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Abstract. We propound a mathematical modeling of the migration’s ef-
fect on the size of any population dynamic from a site of a heterogeneous
space Ω ⊂ Rd, d = 1, 2, . . .. The obtained model is afterwards added at
SIR model including the dynamics of the bacteria and some control param-
eters to model the spreading of a cholera epidemic which occurs in Ω. The
formulated model is given by a system of four parabolic partial differential
equations. Existence and stability of equilibria, Turing’s instability and
optimal control problem of this model are studied. We finish with a real-
world application in which we apply the model specifically to the cholera
epidemic that took place in Cameroon in 2011.
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1 Introduction

The cholera is an acute intestinal infection which is the result of the ab-
sorption, by ingestion, of the vibrio choleraic finding oneself in water or in
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food, but can also be the result of a contamination of a person to an another
starting from the pathological products (excrements, vomiting, sweat). The
experiences show that the vibrios ingested in food are most liable to be the
cause of an infection than those ingested in water. The infectious dose de-
termined experimentally is of the order of 108 to 1011 bacteria. The gastric
acidity is little propitious to the survival of the bacterium in the stomach.
After the crossing of the gastric barrier, the vibrios settle down in the near-
ness part of the small intestine, going through the mucus layer and secrete
the choleraic toxin. This toxin modifies the exchanges of water and of the
electrolytes by preventing the penetration of the sodium inside the cell.
This induces a crossing in the light of the digestive tract of a big quantity
of water being able to reach 15 l per day, causing a severe dehydration of
the ill individual [6].

The cholera is an extremely virulent disease which affects the children as
the adults. In the absence of the treatment, one can die in few hours. About
75 percent of infected individuals by the vibrio choleraic doesn’t manifest
any symptom, though the bacillus be present into their excrements dur-
ing 7 to 14 days after the infection and be eliminated in the environment,
where it can infected potentially another persons. For those whom manifest
symptoms, these symptoms remain slight in 80 percent of cases, whereas
about 20 percent of cases, an acute watery diarrhoea, coming with severe
dehydration, the vomiting but without temperature increasing is develop-
ing. The excrements become rapidly watery, taking the water rice color.
This important leak of the water induces intense cramps spreading in all
the human body, pushing the eyes in the orbits, contracting the orbicular
muscles of the lips, leading then to give a cyanosis look to the face of the
sick. The individuals having a weak immunity, the children suffering of
malnutrition or the persons living with the H.I.V. for example, are more
exposed at risk of death in case of infection [8].

The transmission of the cholera is tightly tied up to a bad management
of the environment and the number of cases of the cholera notified to WHO
continues to increase (World Health Organization, Cholera fact sheets, Au-
gust 2011. Available from: www.who.int). In spite of about a hundred
years of studies on the disease, the cholera remains endemic and epidemic
in several countries of Africa, Asia and Latin America. The epidemiology
is dominated by hydrous transmission. It is then few probable that exten-
sive epidemics occur in the countries where bacteriological waters control
is strictly applied, even if localized sources started up. The overpopula-
tion, the lack of corporeal and nutritious hygiene, can also contribute at
spreading of the disease.
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The mathematical model commonly used to describe the spreading of an
infectious disease is the SIR model, the name resulting of the fact that the
population is divided into three disjoint groups: susceptible (S), infected
(I) and recovered (R) (see [5,10,15]). With the intention of building math-
ematically the dynamics of the bacteria in water or bacterial abundance,
Emvudu and Kokomo (see [11]) proposed a model which inserts bacterial
abundance. This allowed us to obtain a SIRB model formed of a system of
four ordinary differential equations.

The goal of this paper is to build a mathematical model which con-
siders the migration of individuals and the control methods of the disease
necessary to the eradication of the epidemic.

This paper is organized as follows. With Section 2, we formulate a
mathematical model describing the effect of the migration on the dynamic
of the size of a given population. In Section 3, we propound a controlled
model of spreading of the cholera. With Section 4, we carry out the math-
ematical analysis of the proposed model in 3. The optimal control problem
is formulated and studied in section 5. We finish, in Section 6, by a real-
world problem where we apply our model to the study of the epidemic of
the cholera having took place at Cameroon in 2011.

2 Mathematical modeling of the effect of the mi-
gration in the dynamic of a population

2.1 Assumptions of modeling

Assumption 1: The individuals are assigned to a topographic space
Ω ⊂ Rd (d = 1, 2, 3), continuous, heterogeneous, stable, of boundary
∂Ω ∈ C2 and can move inside Ω.

Assumption 2: The individuals can be transported to a constant speed v
via a known transport’s mean in Ω.

Assumption 3: The population of a site of Ω is homogeneous and only the
movements in large scale between the various sites are constrained in the
space, the moving of an individual being independent of his social status.

Assumption 4: The migration is solely function of the distance and sym-
metric, that is, the rate of individuals who migrate from a site i towards a
site j is the same than this which allows us to quit the site j for the site i
(i 6= j).
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2.2 Formulation of the model

Assumption 1 shows that the spatiotemporal model to build is an explicit
model. Thus, the time being continuous, we will begin by construct a model
of the migration’s effect in a discrete space, which will allow us to obtain
the searched model in the continuous space Ω.

