تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,112 |
تعداد مشاهده مقاله | 10,246,005 |
تعداد دریافت فایل اصل مقاله | 6,899,757 |
آیا کیفیت بذر بر آستانههای گرمایی جوانهزنی تأثیرگذار است؟ مطالعه موردی: بذر خودمصرفی گندم (Triticum aestivum L.) رقم چمران | ||
علوم و تحقیقات بذر ایران | ||
مقاله 10، دوره 5، شماره 3، مهر 1397، صفحه 131-142 اصل مقاله (1.34 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/jms.2018.2940 | ||
نویسندگان | ||
ابوالفضل درخشان1؛ سید امیر موسوی* 2 | ||
1دانشجو دکتری زراعت دانشگاه کشاورزی و منابع طبیعی رامین خوزستان | ||
2گروه مهندسی تولید و زنتیک گیاهی، دانشکده کشاورزی، دانشگاه کشاورزی و منابع طبیعی رامین خوزستان | ||
چکیده | ||
مدلهای مبتنی بر مفهوم زمانگرمایی ابزار مفیدی برای توصیف جوانهزنی در رابطه با زمان و دما هستند. این مطالعه با هدف تعیین اثر کیفیت بذر بر آستانههای گرمایی جوانهزنی تودههای بذری گندم از مشاء اولیه رقم چمران انجام شد. برای این منظور، جوانهزنی 16 توده بذری با استفاده از مدلهای زمانگرمایی مبتنی بر توزیعهای نرمال و لوگنرمال برحسب دو رویکرد متفاوت ارزیابی شد. در رویکرد نخست، دمای پایه (Tb) کل جمعیت بذری ثابت فرض شد و تنوع زمان جوانهزنی میان بذرها به تنوع زمانگرمایی (θT) مورد نیاز برای جوانهزنی هر کسر معین نسبت داده شد. در رویکرد دوم، θT مورد نیاز برای جوانهزنی کل جمعیت ثابت فرض شد و تنوع زمان جوانهزنی میان بذرها به تنوع Tb آنها نسبت داده شد. شاخصهای ارزیابی نکویی برازش نشان داد که دقت پیشبینی مدلهای زمانگرمایی در رویکرد نخست بیشتر از رویکرد دوم بود. برحسب رویکرد نخست، توزیع لوگنرمال در مقایسه با توزیع نرمال برازش بهتر و دقیقتری به دورههای زمانی جوانهزنی تودههای بذری گندم در پاسخ به دما ارائه داد. کیفیت بذر تودههای گندم بهطور معنیداری حداکثر جوانهزنی جمعیت بذری، آستانه تحمل به سرما، سرعت و یکنواختی جوانهزنی آنها را تحت تأثیر قرار داد. بر اساس پیشبینیهای مدل زمانگرمایی لوگنرمال، برآورد حداکثر جوانهزنی، Tb، زمانگرمایی مورد نیاز برای شروع جوانهزنی و اندازه پراکنش θT تودههای بذری به ترتیب بین 73 تا 99 درصد، 26/0 تا 68/3 درجه سانتیگراد، 32/250 تا 04/590 درجه سانتیگراد ساعت و 74/3 تا 49/6 درجه سانتیگراد ساعت متغیر بود. | ||
کلیدواژهها | ||
توزیع نرمال؛ توزیع لوگنرمال؛ دمای پایه؛ مدل زمانگرمایی | ||
مراجع | ||
Alvarado, V. & Bradford, K.J. 2002. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell & Environment. 25(8): 1061-1069. (Journal)
Baskin, C.C. & Baskin, J.M. 1998. Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego, CA: Academic Press.
Batlla, D. & Benech-Arnold, R.L. 2003. A quantitative analysis of dormancy loss dynamics in Polygonum aviculare L. seeds: Development of a thermal time model based on changes in seed population thermal parameters. Seed Science Research. 13(1):55–68.
Bradford, K.J. (2002). Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science. 50(2): 248-260. (Journal)
Burnham, K.P. & Anderson, D.R. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York, USA.
