F; X Zos
5-13 =165 Fy X Zos 5-17=285 Fi3 X Zos 7T-11="177 F5 X Zyg
7. 13=01 Fr X Zao
TABLE 3. n = p?q
Non-units R Non-units R Non-units R
22.3=12 Fo x Zsg 22.5=20 Fy x Zsg 22.7=28 Zy x Fyg
Z4 X Z4 ]Fg X ]F4[fl?]/(ﬂ72) ]F4 X ]F4[J7]/(.T2)
Z4><F5 Z4XF9 FQXFQXZg
Fy X Zg Fy x F3 X Zy Fo X Zy X Zy
]Fg X ]Fg X Z4
22.11 =44 ]Fg X IF4[’I)]/(T2> 22. 13 =52 Z4 X ]FQ5 22. 17 =168 Zs X IFIG
Fy x Zy x Fr Fy x Fy x Zg Foy X Zy x Fyy
F3 X Zy x F5 Ty X Ty X Fy F3 x Zy x Fy
IFQX]FQ X]Fg ><Z4 ZQXZQXF4[I]/(1‘2) Z4><]F5><F5
2219:76 Z4><IF37 2223:92 FQX]F4><]F4[.T}]/(1’2) 322:18 Z4><]F8
Fy[x)/(2%) x Fig Fy x Fy x Zsg Fy x Zg
]F3><Z4><]F9 Z4><]F5><]F7
Z4><]F4><]F7 Z4><]F3><F11
Fs x F3 x F3 X Zy4
Fy X Fy x Fy x F3 X Zy
325:45 Fg ><Zg7 327:63 F3 ><Z49 3211:99 F3 XFQ[I]/(LQ)
F5 x Zas F5 X Zar Fy X Za7
Zg x T3 Zg x Frg Zg x Fgy
Zg X Ly
522i50 ]F2><Z4><Fg 523:75 ZgX]F23 722:98 ]FSXZ49

11 X Zos Fy X Zy X 16
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TABLE 4. n = p’q

Non-units R Non-units R Non-units R
2 .3=24 Fy X Z1g P 5=40 Ty xZyp P -T=56  FyxZny
Z4 X Zg F4 X ZIG Z4 X F27
Zy x Fpy Zy x g Zg x FFi3
Fg, X Zg Zg X ]Fq F4[T]/($2) X Fll
Fg X ]F4[£L’}/(£C2) Z4 X F4[.’L’]/(L’2) ]FQ X ]FQ X Z]G
Zy X Zg ]F4[I]/(1‘2) X ]F7 Fy x Zy x Zg
FQXFgXZg F2XZ4XF9
]F3><Z4><Z4 ]FgX]FgXZg
Z4 X Z4 X Z4
IF4 X Z4 X Z5
2311:88 Z4><]F43 332:54 IF4><Z27
Fy x Fg[.’L‘}/(IQ) Zg X ]Flﬁ
Flg X F4[’I]/(12) FQ X F4 X Zg
]Fz X ]F7 X ZS
Fg X Fs X Zs
Z4 X Z4 X Z7

]FQX]F3><Z4><Z4
FQXFQXFgXZg

TABLE 5. n = pq, p’q

Non-units R Non-units R Non-units R
24.3 =48 Fg X Zgg 245 =80 ]Fg X ZlG 25 -3 =96 Fz X ZG4
Zy X Faz Fy X Zsy Ziy X Fyz
F5 x Ze Zg x Frg F5 x Zsy
Zg X Zg ]F4[l‘]/($2) X ]Fl'y Zg X ]F23
Zg X ]Fll Zg X F4[I}/(l’2) Zg X Zlﬁ
Zg X Zg ]F3 X ]Fg[x}/(lj) Fll X Zlﬁ
F4[$]/(I2) X ]Fg Fg X F4(+)F4[l’]/($2) Z4 X ZgQ
Z4 X Zlﬁ Fz X ]F2 X 225 Zg X Zlﬁ
Fz X Z4 X Flg F‘g X F4(+)F4[$]/(I2)
Fz X ]F3 X Zlg ]F5 X ]Fg[[]?}/(l’z)
]Fg X Z4 X Zg ]Fg X ]Fg X ]F4[I}/(l’2)
]F4 X Z4 X ]Fg

FZXFQXIF3><ZQ

TABLE 6. n = p?¢?, p¢?