Model of the effect of the migration in a discrete space

The space being discrete, we can used the metapopulation model of
Levin (see [17]). For that, let us divide the space Ω (assumed here to be
discrete) in n sub-populations rallied in n sites (n = 2, 3, . . .), the sites being
joined by the migrations. The population of a site of Ω being homogeneous
(assumption 3), let us denote by: X(i, t) the density of the individuals of
the site i at time t. K(i, j) the transition rate per unit of time of individuals
migrating to the site i towards the site j (i 6= j). We thus have:

X(i, t+ ∆t) = X(i, t) +

n∑
j=1

X(j, t)K(j, i)∆t−
n∑
j=1

X(i, t)K(i, j)∆t.

The first sum corresponds at immigrations and the second at emigrations.
The assumption 4 allows us to write K(i, j) = K(j, i) and K(i, j) = Φ(‖i−
j‖Ω).

When ∆t tends towards 0, we have:

lim
∆t→0

X(i, t+ ∆t)−X(i, t)

∆t
=
∂X(i, t)

∂t

=

n∑
j=1,j 6=i

X(j, t)K(j, i)−
n∑

j=1,j 6=i
X(i, t)K(i, j)

=
n∑

j=1,j 6=i
X(j, t)K(j, i)−X(i, t)

n∑
j=1,j 6=i

K(i, j)

=

n∑
j=1,j 6=i

X(j, t)K(i, j)−X(i, t)

n∑
j=1,j 6=i

K(i, j).

Thus, for each site i, i = 1, 2, . . . n, the model of migration’s effect (in the
discrete space Ω) is given by:

∂X(i, t)

∂t
=

n∑
j=1,j 6=i

X(j, t)K(i, j)−X(i, t)

n∑
j=1,j 6=i

K(i, j). (1)
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Model of the effect of the migration in a continuous space

We assume now that the space Ω ⊂ Rd is continuous. Let us denote by
X(x, t) the density of the individuals inhabiting the position x at time t.
Taking Assumption 3 into account, and then by setting ε = x− y ∈ Ω the
model (1) becomes

∂X(x, t)

∂t
=

∫
Ω\{x}

X(x− ε, t)Φ(‖ε‖Ω)dε−X(x, t)

∫
Ω\{x}

Φ(‖ε‖Ω)dε,

=

∫
Ω\{x}

X(y, t)Φ(‖x− y‖Ω)dy −X(x, t)

∫
Ω\{x}

Φ(‖ε‖Ω)dε,

that is,

∂X(x, t)

∂t
= (X(., t) ∗ Φ) (x)−X(x, t)

∫
Ω\{x}

Φ(‖ε‖Ω)dε, (2)

where X(., t) ∗ Φ being the product of convolution of X(., t) and Φ.
Since the Dirac delta allows us to convey in transit to the discrete

towards the continuous, we choose Φ so that (see [19]) :

Φ = δ − v div δ +
σ2

2
D2δ, (3)

where δ is the (multidimensional) Dirac delta distribution, σ
2

2 the diffusion

coefficient, div =
∑d

i=1
∂
∂xi

and D2 =
∑d

i,j=1
∂2

∂xi∂xj
operators defined in

the meaning of distributions’ theory (see [23]).
Taking the linearity of the product of convolution into account and the

fact that we have for all test function f (see [9], [23]):

f(x) ∗ ∂nδ(x) = ∂nf(x) (4)

where ∂n = ∂n

(∂x1)α1 (∂x2)α2 ...(∂xd)αd (n = 0, 1, . . . and α1 +α2 + · · ·+αd = n)

is the partial derivative operator of order n with ∂0f = f , we have:

Theorem 1. In the heterogeneous continuous space Ω, the model of the
effect of the migration is given by:

∂X(x, t)

∂t
= −v div X(x, t) +

σ2

2

d∑
i,j=1

∂2X(x, t)

∂xi∂xj
, (5)

with x = (x1, x2, . . . , xd)
T ∈ Ω.



170 E. Kokomo and Y. Emvudu

Proof. It suffices to transfer (3) and (4) in (2) and carry out the calculations.

Approximation of the model of the effect of the migration in a
continuous space

Let us set H =
∑d

i=1 εi
∂
∂xi
. By applying truncated Taylor’s expansion at

order n at X(x− ε, t) with ε = (εi)1≤i≤d, we obtain according to (2):

∂X(x, t)

∂t
'
[ ∫

Ω\{x}

(
X(x, t)−HX(x, t) +

1

2
H2X(x, t) + · · ·

+
(−1)n

n!
HnX(x, t)

)]
Φ(‖ε‖Ω)dε−X(x, t)

∫
Ω\{x}

Φ(‖ε‖Ω)dε, (6)

where the power term (p, n− p) corresponds to the n- derivative ∂n

∂xp1∂x
n−p
2

with (x1, x2) = (xi)1≤i≤d. In addition (see [9]) we have:

δ(ε) = ∂nδ(ε) = 0 when x 6= y. (7)∫
Ω
δ(ε)dε = 1,

∫
Ω
f(ε)∂(n)δ(ε)dε = (−1)n∂(n)f(0), (8)

and consequently by transferring (7), (8) and (3) into (6), we obtain after
calculations:

∂X(x, t)

∂t
' σ2

2
4X(x, t)− v div X(x, t), (9)

which is the diffusion classical equation, constituting thus an approximation
of the model of the migration’s effect in a heterogenous continuous space.