Chantre, G.R., Batlla, D., Sabbatini, M.R. & Orioli, G. 2009. Germination parameterization and development of an after-ripening thermal-time model for primary dormancy release of Lithospermum arvense seeds. Annals of Botany. 103(8): 1291-1301. (Journal)
Covell, S., Ellis, R.H., Roberts, E.H. & Summerfield, R.J. 1986.The influence of temperature on seed germination rate in grain legumes. I. A comparison of chickpea, lentil, soybean, and cowpea at constant temperatures. Journal of Experimental Botany. 37(5): 705-715. (Journal)
Derakhshan, A., Bakhshandeh, A.M., Siadat, S.A., Moradi-Telavat, M.R. & Andarzian, B. (2017). Quantification of thermoinhibition response of seed germination in different oilseed rape cultivars. Iranian Journal of environmental stresses in crop sciences. InPublishing.
Ellis, R.H. & Butcher, P.D. 1988. The effects of priming and ‘natural’ differences in quality amongst onion seed lots on the response of the rate of germination to temperature and the identification of the characteristics under genotypic control. Journal of Experimental Botany. 39(7): 935-950. (Journal)
Ellis, R.H., Covell, S., Roberts, E.H. & Summerfield, R.J. 1986. The influence of temperature on seed germination rate in grain legumes. II. Intraspecific variation in chickpea (Cicer arietinum L.) at constant temperatures. Journal of Experimental Botany. 37(10): 1503-1515. (Journal)
Forcella, F., Benech-Arnold, R.L., Sanchez, R. & Ghersa, C.M. 2000. Modelling seedling emergence. Field Crops Research. 67(2): 123-139. (Journal)
Garcia-Huidobro, J., Monteith, J.L. & Squire, G.R. (1982). Time, temperature and germination of pearl millet (Pennisetum typhoides S. & H.). I. Constant temperature. Journal of Experimental Botany. 33(2): 288-296. (Journal)
Grundy, A.C., Phelps, K., Reader, R.J. & Burston, S. 2000. Modelling the germination of Stellaria media using the concept of hydrothermal time. New Phytologist. 148(3):433–444. (Journal)
Hardegree, S.P. 2006. Predicting germination response to temperature. III. Model validation under field-variable temperature conditions. Annals of Botany. 98(4): 827-834. (Journal)
Jamali, M. 2013. Priming effects on seed germination ofwheat with different levels of seed vigour underenvironmental stresses. M.Sc. Thesis. Gorgan University of Agricultural Sciences and Natural Resources, Iran. (Thesis)
Khaliliaqdam, N., Soltani, A., Latifi, N & Ghaderi-Far, F. 2012. Effect of environmental conditions on soybean seed vigor in different area of Iran. Electronic Journal of Crop Production. 5(4): 87-104. (In Persian) (Journal)
Mesgaran, M.B., Rahimian Mashhadi, H.R., Alizadeh, H., Ohadi, S. & Zare, A. 2014. Modeling the germination responses of wild barley (Hordeum spontaneum) and littleseed cannary grass (Phalaris minor) to temperature. Iranian Journal of Weed Science. 9(2): 105-118. (In Persian) (Journal)
Rabbani Mohamadieh, R. 2013. Seed vigor tests for predicting seedling emergence of wheat seed lots in field. M.Sc. Thesis. Gorgan University of Agricultural Sciences and Natural Resources, Iran. (Thesis)
Sadeghi, H., Shaeidaei, S., Gholami, H. & Yari, L. 2014. Effect of packaging materials, storage duration and conditions on seed germination traits in laboratory and field emergence of soybean (Glycine max L.) seedling. Iranian Journal of Seed Science and Research. 1(1): 67-82. (In Persian) (Journal)
Seefeldt, S.S., Kidwell, K.K. & Waller, J.E. 2002. Base growth temperatures, germination rates and growth response of contemporary spring wheat (Triticum aestivum L.) cultivars from the US Pacific Northwest. Field Crops Research. 75(1): 47-52. (Journal) Wang, R., Bai, Y. & Tanino, K. 2004. Effect of seed size and sub-zero imbibitions temperature on the thermal time model of winterfat (Eurotia lanata (Pursh) Moq.). Environmental and ExperimentalBotany. 51(3): 183-197. (Journal) Zeinali, E., Soltani, A., Galeshi, S. & Sadati, S.J. 2010. Cardinal temperatures, response to temperature and range of thermal tolerance for seed germination in wheat (Triticum aestivum L.) cultivars. Electronic Journal of Crop Production. 3(3): 23-42. (In Persian) (Journal) | ||
آمار تعداد مشاهده مقاله: 911 تعداد دریافت فایل اصل مقاله: 591 |