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Abstract. A mathematical model for two-dimensional pulsatile blood flow
through a constriction vessels under magnetic field and body acceleration
is numerically simulated. The artery considered as an elastic cylindrical
tube and the geometry of the constriction assumed to time-dependent with
an aim to provide resemblance to the in-vivo situations. The blood flow
considered nonlinear, incompressible and fully developed. The nonlinear
momentum and the continuity equations under suitable initial and bound-
ary conditions can be numerically solved using the Crank-Nicolson scheme.
The blood flow specifications such as the velocity profile, the volumetric
flow rate and the resistance to flow are obtained and effects of the mag-
netic field and the severity of the stenosis under these flow specifications
are discussed. Besides the blood flow characteristics through elastic artery
have been compared with the rigid ones.
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1 Introduction

The main reason of death in many countries is Cardiovascular illness [20].
Muliple plaques formation and accumulation of fatty materials such as
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cholesterol and triglyceride in the blood vessel lumen can cause cardio-
vascular diseases. Plaques deposits lead the internal surface of the blood
arteries to become irregular and the lumen to become narrow, and may
cause a severe reduction in blood flow. If the blood clot develops in coro-
nary arteries, the risk of myocardial infarct would be increased and leads
to stroke in the vessels supplying blood to brain.

Blood is a suspension of erythrocytes, white blood cellules, leukocytes,
and platelets in a fluid called plasma [16, 25, 33]. Erythrocytes in terms
of the number in ratio of other blood suspended cells are in the majority,
and their properties are dominant for other cells [24]. Ponalagusmy and
Selvi have developed a mathematical model for blood flow through arterial
stenosis with the two-fluid model, consisting of a core region of Casson fluid
and a circumferential layer of the Newtonian fluid. They concluded that
the downstream of the stenotic regions is more important for the diagnosis
of vessel illnesses [23]. Haghighi et al. have studied the two-dimensional,
pulsatile and two-layered flow of blood through a tapered exible artery [5]
and also, in their another research, they solved the governing equations
by using the finite difference method and examined the effect of different
factors such as the artery tapering, the presence of stenosis and the wall
motion on blood flow specifications [9].

The flow of blood under the influence of body acceleration is signifi-
cantly affected, while driving a vehicle or flying in an aircraft, because the
blood flow in vibration environment, and due to which there may occur
serious health problems such as loss of vision, headache, increase of pulse
rate and hemorrhage in face, neck and brain. Sankar and Lee have stud-
ied the pulsatile flow of blood among an arterial stenosis with considering
blood as a core region of Casson fluid and a peripheral layer of Newtonian
fluid under the body acceleration [27]. Also Shit and Roy examined the
pulsatile flow of blood among a stenosed vessel under the periodic body
acceleration and then analyzed the heat transfer phenomena by constant
blood viscosity [29].

Marques et al. have investigated the pulsatile blood flow in a human
vessel that the artery is supposed as being a straight wall tube, and the
blood flow is considered to be incompressible and axisymmetric. As well
as, the result of pulsatile flow is considered into account with imposing the
velocity of the cardiac cycle [14]. Chakravarty and Mandal take blood flow
as non-linear and incompressible through stenosed artery and investigated
the blood flow characteristics. They noted that assumption of rigid vessels
is not acceptable, so the vessels are assumed to be elastic and the geometry
of the stenosis considered as time-dependent [3].



A mathematical modeling of pulsatile blood flow 151

The magnetic field has an enormous application as controlling blood
flow during surgery. In this field, Misra et al. have studied different kids of
flow behavior of blood in arteries by treating non Newtonian and Newtonian
fluid under the magnetic field [17–19]. Mekheimer et al. have investigated
a mathematical model for flow of blood among an elastic vessel having
many stenosis in the presence of magnetic field and also they noted that
the mechanical attributes of the vascular wall together with the flow of
blood specifications [15]. Shit has developed a computational model for
flow of blood under the magnetic field that in this model he reported that
no clinical disorders are seen for human health when exposed to a magnetic
field of strength up to 9T. [30]. Allshare et al. have examined the steady
flow of blood simulations in an axisymmetric vessel stenosis with treating
non Newtonian fluid model under the magnetic field. They analyzed the
shear thinning behavior of blood [1].