Non-units R Non-units R Non-units R
22 . 32 =36 ]FQ X 227 22 . 52 =100 Z4 X ]F49 23 . 32 =172 Z4 X 227
Zy x F1z Fi6 X Zos Fg X Zy6
Fg X Zg ]Fz X ]Fg X Zg F4[I]/($2) X Zg
Z4><]F3XF4 Z4XZ4XF8 ZSXF17
FQ X ]F2 X Z4 X ]F7 ]F2 X Fg[$]/($2)
Fg X IF4 X Zg
Fg x Fy x Zg

Fy x F3 x ]F4[I}/(1‘2)
]FQ X ]FZ X Z4 X ]F5
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TABLE 7. n = pqr, p*qr

Non-units R Non-units R
2-3-5=30 Fy x Zos 22.3.5 =60 7o % Lo
Fg X Zg Z4 X Fgg
FQXIFQXZQ FgXZgg,
]FQX]FQX]FQXZ4 F2><Z4XZQ
Fg X Z4 X F7

FQXFQXZ4XZ4
]FQXFQXFQXZs

2:-3-7=42 Fo xF3 xZg  22-3-7=84 Zy x Fyy
F?,XZ4XZ9
IFQXF3XIF4XZ4
2-3-11 =66 Zy x F3y 32.2.5=90 TFq x Fo[z]/(2?)
]FQXIF{)XZg F8X227
]FQX]FQX]FQXZQ FQXFQXZ27
IFQX]F’?XZQ
F4XF4XZg
2:-5.-7="70 F4XZ49

4. CENTER AND MEDIAN

4.1. Center. We begin this section with the following definition from
[1].

Definition 4.1. Center : The set of vertices with minimum eccentric-
ity of a graph G is called the center of G. It is denoted by Center(G).

Note that if R is a commutative ring with nonzero identity having n
non-units, then maximal graph I'(R) has n vertices. As I'(R) may be
a complete graph for some n, we have the following inequality:

1 <|Center(I'(R))| <n (4.1)
In the view of (6), the following question may arises:
Question 4.2. Given a positive integer n do there exist maximal
graphs I'(R) of order n such that
(1) |Center(I'(R))| attains the bounds in the Inequality (6)?
(2) 1 < |Center(I'(R))| < n?
Note that for any maximal graph I'(R) of order n, the following are
equivalent:
(i) |Center(I'(R))| = n.
(ii) I'(R) is a complete graph.
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(iii) R is a local ring.
Similarly, the following are equivalent:
(i) |Center(I'(R))| = 1.
(ii) There exists exactly one vertex v € V((I'(R))) such that deg(v) =
n— 1.

(iii) R is a reduced ring.

Therefore, for 1 < |Center(I'(R))| < n, R must be a non-reduced
and non-local ring.

If n = p®, where p is prime and s is a positive integer, then by [5,
Theorem 3], there exists a local ring R with maximal ideal of cardinality
p® and hence |Center(I'(R))| = p®. If n is not a prime power, then there
is no ring R with n non-units and |Center(I'(R))| = n.

In [6], it was shown that for 1 < n < 7500, there always exist a re-
duced ring except n € {2, 1206, 1210, 1806, 3342, 5466, 6462, 6534, 6546,
7430}. Thus for 1 < n < 7500, n ¢ {2,1206, 1210, 1806, 3342, 5466, 6462,
6534, 6546, 7430} there always exist ring R such that I'(R) is of order
n and |Center(I'(R))| = 1.

In general, we cannot say that there always exist a maximal graph
whose center attains the value between the bounds, that is, there
exists a non-reduced ring having n non-units. However, from the
list given in Section 3, we conclude that there does not exist a ring
R for which I'(R) is of order n and 1 < |Center(I'(R))| < n for
n € {22, 38, 51, 69, 74, 78, 82, 94, 95}. Clearly, for all the rings R
listed in Section 3, we have 1 < |Center(I'(R))| < n.

4.2. Median. Let G be a connected graph. For any vertex x of GG, the
status of z, is the sum of the distances from x to all the other vertices of
G, and is denoted by s(z), that is, s(x) = > {d(z,y) : y € V(G)}. The
set of vertices with minimal status is called the median of the graph.
If G has no edges, then we shall say the median of G is V(G).
Although both the center and the median relate to the topic of cen-
trality in a graph, they need not coincide. One can easily construct
examples where the center is a proper subset of the median, or the
median is a proper subset of the center. In general, finding the median
of a graph is more involved than finding the center. However, the fol-
lowing theorem gives a relationship between the center and median, in
the case of maximal graphs of finite commutative rings with identity.

Theorem 4.3. Let R be a finite commutative ring with nonzero iden-
tity. Then the median and center of I'(R) are equal.

Proof. Let |V(I'(R))| = n. Then for any z € V(I'(R)), s(z) >n—1 as
['(R) is a connected graph. Also, for all x € J(R), s(x) =n — 1, and
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for all z € V(I'(R)) \ J(R), s(x) > n. Since Center(I'(R)) = J(R), by
[1, Proposition 2.8], the result follows. O

Remark 4.4. Note that Center(I'(R)) = J(R) = Median(I'(R)), by
Theorem 4.3 and [, Proposition 2.8].
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