Remark 1. The models (9) and (5) are equivalent only when d = 1.

3 Controlled model of the spreading of the cholera

In this section, we formulate a controlled model of the spreading of the
cholera under the conditions where all the assumptions of the subsection
2.1 are verified.

We consider a population subdivided in three disjoint groups represent-
ing the great stages of the disease: the Susceptible (S), Infected (I) and
Recovered (R). The population of each subgroup is homogeneous and we
denote by S = S(x, t), I = I(x, t), R = R(x, t), the respective densities
of Susceptible, Infected and Recovered inhabiting the place x ∈ Ω at time
t ∈ R+. In accordance with Emvudu and Kokomo model (see [11]), the
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population of bacilli (vibrio choleraic) is homogeneous and transported via
a running water crossing the different sites of the space Ω. Its density is
B = B(x, t).

The newborns are neither susceptible, nor be struck down by the cholera,
all the births being protected. The only voice of the infection of a suscep-
tible individual (S) is the consumption of a water coming from a contam-
inated source (B). The infected individuals of cholera, cure at rate γ1 for
the non treated infected individuals, γ2 for the treated infected individuals
and die as the result of the cholera at rate µ1. All the time that he re-
mains infected, the individual contributes to the increasing of the bacteria
population through its excrements at rate e. The bacteria population (B)
decreases by the natural mortality at rate γ and can also increases at rate
determined by some environmental factors (the temperature for example).
The effects of seasonality are described by a periodic variation of the con-
tact parameter β between bacteria and the hosts. The parameter β can be
function of the time and of the space.

In order to fight efficiently against the disease, three fighting strategies
θ1(x, t), θ2(x, t) and θ3(x, t) representing respectively the proportion of peo-
ple who receive antibiotic cure, the proportion of people who receive the
hydration therapy, and, the proportion of the contaminated water treated,
are introduced into the model. The antibiotic cure lessens the contribu-
tion of an infected individual to the increasing of the vibrio choleraic in
the environment, whereas, the hydration therapy allows to save the life of
an infected individual without limit his contribution to the increasing of
the vibrio choleraic in the environment. Let us note that in the reality,
the antibiotic cure can not be administer without the hydration therapy
(see [1]).

We choose θi(., 0) = 0 with θ = (θ1, θ2, θ3)T belonging to Γ = {θ ∈
(L1(0, T, L∞(Ω))3|0 ≤ θ1(x, t) ≤ N1; 0 ≤ θ2(x, t) ≤ N2; 0 ≤ θ3(x, t) ≤
N3 p.s.}, where 0 < T ≤ ∞, with N1 < 1, N2 < 1 and N3 < 1 which
represent the intervention’s maximal proportions. The following controlled
model, which is constituted of four parabolic partial differential equations
is then obtained:

∂S(x,t)
∂t = −µS − β(x, t) B

K+BS + r1R+ σ2

2

∑d
i,j=1

∂2S
∂xi∂xj

,
∂I(x,t)
∂t = β(x, t) B

K+BS − µI − (1− θ2(x, t))µ1I

−γ1(1− θ1(x, t))I − γ2θ1(x, t)I + σ2

2

∑d
i,j=1

∂2I
∂xi∂xj

,
∂R(x,t)
∂t = −(r1 + µ)R+ σ2

2

∑d
i,j=1

∂2R
∂xi∂xj

+ γ1(1− θ1(x, t))I

+γ2θ1(x, t)I,
∂B(x,t)
∂t = eI − (γ + θ3(x, t))B − v div B +

σ2
B
2

∑d
i,j=1

∂2B
∂xi∂xj

.

(10)
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D = σ2

2 and DB =
σ2
B
2 respectively represent the diffusion coefficients of

the individuals and bacteria. v represents the constant speed of bacteria in
running water. div and 4 respectively represent divergence and Laplacian
operators. The initial conditions are given by S(x, 0) = S(x), I(x, 0) =
I(x), R(x, 0) = R(x) and B(x, 0) = B(x). Whereas boundaries conditions
are given by S(x, t) = I(x, t) = R(x, t) = B(x, t) = 0 on ∂Ω ∀(x, t) ∈
Ω× R+.

4 Mathematical analysis of the controlled model

4.1 Existence of a flow of the model

Let us consider the Banach spaces E = L2(Ω) andX =
[
W 2,2(Ω)

⋂
W 1,2

0 (Ω)
]4
.

Let us consider the unknown function Φ :
[
0, T

[
→ X defined by

Φ(t) = (S(., t), I(., t), R(., t), B(., t))T ∈ X (0 < T ≤ ∞).

Let us consider the operator A : D(A) = X → X defined for all t ∈
[
0, T

[
by

AΦ(t) =


−µS + r1R+ σ2

2

∑d
i,j=1

∂2S
∂xi∂xj

−(µ1 + µ)I + σ2

2

∑d
i,j=1

∂2I
∂xi∂xj

− γ1I

−(r1 + µ)R+ σ2

2

∑d
i,j=1

∂2R
∂xi∂xj

+ γ1I

eI − γB − v div B +
σ2
B
2

∑d
i,j=1

∂2B
∂xi∂xj

 .