In this paper, the reason to pulsatile pressure gradient arising from
systematic functioning of the heart, the blood flow has been assumed un-
steady. Haghighi and Asl, solved the pulsatile and two-dimensional blood
flow among a tapered artery with overlapping stenosis by using a finite
difference method and showed that affects the blood of flow characteris-
tics [6]. The aim of this investigation is assumed the blood flow under the
magnetic field and body acceleration. The governing equations which are
nondimensional and their boundary and initial conditions are prescribed
then solved using finite difference Crank-Nicolson method. The aim of this
research is analyze the effect of several factors such as the magnetic field,
the presence of stenosis and heat transfer and body acceleration on flow of
blood characteristics.

2 Mathematical formulation and analysis

2.1 The geometry of the stenosis

Let us consider a two-dimensional, laminar, unsteady, fully developed and
axially symmetric blood flow through a stenosed artery. Let (r, θ, z) be the
coordinates of a material point in the cylindrical polar coordinates system
in which z is taken along the axial direction respectively and r, θ are taken
along the radial and circumferential directions. The geometry of the time
variant stenosis is constructed mathematically as: (see Figure 1) [7,26,32].

R(z, t) =

{
1−A[ln−10 (z − d)− (z − d)n]a1(t), d ≤ z ≤ d+ l0,

a1(t), otherwise,
(1)
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where A = δ
R0Ln

0

nn(n−1)

(n−1) , R(z, t) is the radius of the arterial segment in

the constricted region, R0 is the radius of the nonstenotic artery, L is
the finite length of the arterial segment, l0 is the length of the stenosis,
d is the upstream length of the artery and τm is the critical height of the
stenosis. n ≥ 2 is the parameter representing the asymmetry of the stenosis,
where n = 2 represents that the stenosis is symmetric. The time variant
parameter a1(t) is given by a1(t) = 1+kr cos(wt+ϕ), in which kr represents
the amplitude parameter and ϕ is the phase angle.

Figure 1: Geometry of the stenosed artery.

2.2 Governing equations

The Navier-Stokes equations for the blood flow in the cylindrical coor-
dinates system (r, θ, z) may be written in non-dimensional forms as fol-
lows [4, 6, 11,12,17,31]:
Equation of continuity:

∂u

∂z
+
∂v

∂r
+
v

r
= 0. (2)

Equation of axial momentum:

∂u

∂t
+v

∂u

∂r
+u

∂u

∂z
= −∂p

∂z
+

1

α2
(
∂2u

∂r2
+

1

r

∂u

∂r
+
∂2u

∂z2
)− 1

α2
(h)2u+

1

α2
G(t). (3)

Equation of radial momentum:

∂v

∂t
+ v

∂v

∂r
+ u

∂v

∂z
= −∂p

∂r
+

1

α2
(
∂2v

∂r2
+

1

r

∂v

∂r
+
∂2v

∂z2
− v

r2
).

(4)
The nondimensional variables that are used in Eqs. (2)-(4) are as:

u =
u∗

U
, v =

v∗

U
, r =

r∗

R0
, l0 =

l∗0
R0
, z =

z∗

R0
, t =

t∗U

R0
,
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d =
d∗

R0
, p =

p∗

ρU2
, Re =

ρUR0

µ
.

which u and v are the axial and the radial dimensionless velocity compo-
nents, respectively, p is the pressure, ρ is the density and µ is the viscosity.

