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NON-REDUCED RINGS OF SMALL ORDER AND
THEIR MAXIMAL GRAPH

A. SHARMA ∗ AND A. GAUR

Abstract. Let R be a commutative ring with nonzero identity.
Let Γ(R) denotes the maximal graph corresponding to the non-unit
elements of R, that is, Γ(R) is a graph with vertices the non-unit
elements of R, where two distinct vertices a and b are adjacent if
and only if there is a maximal ideal of R containing both. In this
paper, we investigate that for a given positive integer n, is there a
non-reduced ring R with n non-units? For n ≤ 100, a complete list

of non-reduced decomposable rings R =
∏k

i=1 Ri (up to cardinali-
ties of constituent local rings Ri’s) with n non-units is given. We
also show that for which n, (1 ≤ n ≤ 7500), |Center(Γ(R))| at-
tains the bounds in the inequality 1 ≤ |Center(Γ(R))| ≤ n and for
which n, (2 ≤ n ≤ 100), |Center(Γ(R))| attains the value between
the bounds.

1. Introduction

The maximal graph G(R) associated to R was introduced by the
authors [3] in 2013. The authors considered G(R) as a simple graph
whose vertices are elements of R, and two distinct vertices a and b are
adjacent if and only if there is a maximal ideal of R containing both.
In [4], the authors defined Γ(R) as the restriction of G(R) to the non-
unit elements of R, that is, Γ(R) is a simple graph whose vertices are
the non-unit elements of R such that two distinct vertices a and b are
adjacent if and only if a, b ∈ m for some maximal ideal m of R. Γ(R)
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was also named as maximal graph of R as the units in R are just the
isolated vertices in G(R).

This paper is inspired by a simple question: Given any positive in-
teger n, is there a commutative ring with nonzero identity having n
non-units? One can easily verify that a ring R has a finite number
n ≥ 2 of non-units only if R is finite. So, to answer this question, we
need to consider finite rings only.

Of course, the question is somewhat trivial if one removes the require-
ment that the ring must have an identity. Letting Ak denote the addi-
tive group Zk with the trivial multiplication (xy = 0 for all x, y ∈ Ak),
then Ak has k non-units. Thus, for this paper, all rings considered will
be finite with nonzero identity. We use Fk to denote the finite field
with k elements.

Restricting the question to local rings (rings which have a unique
maximal ideal, including fields) can give examples only for certain val-
ues of n. For a finite local ring R with m its maximal ideal, |R| = pkα

and |m| = p(k−1)α for some prime p and some positive integer k. Hence,
one must look beyond local rings to answer this question in general.

For finite commutative rings with nonzero identity, every non-unit
is zero-divisor. In [6], it was shown that there is no commutative ring
with nonzero identity and 1210 non-units. Moreover, for 1 ≤ n ≤ 7500,
n = 1210, n = 3342, and n = 5466 are the only positive integers for
which there is no commutative ring R with nonzero identity and n
non-units [6]. Now, there are few other questions:

• For which positive integer n, do there exist only reduced rings
with n non-units?
• Given a positive integer n, do there exist non-reduced rings with
n non-units?
• If we determine a non-reduced ring R with n non-units, then

what is the value of |J(R)|, where J(R) denotes the Jacobson
radical of R. Whether it depends on prime factorization of n
or not?

In Section 2, we find some conditions on |J(R)| such that for a given
positive integer n, there does not exist a non-reduced ring with n non-
units. In Section 3, we present tables listing all non-reduced decompos-
able rings R =

∏k
i=1Ri (up to cardinalities of constituent local rings

Ri’s) with n non-unit elements, where 2 ≤ n ≤ 100. In Section 4, we
discuss that for which positive integer n, 1 ≤ n ≤ 7500, |Center(Γ(R))|
attains the bounds in the inequality 1 ≤ |Center(Γ(R))| ≤ n and for
which n, 2 ≤ n ≤ 100, |Center(Γ(R))| attains the value between the
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bounds. Throughout the paper, ring shall mean a finite commutative
ring with nonzero identity.

2. Non-reduced Rings

We begin the section with some results which are established for
zero-divisors. In view of the fact that every non-unit is a zero-divisor
in a finite ring R, we are restating them for non-units.