Clearly then A is an unbounded linear operator on E (see [12]). Let us
consider the operators B : Γ → C(0, T,X) and f :

[
0, T

[
→ X defined for

all θ ∈ Γ and all t ∈
[
0, T

[
by:

(Bθ)(t) =


0

−θ2(., t)µ1I(., t) + (γ1 − γ2)θ1(., t)I(., t)
(γ2θ2(., t)− γ1θ1(., t))I(., t)

−θ3(., t)B(., t)

 ,

and

f(t) = (−β′(t) B(., t)

K +B(., t)
S(., t), β′(t)

B(., t)

K +B(., t)
S(., t), 0, 0)T ,

where β′(t) = β(., t) is such that β′(0) = 0.
Then, the system (10) can be rewritten like the following Cauchy prob-

lem on the Banach space X:{
dΦ

dt
(t) = AΦ(t) + (Bθ)(t) + f(t), 0 < t < T ,

Φ(0) ∈ D(A).
(11)
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We have the following lemma:

Lemma 1. (i) The operator A generates a contraction semigroup T (t),
t ≥ 0 on E.
(ii) The nonlinear operator g = (Bθ) + f :

[
0, T

[
−→ X is a continuous

and lipschitzian function from
[
0, T

[
towards X.

Proof. (i) This comes from [12] (see [12], theorem 5, chapter 7).

(ii) It is obvious that g = (Bθ)+f is continuous in t ∀t ∈
[
0, T

[
. In addition,

‖g(t1)−g(t2)‖X =‖ (Bθ)(t1)− (Bθ)(t2)+f(t1)−f(t2) ‖X≤ D‖t1− t2‖ with
D = supΦ∈X(‖ (Bθ) ‖L(Γ,C(0,T,X)) +2 supΦ∈X(β′(t1), β′(t2)). ‖ S(Φ, t1) −
S(Φ, t2) ‖X). We conclude thus that g = (Bθ) + f is a continuous and
lipschitzian function from

[
0, T

[
towards X.

The main result of this subsection is the following:

Theorem 2. The Cauchy problem (11) admits on
[
0, T

[
, T > 0 a unique

classical solution given by:

Φ(t) = T (t)Φ(0) +

∫ t

0
T (t− τ)g(τ)dτ. (12)

Proof. This is due to Songmu, 2004 (see [25], Corollary 2.4.3)

Remark 2. The solution given by (12) shows that the problem (10) is
well-posed in the Hadamard’s meaning (see [13]).

4.2 Equilibria and stability

4.2.1 Equilibria

For a contact rate β(x, t) ≡ β(x) ≡ β for all t ≥ 0 and the intervention
strategies (θ1(x, t), θ2(x, t), θ3(x, t)) ≡ (θ1(x), θ2(x), θ3(x)), an equilibrium
(S∗(x), I∗(x), R∗(x), B∗(x)) of the system (10) is a solution of the system

∂S(x, t)

∂t
=
∂I(x, t)

∂t
=
∂R(x, t)

∂t
=
∂B(x, t)

∂t
= 0. (13)

Let us consider the spaces E = {Φ|Φi ∈ C1(Ω),Φi = 0 on ∂Ω}, and Y =
{Φ|Φi ∈ C2(Ω),Φi = 0 on ∂Ω}, (i = 1, . . . , 4), respectively equipped
with the norms ‖ Φ ‖E= max{‖ Φi ‖C1(Ω)} and ‖ Φ ‖Y = max{‖ Φi ‖C2(Ω)}.

D1 = D2 and D2 = −v div +
σ2
B
2

∑d
i,j=1

∂2

∂xi∂xj
and let us consider the



174 E. Kokomo and Y. Emvudu

operators L : Y → (C1(Ω))4 and F : Y → (C1(Ω))4 defined by:
L := diag(−D1,−D1,−D1,−D2) and

F [Φ] =


−µS − β B

K+BS + r1R

β B
K+BS − (r′ + µ)I

rI − (r1 + µ)R
eI − γ′B

 ,

with r = γ1(1 − θ1) + γ2θ1, r′ = r + (1 − θ2)µ1, γ′ = γ + θ3. Thus, the
system (13) can be rewritten in the form

L[Φ∗] = F [Φ∗], Φ∗ ∈ Y. (14)

With the aim to study efficiently this nonlinear problem, we consider the
following auxiliary problem

L[Φ∗] = λF [Φ∗], Φ∗ ∈ Y, (15)

where λ ∈ R+ is a parameter. Let us note that P = {Φ ∈ E|Φi ≥ 0 in Ω}
and let us consider the operator Q : R+ × P → P defined by

Q(λ,Φ) = Φ− λL−1F [Φ], (λ,Φ) ∈ R+ × P. (16)

The problem (15) is then equivalent to:

Q(λ,Φ∗) = 0, (λ,Φ∗) ∈ R+ × P. (17)

It is obvious that Q(λ, 0) = 0 for all λ ∈ R+. Thus, (λ, 0) is a trivial
solution of (17). Let us consider the set

∑
= {(λ,Φ∗) ∈ R+ × (P \ {0}) :

Q(λ,Φ∗) = 0} of the nontrivial solutions of (17). The closure of the
∑

(
∑

)
may contain the trivial solutions only if those solutions are the limits of the
nontrivial solutions i.e. the bifurcation points of (17) (see for example [21]).
We have the following lemma.