In the above equations, the other dimensionless variables are taken as
follows [31]:

α2 =
UR0

ν
, h = B0R0

√
σ

ρν
,

where α2 is the Womersley parameter and h is the Hartmann number.
The dimensionless pressure gradient ∂p

∂z appearing in Eqs. (2)-(4) is

given by: −∂p
∂z = A0 + A1 cosωt, t > 0 [8] where A0 is the constant

amplitude of the pressure gradient, A1 is the amplitude of the pulsatile
component giving rise to the systolic and diastolic pressures and w = 2πfp,

fp is the pulse frequency. Using the non-dimensional quantities a0 =
R2

0a
∗
0

νU
and b = wb

w the body acceleration expression defined in the following form
[31]:

G(t) = a0 cos(bt+ ϕg). (5)

The initial and boundary conditions are taken as [11]:

r = 0 : v(r, z, t) = 0,
∂u(r, z, t)

∂r
= 0, (6)

r = R(z) : v(r, z, t) =
∂R

∂t
, u(r, z, t) = 0, (7)

v(r, z, 0) = u(r, z, 0) = 0. (8)

2.3 The radial coordinate transformation

The radial coordinate transformation given by ξ = r
R [2,4,11,13,21,22,28],

is introduced to transform stenosed artery to straight artery. Using this
transformation, Eqs. (2)-(4) and prescribed boundary conditions take the
following forms:

∂u

∂t
= −∂p

∂z
+

1

R

∂u

∂ξ

[
ξ

(
u
∂R

∂z
+
∂R

∂t

)
−v

]
−u∂u

∂z

+
1

α2

[
1

R2

{
1 + (ξ

∂R

∂z
)2
}
∂2u

∂ξ2
+

1

ξR2

{
1 + 2(ξ

∂R

∂z
)2

− ξ2R∂
2R

∂z2

}
∂u

∂ξ
+
∂2u

∂z2

]
− 1

α2
(h)2u+

1

α2
G(t), (9)
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1

R

∂v

∂ξ
+

v

ξR
+
∂u

∂z
− ξ

R

∂R

∂z

∂u

∂ξ
= 0, (10)

ξ = 0 : v(ξ, z, t) = 0,
∂u(ξ, z, t)

∂ξ
= 0, (11)

ξ = 1 : v(ξ, z, t) =
∂R

∂t
, u(ξ, z, t) = 0, (12)

u(ξ, z, 0) = v(ξ, z, 0) = 0. (13)

3 The velocity profile

3.1 The radial velocity component

Multiplying Eq. (10) by ξR and integrating with respect to ξ from 0 to ξ,
one can obtain:

ξv(ξ, z, t) +R

∫ ξ

0
ξ
∂u

∂z
dξ − ∂R

∂z
ξ2u+

∂R

∂z

∫ ξ

0
2ξudξ = 0, (14)

v(ξ, z, t) = −R
ξ

∫ ξ

0
ξ
∂u

∂z
dξ +

∂R

∂z
(ξu− 2

ξ

∫ ξ

0
ξudξ). (15)

For ξ = 1, by using the boundary conditions (12), Eq. (15) becomes:∫ 1

0
ξ
∂u

∂z
dξ = −

∫ 1

0

2

R

∂R

∂z
ξudξ +

∫ 1

0

1

R
(
∂R

∂t
ξf(ξ))dξ, (16)

in which f(ξ) represents an arbitrary function satisfying
∫ ξ
0 ξf(ξ)dξ = 1.

Let f(ξ) = −4(1− ξ2) , then from Eq. (15) one can obtain

∂u

∂z
= − 2

R

∂R

∂z
u− 4

R
(1− ξ2)∂R

∂t
. (17)

By substituting (17) into (15), the radial velocity component may be writ-
ten as follows:

v(ξ, z, t) = ξ[
∂R

∂z
u+

∂R

∂t
(2− ξ2)]. (18)

3.2 The axial velocity component

The Crank-Nicolson scheme for solving Eq. (9) is based upon the cen-
tral difference formula for all spatial derivatives and the forward difference
formula for all time derivative as follows:

∂u

∂ξ
=

1

2
[
(u)ki,j+1 − (u)ki,j−1

2∆ξ
+

(u)k+1
i,j+1 − (u)k+1

i,j−1
2∆ξ

], (19)
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∂u

∂z
=

(u)ki+1,j − (u)ki−1,j
2∆z

, (20)

∂2u

∂ξ2
=

1

2
[
(u)ki,j+1 − 2(u)ki,j + (u)ki,j−1

∆ξ2
+

(u)k+1
i,j+1 − 2(u)k+1

i,j + (u)k+1
i,j−1

∆ξ2
], (21)

∂2u

∂z2
=

(u)ki+1,j − 2(u)ki,j + (u)ki−1,j
∆z2

, (22)

∂u

∂t
=

(u)k+1
i,j − (u)ki,j

∆t
. (23)

In the above we define:

ξj = (j − 1)∆ξ, (j = 1, 2, . . . , N + 1); ξ(N+1) = 1,

zi = (i− 1)∆z, (i = 1, 2, . . . ,M + 1),

tk = (k − 1)∆t, (k = 1, 2, . . .),

where ∆ξ, ∆z are increment in the radial and the axial directions respec-
tively and ∆t is the small time increment.

Using the Crank-Nicolson scheme, the discretized form of Eq. (9) is
given as:

Ai,ju
k+1
i,j−1 +Bi,ju

k+1
i,j + Ci,ju

k+1
i,j+1 = Di,j . (24)

where

Ai,j =
∆t

4Rki ∆ξ
[ξj(ui,j(

∂R

∂z
)ki +(

∂R

∂t
)ki )−vi,j ]−

∆t

2α2(Rki )2∆ξ2
{1+(ξj(

∂R

∂z
)ki )

2}

+
∆t

4α2(Rki )2ξj∆ξ
{1 + 2(ξj(

∂R

∂z
)ki )

2 − ξ2jRki (
∂2R

∂z2
)ki },

Bi,j = 1+
∆t

α2(Rki )2∆ξ2
{1+(ξj(

∂R

∂z
)ki )

2},

Ci,j =
−∆t

4Rki ∆ξ
[ξj(ui,j(

∂R

∂z
)ki +(

∂R

∂t
)ki )−vi,j ]−

∆t

2α2(Rki )2∆ξ2
{1+(ξj(

∂R

∂z
)ki )

2}

− ∆t

2α2(Rki )2ξj∆ξ
{1 + 2(ξj(

∂R

∂z
)ki )

2 − ξ2jRkj (
∂2R

∂z2
)ki },

Di,j = uki,j−∆t(
∂R

∂z
)+

∆t

4Rki ∆ξ
((u)ki,j+1−(u)ki,j−1)[ξj(ui,j(

∂R

∂z
)ki +(

∂R

∂t
)ki )−vi,j ]
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− ∆t

2∆z
(u)ki,j((u)ki+1,j − (u)ki−1,j) +

∆t

2α2(Rki )2∆ξ2
((u)ki,j+1 − 2(u)ki,j

+(u)ki,j−1){1 + (ξj(
∂R

∂z
)ki )

2}+
∆t

4α2(Rki )2ξj∆ξ2
{1 + 2(ξj(

∂R

∂z
)ki )

2

−ξ2jRki (
∂2R

∂z2
)ki }((u)ki,j+1 − (u)ki,j−1) +

∆t

α2∆z2
((u)ki+1,j − 2(u)ki,j

+(u)ki−1,j) + ∆t(
G(t)

α2
)−∆t(

h2

α2
)ui,j .

After computing the velocity distribution, one can compute the volumet-
ric floe rate (Q) and the resistive impedance (Λ) by using the following
formulas:

Qki = 2π(Rki )2
∫ 1

0
ξj(u)ki,jdξj ,

Λki =

∣∣L(∂p∂z )ki ∣∣
Qki

. (25)

4 Numerical Results and Discussion

Numerical computations are performed using the underneath data values
[3, 11,22]:

∆t = 0.001, ∆ξ = 0.0125, ∆z = 0.1, d = 10, α = 4, fp = 1.2,

L = 30, l0 = 14, A0 = 0.1, A1 = 0.2A0, R0 = 1.52,

kr = 0.05, a0 = 1, ϕg =
π

4
, ϕ = 0, b = 1.