• [5, Theorem 2] Let R be a commutative ring of cardinality α
having n non-units, where 1 < n ≤ α. Then α < n2.
• [5, Theorem 3] Suppose that p is prime and s and t are integers

such that 0 < s < t. Then there exists a local ring of order pt

having maximal ideal of cardinality ps if and only if t−s divides
s.
• [7, Proposition 2.1] Let R be a finite commutative reduced ring.

(1) If k is the smallest positive integer such that |R| < 2k, then
R is a product of k − 1 or fewer fields.

(2) Suppose R has n non-units. Let k be the smallest positive
integer such that n < 2k− 1. Then R is a product of k− 1
or fewer fields.

If R is a finite ring with maximal ideals m1,m2, . . . ,mk, then R ∼=∏k
i=1Ri, where Ri is a finite local ring with maximal ideal, say ni for

all i. Also, |Ri| = pmiαi
i for some prime pi, where mi is the length of Ri

and |Ri/ni| = pαi
i for all i. If mi = R1×· · ·×Ri−1×ni×Ri+1×· · ·×Rk,

then

|mi| = p
(mi−1)αi

i

k∏
j=1
j 6=i

p
mjαj

j = p−αi
i |R|

for all i, and

|J(R)| = | ∩ki=1 mi| =
k∏
i=1

p
(mi−1)αi

i .

Also

| ∪ki=1 mi| = |J(R)|

{
k∏
i=1

pαi
i −

k∏
i=1

(pαi
i − 1)

}
(2.1)

In the next two propositions we show that under certain conditions
there does not exist any finite, non-reduced ring R with n non-units.

Proposition 2.1. Let p and q be distinct primes, pl < q and n = plq
for some l ∈ N. Then there does not exist any finite, non-reduced ring
R with n non-units and |J(R)| = q.



38 SHARMA AND GAUR

Proof. Suppose thatR is a finite ring with plq non-units. Let |J(R)| = q
and pl < q. Since R is a finite ring, it will have finitely many maximal
ideals, say k. Then, in the decomposition of R as a finite direct product
of finite local rings, that is, R ∼=

∏k
i=1Ri, all Ri’s are field except one,

say Rk, which is a local ring with maximal ideal of cardinality q, and
hence by [5, Theorem 3], |Rk| = q2.

Thus, equation (2.1) becomes

pl = q
k−1∏
i=1

pαi
i − (q − 1)

k−1∏
i=1

(pαi
i − 1) (2.2)

which is not possible as pl < q. Thus there does not exist a non-
reduced ring with plq non-units and |J(R)| = q. �

Proposition 2.2. Let p, q, and r be distinct primes, p < q < r and
n = pqr. Then there does not exist any finite, non-reduced ring R with
n non-units satisfying the following:

(i) |J(R)| = r if pq < r;
(ii) |J(R)| = qr;

(iii) |J(R)| = pr.

Proof. Suppose that R is a finite ring with pqr non-units. Since R is a
finite ring, it will have finitely many maximal ideals, say k.

Let us assume that |J(R)| = r. Then, in the decomposition of R as

a finite direct product of finite local rings, that is, R ∼=
∏k

i=1Ri, all
Ri’s are field except one, say Rk, which is a local ring with maximal
ideal of cardinality r, and hence by [5, Theorem 3], |Rk| = r2.

Thus, equation (2.1) becomes

pq = r

k−1∏
i=1

pαi
i − (r − 1)

k−1∏
i=1

(pαi
i − 1) (2.3)

which is not possible as pq < r.
Next assume that |J(R)| = qr. Then, in the decomposition of R as a

finite direct product of finite local rings, that is, R ∼=
∏k

i=1Ri, all Ri’s
are field except two, say Rk−1, Rk, which are local rings with maximal
ideals of cardinality q and r, respectively and hence by [5, Theorem 3],
|Rk−1| = q2, |Rk| = r2.

Thus, equation (2.1) becomes

p = qr

k−2∏
i=1

pαi
i − (q − 1)(r − 1)

k−2∏
i=1

(pαi
i − 1) (2.4)
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which is not possible as p < q, p < r. Thus there does not exist a
non-reduced ring with pqr non-units and |J(R)| = qr. Similarly for
|J(R)| = pr, there does not exist a non-reduced ring. �

Remark 2.3. Thus equation (2.1) gives a useful criteria to determine
the non-existence of a non-reduced ring with n = p1p2 · · · pm non-units
and appropriate |J(R)|.