Lemma 2. There exists λ0 > 0 such that
∑

contains an unbounded con-
tinuum C with (λ0, 0) belonging to C.

Proof. Let us consider the operators Li : C2(Ω)→ C(Ω) (i = 1, 2) defined
by L1 := −D1, L2 := −D2 and the following linear eigenvalue problems:

Liu(x) = λu(x) x ∈ Ω; u(x) = 0 ∀x ∈ ∂Ω. (18)

It is known (see for example [18]) that (18) admits respectively an infinite
number of eigenvalues 0 < λ1 ≤ λ2 ≤ · · · and 0 < ρ1 ≤ ρ2 ≤ · · · . It is
then sufficing to take λ0 = min(λ1, ρ1) and apply Theorem 1.2 given in [21]
(see [21], Page 216, Theorem 1.2).
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The main result of this part is the following:

Theorem 3. The model (10) admits two equilibria: a trivial equilibrium
E0 = (0, 0, 0, 0) and a nontrivial equilibrium E1 = (S∗, I∗, R∗, B∗) obtained
by a bifurcation point λ0 > 0 of (17).

Proof. It is enough to notice that if (λ,Φ∗) ∈ R+ × P is a solution of (17)
then Φ∗ is a solution of (13) (see [2]) and take Lemma 2 into account.

Remark 3. E0 = (0, 0, 0, 0) is the equilibrium at boundary ∂Ω of Ω,
whereas, E1 = (S∗, I∗, R∗, B∗) is the equilibrium inside Ω. Moreover,
Lemma 2 shows that E0 and E1 have distinct neighborhoods.

4.2.2 Stability

The linearized of the model (10) at the equilibrium Φ∗ = (S∗, I∗, R∗, B∗)
is given by:

∂Φ

∂t
= L(Φ) = D(4Φ)− vE(div Φ) + J(Φ), (19)

with D = diag(σ
2

2 ,
σ2

2 ,
σ2

2 ,
σ2
B
2 ), E = diag(0, 0, 0, 1) and

J =


−µ− β B∗

K+B∗ 0 r1 −β K
(K+B∗)2S

∗

β B∗

K+B∗ −r′ − µ 0 β K
(K+B∗)2S

∗

0 r −r1 − µ 0
0 e 0 −γ′

 .

According to the standard linear operators theory, it is known that if all the
eigenvalues of L have a negative real part, then Φ∗ is locally asymptotically
stable, and if at least one eigenvalue of L has a positive real part, the
equilibrium Φ∗ is unstable. The characteristic equation of the operator L
is:

L(ψ) = ξψ. (20)

Let ψ = (ψ1(x), ψ2(x), ψ3(x), ψ4(x))T an eigenvector of L corresponding to
the eigenvalue ξ, and let ψ =

∑∞
k=0 ϑkx

k, with ϑk = (ak, bk, ck, dk)
T , where

ak, bk, ck and dk are real coefficients (see [16]), we have according to (20):

k(k − 1)D
[ ∞∑
k=2

ϑkx
k−2]− kvE[ ∞∑

k=1

ϑkx
k−1]+ J

[ ∞∑
k=0

ϑkx
k
]

= ξ

∞∑
k=0

ϑkx
k,

that leads to

(k + 1)(k + 2)D
[ ∞∑
k=0

ϑkx
k
]
− (k + 1)vE

[ ∞∑
k=0

ϑkx
k
]

+ J
[ ∞∑
k=0

ϑkx
k
]

= ξ

∞∑
k=0

ϑkx
k.
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We thus have
Jk(ψ) = ξψ, k = 0, 1, 2, 3, . . . , (21)

with Jk = J + (k + 2)(k + 1)D − (k + 1)vE, u = (k+2)(k+1)
2 σ2 and t =

(k + 1)v + (k+2)(k+1)
2 σ2

B, for k = 0, 1, 2, 3, . . .. It follows from this that the
eigenvalues of L are those of Jk, k = 0, 1, 2, 3, . . ..

For the stability of the trivial equilibrium E0 = (0, 0, 0, 0), we have the
following result:

Theorem 4. The trivial equilibrium E0 = (0, 0, 0, 0) of the model (10) is
locally asymptotically stable when max(−µ+ σ2,−γ′ + σ2

B) < 0.

Proof. At point E0, it is easy to show that the spectrum of Jk is given by
Sp(Jk) = {−µ+ u,−r′ − µ+ u,−r1 − µ+ u,−γ′ + t}.

For the stability of the nontrivial equilibrium E1 = (S∗, I∗, R∗, B∗) of
the model (10), let us set

R0 =
[ (−r′ − µ+ σ2)(−µ− β B∗

K+B∗ + σ2)(−r1 − µ+ σ2)(γ′ + σ2
B − v)

eβS∗K(−r1−µ+σ2)(−µ+σ2)
(K+B∗)2 + r′r1β

B∗

K+B∗ (γ′ − v + σ2
B)

]−1
. (22)

We have the following result:

Theorem 5. The nontrivial equilibrium E1 = (S∗, I∗, R∗, B∗) of the model
(10) is unstable if R0 > 1 and locally asymptotically stable if R0 < 1.

Proof. The characteristic polynomial of Jk at point E1 is given by:

Pk(X) = X4 + a1(k)X3 + a2(k)X2 + a3X + a4(k)

with

a1(k) = r′ + 3µ+ 3u+ β
B∗

K +B∗
+ r1 + γ′ + t,

a2(k) = (r′ + µ+ u)(µ+ β
B∗

K +B∗
+ u) + (r1 + µ+ u)(γ′ + t)

+(r′ + 2µ+ 2u+ β
B∗

K +B∗
)(r1 + µ+ u+ γ′ + t),

a3(k) = (r′ + µ+ u)(µ+ β
B∗

K +B∗
+ u)(r1 + µ+ u+ γ′ + t)

+(r1 + µ+ u)(γ′ + t)(r + 2µ+ 2u+ β
B∗

K +B∗
)

−eβ(r1 + 2µ+ 2u)β
KS∗

K +B∗
− r′r1β

B∗

K +B∗
,

a4(k) = (r′ + µ+ u)(µ+ β
B∗

K +B∗
+ u)(r1 + µ+ u)(γ′ + t)

−e(µ+ u)(r1 + µ+ u)β
KS∗

(K +B∗)2
− r′r1(γ′ + t)β

B∗

K +B∗
.
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Thus, the necessary and sufficient conditions of stability are given according
to Routh - Hurwitz criteria by: a1(k) > 0, a1(k)a2(k)−a3(k) > 0, a4(k) > 0
and a1(k)a2(k)a3(k) − (a1(k))2a3(k) − (a3(k))2 + a3(k)a4(k) > 0. Clearly,
a4(0) < 0 leads to R0 > 1, what induces that Pk admits at least one root
having a positive real part. Thus, we deduce that E1 is unstable.

When R0 < 1, it is obvious that a4(0) > 0 and by induction, a4(k) > 0
∀k ∈ N. Moreover, clearly, a1(k) > 0, a2(k) > 0 ,a2(k)a3(k)−a1(k)a3(k) >
0, a1(k)a2(k)−a3(k) > 0 and a1(k)(a2(k)a3(k)−a1(k)a3(k))−a3(k)(a3(k)−
a4(k)) > 0.

4.3 Analysis of Turing’s instability

In this subsection, we look into the effect of the migration on the positive
equilibrium of the model (10) in the absence of migration (local model).
In actual fact, the Turing’s theory (see [24]) shows that the interaction
between a chemical reaction ( which here represents the local model) and
a diffusion (migration here) can allow that a stable equilibrium of the local
model becomes unstable for the reaction-diffusion model (here, the model
with migration) and thus lead to the spontaneous formation of a stationary
spatial and periodic structure. This type of instability is known under the
name of Turing’s instability or the diffusion driven instability.

In the absence of migration, the model (10) becomes:

dS
dt = −µS − β(t) B

K+BS + r1R,

dI
dt = β(t) B

K+BS − (r′ + µ)I,

dR
dt = rI − (r1 + µ)R,

dB
dt = eI − γ′B,

S(t) = I(t) = R(t) = B(t) = 0 on ∂Ω ∀t ≥ 0.

(23)

The model (23) has two equilibria: A trivial equilibrium E0 = (0, 0, 0, 0)
and a positive nontrivial equilibrium E1 = (S∗, I∗, R∗, B∗) with

I∗ =
Kγ′(r′ + µ)

e(βA− r′ − µ)
, S∗ = AI∗, R∗ =

r

r1 + µ
I∗ and B∗ =

e

γ′
I∗,

where

A =
r′r1(Kγ′ + e)

(r1 + µ)[eβ + µ(Kγ′ + e)]
.

It is easy to establish that E0 is locally asymptotically stable on ∂Ω. The
equilibrium E1 of the model (23) (see [11] for the methodology) is locally
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asymptotically stable inside Ω if Rc > 1 and unstable if Rc < 1 with

Rc =
γ′(r′ + µ)

βeS∗K
(K +B∗)2.

The main result of this subsection is the following:

Theorem 6. If Rc > 1 and R0 > 1 where R0 is given by (22), then the
model (10) presents a Turing instability.

Proof. It is obvious that if Rc > 1 and R0 > 1, then the stable positive
nontrivial equilibrium E1 of the model (23) becomes unstable for the model
(10).

5 Optimal control problem

In this section, we proceed at the formulation and the study of solutions of
the optimal control problem in order to eradicate the epidemic.