3. The List

In this section, we present tables listing all non-reduced decompos-
able rings R =

∏k
i=1Ri (up to cardinalities of constituent local rings

Ri’s) having n non-units, where 2 ≤ n ≤ 100. For n = 1, we have a
field, which is a reduced ring. Next, if n = ps, where p is prime and s
is a positive integer, then by [2, Theorem 2], we have either local rings
of order pt, 0 < s < t or reduced ring for 1 ≤ s < 3. For s ≥ 3, we
have non-reduced decomposable rings listed in the table:

Table 1. n = ps

Non-units R Non-units R Non-units R
23 = 8 F3 × Z4 24 = 16 F3 × Z8 25 = 32 F3 × Z16

Z4 × F7 F5 × F4[x]/(x2)
F7 × Z8

F2 × Z4 × F5

26 = 64 F3 × Z32 33 = 27 F7 × Z9 34 = 81 F7 × Z27

Z4 × F31 Z9 × F25

F4[x]/(x2)× F13

F7 × Z16

F2 × F5 × Z8

Z4 × Z4 × F5

F2 × F3 × F3 × Z4

Now, suppose n is not a prime power. First we consider simple
prime factorization n = pq. We may also assume that p < q. Then by
Proposition 2.1, there does not exist a non-reduced ring with |J(R)| =
q. Let us find a non-reduced ring with |J(R)| = p. Now, if |J(R)| = p,
then the equation (2.1) becomes

q = p
k−1∏
i=1

pαi
i − (p− 1)

k−1∏
i=1

(pαi
i − 1) (3.1)

Thus, for the existence of a non-reduced ring with pq non-units and
|J(R)| = p < q, p and q should satisfy the equation (3.1). To elaborate
this, consider the following example:
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Suppose n = 2 · 3 = 6. Since n ≤ 23 − 1, by [7, Proposition 2.1], we
have k ≤ 2. Thus, the equation (3.1) becomes

3 = pα1
1 + 1.

This implies that p1 = 2 and α1 = 1. Thus F2×Z4 is non-reduced ring
with n = 6 and |J(R)| = 2.

By applying the same argument to n ∈ {22, 38, 51, 69, 74, 78, 82, 94, 95},
we conclude that there does not exist a non-reduced ring with n non-
units.

We now give a list of non-reduced decomposable rings with n (2 ≤
n ≤ 100) non-units, where n 6∈ {22, 38, 51, 69, 74, 78, 82, 94, 95} and is
not a prime power.

Table 2. n = pq

Non-units R Non-units R Non-units R
2 · 3 = 6 F2 × Z4 2 · 5 = 10 Z4 × F4 2 · 7 = 14 F2 × F2 × Z4

2 · 13 = 26 F2 × F4 × Z4 2 · 17 = 34 Z4 × F16 2 · 23 = 46 Z4 × F4 × F4

2 · 29 = 58 F2 × F2 × Z4 × F4 2 · 31 = 62 F2 × F2 × F2 × F2 × Z4 2 · 43 = 86 F4 × Z4 × F8

3 · 5 = 15 F3 × Z9 3 · 7 = 21 F5 × Z9 3 · 11 = 33 F9 × Z9

3 · 13 = 39 Z9 × F11 3 · 19 = 57 Z9 × F17 3 · 29 = 87 Z9 × F27

F3 × F3 × Z9 F3 × F5 × Z9

3 · 31 = 93 Z9 × F29 5 · 7 = 35 F3 × Z25 5 · 11 = 55 F7 × Z25

5 · 13 = 65 F9 × Z25 5 · 17 = 85 F13 × Z25 7 · 11 = 77 F5 × Z49

7 · 13 = 91 F7 × Z49

Table 3. n = p2q

Non-units R Non-units R Non-units R
22 · 3 = 12 F2 × Z8 22 · 5 = 20 F4 × Z8 22 · 7 = 28 Z4 × F13