5.1 Optimal control problem formulation

A successful mitigation scheme is one which reduces cholera related deaths
with minimal cost. A control scheme is assumed to be optimal if it mini-
mizes the objective functional:

J(Φ, θ) =

∫ T

0

(
L(t,Φ(t), θ(t))

)
dt+ l(Φ(0),Φ(T )), (24)

with L : [0, T [×X × (L∞(Ω))3 →] −∞,+∞] and l : X ×X →] −∞,+∞]
functions given by

L(t,Φ(t), θ(t)) = A(1− θ2(t))µ1I(., t) +B1θ1(t)I(., t) + C1θ
2
1(t) +B2θ2(t)

+C2θ
2
2(t) +B3θ3(t) + C3θ

2
3(t), (25)

l(h1, h2) =

{
0, if h1 = Φ(0) and h2 = Φ(T ) ;
+∞, elsewhere,

(26)

where A,B1, B2, B3, C1, C2, C3 are balancing coefficients transforming the
integral into dollars expended over a finite time period T . In the expres-
sion of L(t,Φ(t), θ(t)), the first sum multiplied by A represents the cost
of the deceases due at cholera and the another expressions are the costs
of implementation of the three control strategies (see [22]). The quadratic
expressions of control indicate the nonlinear costs which can arise to a



Mathematical modeling of the migration’s effect 179

high level of treatment. The optimal control problem is then formulated as
follows.

Problem (P) Find a pair (Φ∗, θ∗) ∈ C([0, T [, X)×Γ which minimizes the
functional (24) in the set of all the functions (Φ, θ) ∈ C([0, T [, X)×Γ which
satisfy (11).

5.2 Existence of an optimal pair

Here, we study the existence of an optimal pair of the problem (P). Let us
consider firstly the following lemma :

Lemma 3. (i) Operator B : Γ → C(0, T,X) is linear continuous and
”causal”.
(ii) The functions l and L(t, ., .), 0 ≤ t ≤ T are lower semi-continuous and
convex on X ×X (resp. X × (L∞(Ω))3) with values in

(
−∞,+∞

)
.

(iii) For every strongly measurable function Φ : [0, T [→ X and θ :
[
0, T

[
→

(L∞(Ω))3), the Hamiltonian function associated with L, H(.,Φ(.), 0) is
Lebesgue measurable function.
(iv) L(t,Φ, θ) ≥ f(‖ θ ‖L1(0,T,(L∞(Ω))3))− g(‖ Φ ‖C(0,T,X))

∀(t,Φ, θ) ∈
[
0, T

[
×X × L∞(Ω))3 where:

(a) f is a convex nonnegative function on
[
0, T

[
such that f(0) = 0;

(b) g is a nonnegative nondecreasing function on
[
0, T

[
which is bounded

on bounded sets;
(c) f(τ)

τ → +∞ as τ → +∞;
(d) T [f( τT )− g(K + cλ)])− ηcλ→ +∞ as λ→ +∞, with

K =‖ T Φ ‖C(0,T,X) + ‖ m ‖C(0,T,X),

and

c =‖ Γ ‖L(L1(0,T,(L∞(Ω))3),C(0,T,X)) .

Proof. (i) It is obvious that B is linear and continuous. In addition, by
posing

(Et(Bθ))(s) =

{
(Bθ)(s), ifs ≤ t;
0, if s > t,

it is easy to verify that

Et(Bθ) = Et(Bθ′),

for all θ, θ′ ∈ L1(0, T,Γ) such that Etθ = Etθ′, from which it results that
B is causal.
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(ii) It is obvious that the functions l and L(t, ., .), 0 ≤ t ≤ T are
respectively continuous on X ×X and X × (L∞(Ω))3. For the convexity,
let us consider the epigraphs of l and L(t, ., .) given by:

epil = {(h1, h2, α), (h1, h2) ∈ X ×X,α ∈ R, l(h1, h2) ≤ α},
epiL = {(Φ1, θ1, α), (Φ1, θ1) ∈ X × (L∞(Ω))3, α ∈ R, L(t,Φ1, θ1) ≤ α},

Thus (see [4]), it suffices to show that epil and epiL are convex sets of X×
X×R andX×(L∞(Ω))3×R, respectively. The relation (26) allows to obtain
epil = {(Φ(0),Φ(T ), α)}, thus l is convex. Let (Φ1, θ1, α), (Φ2, θ2, α

′) ∈
epiL and λ ∈ [0, 1]. A simple calculation allows to obtain

L(t, λΦ1 + (1− λ)Φ2, λθ1 + (1− λ)θ2) ≤ λL(t,Φ1, θ1) + (1− λ)L(t,Φ2, θ2) +M

≤ λα+ (1− λ)α′ +M,

with

M = −λC1θ
2
22 + 2C1λθ11θ21 − λC2θ

2
22 +C2λθ12θ22 − λC3θ

2
23 + 2C3λθ13θ23,

where θi = (θi1, θi2, θi3)T , i = 1, 2. Thus,

λ(Φ1, θ1, α) + (1− λ)(Φ2, θ2, α
′) ∈ epiL,

i.e., L(t, ., .) is convex.
(iii) It suffices to take account of the definition of the associated hamil-

tonian of the system (11) and (24) (see [4]).
(iv) We have

L(t,Φ, θ) ≥ min(C1, C2, C3) ‖ θ ‖L1(0,T,(L∞(Ω))3) −Aµ1 ‖ Φ ‖C(0,T,X),

for all (t,Φ, θ) ∈ [0, T [×X × L∞(Ω))3. It suffices thus to take g(t) = Aµ1t
and f(t) = min(C1, C2, C3)t2.

The main result of this subsection is the following:

Theorem 7. Problem (P) admits at least one solution.

Proof. This comes from Lemma 3, which taking account of Popescu 1979
(see [20] theorem 5.1), gives of the sufficient conditions of the existence of
a solution of the problem (P).

6 Real-world application

In this section, we proceed to a real-world application in order to confirm
our theoretical results. Table 1 gives the new cases of the cholera registered
per region at Cameroon from January 3rd to October 2nd, 2011.
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Table 1: New cases of cholera per region. Source : Department of disease
control, Ministry of public health, Cameroon.

Region Adamawa(1) Centre (2) East (3) Far North (4) Littoral (5)
Month New cases Nc Nc Nc Nc

1 0 0 0 0 0
2 0 0 0 0 0
3 3 525 0 0 150
4 30 5 0 22 110
5 2 488 0 180 20
6 0 300 0 310 4
7 53 100 0 313 80
8 3 101 0 17 157
9 27 100 8 440 420
10 1 165 44 426 900

Region North (6) Northwest(7) West (8) South (9) Southwest (10)
Month New cases Nc Nc Nc Nc

1 5 0 0 0 500
2 15 4 0 25 635
3 10 0 11 7 909
4 0 0 100 25 973
5 6 105 492 25 114
6 40 3 500 0 1117
7 150 30 140 0 101
8 58 0 30 0 1759
9 775 0 27 65 1093
10 150 0 0 65 346

6.1 Numerical simulations of the state variables of the model

In this subsection, we conduct the numerical simulations of the state vari-
ables of the model (10) in the presence and in the absence of the control
mechanisms, this, in taking account of the results obtained in Section 4.
The new cases of the cholera per region of Table 1 correspond at term

f(x, t) = β(x, t)
B(x, t)

K +B(x, t)
S(x, t),

of the second equation of the model (10). The parameters values are
given by: µ = 1/(51.5 × 12) (National Institute of Statistics value), γ1 =
1.8/month (see [22]), γ2 = 3.6/month (see [22], K = 106 (see [14]),
r1 = 1/30 (see [14]), γ = 1month−1 (see [14]), e = 15 (see [7]), σ = 0.001,
σB = 0.01, v = 2km/day, µ1 = 0.02/month (see [22]), θ1 = 0.6 (see [22]),
θ2 = 0.9 (see [1]), θ3 = 0.01 (see [22]). The initial and boundaries conditions
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are given by:

S(x, 0) = 1000000e−
√
2µ
σ
x,

I(x, 0) = 0,

R(x, 0) = e−
√

2(r1+µ)

σ
x,

B(x, 0) = e
v−
√
v2+2γσ2

B

σ2
B

x
+ e

v+

√
v2+2γσ2

B

σ2
B

x
,

and S(x, t) = I(x, t) = R(x, t) = B(x, t) = 0 for all (x, t) ∈ ∂Ω. It is
easy starting from the parameters values to establish that the endemic
equilibrium of the local model (23) is given by

E1 = (150450; 141.2981; 7276.9; 2119.5)T .

Thus, (22) and the expression of Rc allow to obtain: Rc = 1.0021 > 1
and R0 = 0.6490 < 1. Consequently (see Theorem 6), there is not a
Turing instability. This situation is confirmed by Figures 1 which presents
the evolution of the state variables in presence ((a) − (d)) and in absence
((e)−(h)) of the control mechanisms. Figure 1 also confirms our theoretical
result on the stability of the trivial equilibrium at the boundary ∂Ω of Ω,
like the existence of a nontrivial equilibrium, which here is unstable inside
Ω. We can remark according to Figure 1(f), that, in absence of the control
mechanisms, the infected individuals are present in all the regions, whereas
in presence of the control mechanisms, Figures 1(b) and 1(c) show that the
densities of the infected and of the recovery individuals are less than 1, this
proves the eradication of the cholera inside the population and confirms the
efficiency of the control strategies adopted.

7 Conclusion

In this paper, we have propounded a mathematical scheme permitting to
model under clear assumptions, the dispersion of the individuals in a dis-
crete or a continuous heterogeneous space. We have applied afterwards the
obtained result (in the continuous case) to the study of the optimal con-
trol problem of the cholera epidemic in a heterogeneous environment with
migrations. The regarded environment here is a space Ω with a boundary
∂Ω such that the individuals can move only inside Ω. In the mathemati-
cal analysis of the obtained diffusive epidemiological model, after to have
showed that the solution of the proposed model is observable in the real-
ity, we have established the existence of two equilibria belonging to a same
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Figure 1: Dynamic of the Susceptible, Infected, Recovery and Bacteria per
region and per month in presence ((a)-(d)) and in absence ((e)-(h)) of the
control mechanisms.
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continuum: a trivial equilibrium at boundary ∂Ω and a nontrivial equilib-
rium inside Ω. We have determined a threshold parameter R0 which allows
to a certain extent to show how the implementation of the controls would
help alleviate the epidemic problem inside Ω. We have also determined a
threshold parameter Rc, which joints to R0, permits us to analyze Turing’s
instability. The mathematical optimal control problem has been formu-
lated in order to reduce the cholera related deaths with a minimal cost,
and, sufficient conditions of the existence of a solution of this problem have
been given. We have applied our model to a real-world problem, by specif-
ically applying it to the cholera epidemic that took place in Cameroon in
2011. In the real-world problem treated, we have showed that the proposed
model is effective to control and to prevent a real epidemic, and, we have
also justified its validity.
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