Z4 × Z4 F2 × F4[x]/(x2) F4 × F4[x]/(x2)
Z4 × F5 Z4 × F9 F2 × F2 × Z8

F2 × Z9 F2 × F3 × Z4 F2 × Z4 × Z4

F3 × F3 × Z4

22 · 11 = 44 F8 × F4[x]/(x2) 22 · 13 = 52 Z4 × F25 22 · 17 = 68 Z8 × F16

F2 × Z4 × F7 F2 × F4 × Z8 F2 × Z4 × F11

F3 × Z4 × F5 Z4 × Z4 × F4 F3 × Z4 × F8

F2 × F2 × F3 × Z4 Z2 × Z2 × F4[x]/(x2) Z4 × F5 × F5

22 · 19 = 76 Z4 × F37 22 · 23 = 92 F2 × F4 × F4[x]/(x2) 32 · 2 = 18 Z4 × F8

F4[x]/(x2)× F16 F4 × F4 × Z8 F4 × Z9

F3 × Z4 × F9 Z4 × F5 × F7

Z4 × F4 × F7 Z4 × F3 × F11

F3 × F3 × F3 × Z4

F2 × F2 × F2 × F3 × Z4

32 · 5 = 45 F3 × Z27 32 · 7 = 63 F3 × Z49 32 · 11 = 99 F3 × F9[x]/(x2)
F5 × Z25 F5 × Z27 F9 × Z27

Z9 × F13 Z9 × F19 Z9 × F31

Z9 × Z9

52 · 2 = 50 F2 × Z4 × F8 52 · 3 = 75 Z9 × F23 72 · 2 = 98 F8 × Z49

F11 × Z25 F2 × Z4 × F16
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Table 4. n = p3q

Non-units R Non-units R Non-units R
23 · 3 = 24 F2 × Z16 23 · 5 = 40 F4 × Z25 23 · 7 = 56 F2 × Z49

Z4 × Z9 F4 × Z16 Z4 × F27

Z4 × F11 Z4 × F19 Z8 × F13

F5 × Z8 Z8 × F9 F4[x]/(x2)× F11

F3 × F4[x]/(x2) Z4 × F4[x]/(x2) F2 × F2 × Z16

Z4 × Z8 F4[x]/(x2)× F7 F2 × Z4 × Z8

F2 × F3 × Z8 F2 × Z4 × F9

F3 × Z4 × Z4 F3 × F3 × Z8

Z4 × Z4 × Z4

F4 × Z4 × Z5

23 · 11 = 88 Z4 × F43 33 · 2 = 54 F4 × Z27

F4 × F8[x]/(x2) Z9 × F16

F19 × F4[x]/(x2) F2 × F4 × Z9

F2 × F7 × Z8

F3 × F5 × Z8

Z4 × Z4 × Z7

F2 × F3 × Z4 × Z4

F2 × F2 × F3 × Z8

Table 5. n = p4q, p5q

Non-units R Non-units R Non-units R
24.3 = 48 F2 × Z32 24.5 = 80 F9 × Z16 25 · 3 = 96 F2 × Z64

Z4 × F23 F4 × Z32 Z4 × F47

F5 × Z16 Z8 × F19 F5 × Z32

Z8 × Z9 F4[x]/(x2)× F17 Z8 × F23

Z8 × F11 Z8 × F4[x]/(x2) Z9 × Z16

Z8 × Z8 F3 × F8[x]/(x2) F11 × Z16

F4[x]/(x2)× F9 F2 × F4(+)F4[x]/(x2) Z4 × Z32

Z4 × Z16 F2 × F2 × Z25 Z8 × Z16

F2 × Z4 × F13 F3 × F4(+)F4[x]/(x2)
F2 × F3 × Z16 F5 × F8[x]/(x2)
F3 × Z4 × Z8 F3 × F3 × F4[x]/(x2)

F4 × Z4 × F9

F2 × F2 × F3 × Z9

Table 6. n = p2q2, p3q2

Non-units R Non-units R Non-units R
22 · 32 = 36 F2 × Z27 22 · 52 = 100 Z4 × F49 23 · 32 = 72 Z4 × Z27

Z4 × F17 F16 × Z25 F8 × Z16

F8 × Z8 F2 × F8 × Z8 F4[x]/(x2)× Z9

Z4 × F3 × F4 Z4 × Z4 × F8 Z8 × F17

F2 × F2 × Z4 × F7 F2 × F8[x]/(x2)
F3 × F4 × Z9

F3 × F4 × Z8

F2 × F3 × F4[x]/(x2)
F2 × F2 × Z4 × F5
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Table 7. n = pqr, p2qr

Non-units R Non-units R
2 · 3 · 5 = 30 F2 × Z25 22 · 3 · 5 = 60 Z4 × Z25

F8 × Z9 Z4 × F29

F2 × F2 × Z9 F8 × Z25

F2 × F2 × F2 × Z4 F2 × Z4 × Z9

F3 × Z4 × F7

F2 × F2 × Z4 × Z4

F2 × F2 × F2 × Z8

2 · 3 · 7 = 42 F2 × F3 × Z9 22 · 3 · 7 = 84 Z4 × F41

F3 × Z4 × Z9

F2 × F3 × F4 × Z4

2 · 3 · 11 = 66 Z4 × F32 32 · 2 · 5 = 90 F2 × F9[x]/(x2)
F2 × F5 × Z9 F8 × Z27

F2 × F2 × F2 × Z9 F2 × F2 × Z27

F2 × F7 × Z9

F4 × F4 × Z9

2 · 5 · 7 = 70 F4 × Z49

4. Center and Median

4.1. Center. We begin this section with the following definition from
[1].

Definition 4.1. Center : The set of vertices with minimum eccentric-
ity of a graph G is called the center of G. It is denoted by Center(G).

Note that if R is a commutative ring with nonzero identity having n
non-units, then maximal graph Γ(R) has n vertices. As Γ(R) may be
a complete graph for some n, we have the following inequality:

1 ≤ |Center(Γ(R))| ≤ n (4.1)

In the view of (6), the following question may arises:

Question 4.2. Given a positive integer n do there exist maximal
graphs Γ(R) of order n such that

(1) |Center(Γ(R))| attains the bounds in the Inequality (6)?
(2) 1 < |Center(Γ(R))| < n?

Note that for any maximal graph Γ(R) of order n, the following are
equivalent:

(i) |Center(Γ(R))| = n.
(ii) Γ(R) is a complete graph.
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(iii) R is a local ring.

Similarly, the following are equivalent:

(i) |Center(Γ(R))| = 1.
(ii) There exists exactly one vertex v ∈ V ((Γ(R))) such that deg(v) =

n− 1.
(iii) R is a reduced ring.

Therefore, for 1 < |Center(Γ(R))| < n, R must be a non-reduced
and non-local ring.

If n = ps, where p is prime and s is a positive integer, then by [5,
Theorem 3], there exists a local ring R with maximal ideal of cardinality
ps and hence |Center(Γ(R))| = ps. If n is not a prime power, then there
is no ring R with n non-units and |Center(Γ(R))| = n.

In [6], it was shown that for 1 ≤ n ≤ 7500, there always exist a re-
duced ring except n ∈ {2, 1206, 1210, 1806, 3342, 5466, 6462, 6534, 6546,
7430}. Thus for 1 ≤ n ≤ 7500, n 6∈ {2, 1206, 1210, 1806, 3342, 5466, 6462,
6534, 6546, 7430} there always exist ring R such that Γ(R) is of order
n and |Center(Γ(R))| = 1.

In general, we cannot say that there always exist a maximal graph
whose center attains the value between the bounds, that is, there
exists a non-reduced ring having n non-units. However, from the
list given in Section 3, we conclude that there does not exist a ring
R for which Γ(R) is of order n and 1 < |Center(Γ(R))| < n for
n ∈ {22, 38, 51, 69, 74, 78, 82, 94, 95}. Clearly, for all the rings R
listed in Section 3, we have 1 < |Center(Γ(R))| < n.

4.2. Median. Let G be a connected graph. For any vertex x of G, the
status of x, is the sum of the distances from x to all the other vertices of
G, and is denoted by s(x), that is, s(x) =

∑
{d(x, y) : y ∈ V (G)}. The

set of vertices with minimal status is called the median of the graph.
If G has no edges, then we shall say the median of G is V (G).

Although both the center and the median relate to the topic of cen-
trality in a graph, they need not coincide. One can easily construct
examples where the center is a proper subset of the median, or the
median is a proper subset of the center. In general, finding the median
of a graph is more involved than finding the center. However, the fol-
lowing theorem gives a relationship between the center and median, in
the case of maximal graphs of finite commutative rings with identity.

Theorem 4.3. Let R be a finite commutative ring with nonzero iden-
tity. Then the median and center of Γ(R) are equal.

Proof. Let |V (Γ(R))| = n. Then for any x ∈ V (Γ(R)), s(x) ≥ n− 1 as
Γ(R) is a connected graph. Also, for all x ∈ J(R), s(x) = n − 1, and
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for all x ∈ V (Γ(R)) \ J(R), s(x) ≥ n. Since Center(Γ(R)) = J(R), by
[4, Proposition 2.8], the result follows. �

Remark 4.4. Note that Center(Γ(R)) = J(R) = Median(Γ(R)), by
Theorem 4.3 and [4, Proposition 2.8].
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