In order to validate the proposed results, the obtained axial velocity in
maximum constricted region for τm = 0.2R0 and at the time t = 2 is
compared with the corresponding results obtained by Shaw et al. [28] and
Mandal et al. [13].

Figure 3 illustrates the dimensionless axial velocity of the flowing blood
at a specific location of z = 17 in the stenotic region at t = 2 and n = 2,
τm = 0.2R0 for several amount of Hartmann number. In this figure, the
axial velocity reduces with decreasing the Hartmann number. This occurs
due to the interaction of magnetic field by blood flow, and also a body force
per unit volume, known as the Lorentz force, which has a tendency to slow
down the motion of fluid, and the axial velocity occurs maximum at the
central line of the artery in all four cases.
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Figure 2: Comparison of the dimensionless axial velocity profile.
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Figure 3: Dimensionless axial velocity profile for different values of Hart-
mann number.

Figure 4 shows the dimensionless axial velocity profiles for different
stenosis sizes at h = 2 and n = 2. Figure 4 depicted that the axial velocity
reduces with increasing the size of stenosis, at t = 3. The present figure
also consists the axial velocity at the time t = 2 among an elastic and
rigid artery that the axial velocity in rigid artery is more than the axial
velocity in elastic artery and this displays the importance of the assumption
of elastic nature of blood vessels.

The rate of flow in the stenosed artery for different Hartmann number
at the time t = 2, n = 2 and τm = 0.2R0 is shown in Figure 5. It is seen
that the rate of flow reduces by the increase of the Hartmann number. As
a consequence, under the action of a magnetic field, the volume of blood
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Figure 4: Dimensionless axial velocity profile for different stenosis size.

flow may be adjusted during surgeries.
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Figure 5: Distribution of the rate of flow for different values of Hartmann
number.

Figure 6 shows the comparison results of the rate of flow in the flowing
of blood through an elastic and rigid artery together with the evaluation
of the effect of the stenosis size on the rate of flow. As shown in figure, the
flow rate among the elastic artery at the time t = 2, h = 2 and n = 2 is less
than the flow rate through the rigid artery. Also, the rate of flow reduces
by the increase at the stenosis size. It is seen that the rate of flow behavior
is corresponding to the geometry of the stenosis so that, at the onset of the
stenosis rate of flow dropped and at the stenosis critical height reaches to
its lowermost level.
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Figure 6: Distribution of the rate of flow for different stenosis size.

Figure 7 describes the three dimensional rate of flow along time t and
the axial direction z. It demonstrates that the rate of flow increases with
the decreases of the time.

Figure 7: Surface plot of the volumetric flow rate

Resistive impedance through a stenosed artery for different Hartmann
number at the time t = 2, n = 2 and τm = 0.2R0 is presented in Figure
8. Considering Eq. (25) the rate of flow and the resistive impedance are
inversely relevant, thus unlike the rate of flow, the resistive impedance
increases by the increase in the Hartmann number.

The resistive impedance in the stenosed vessel for several stenosis sizes
at the time t = 2, n = 2 and h = 2 is obvious in Figure 9. It has been
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Figure 8: Distribution of the resistive impedance for different values of
Hartmann number.

observed from this figure that the resistive impedance increases by the
increase in the stenosis size. In addition, comparing the resistive impedance
of elastic and rigid arteries indicates that the impedance of the elastic artery
is more than the rigid artery.
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Figure 9: Distribution of the resistive impedance for different stenosis size.

Figure 10 depicts the three-dimensional resistive impedance along the
axial direction z and time t = 1 for τm = 0.2R0. It is seen that unlike the
rate of flow, the resistive impedance (Λ) increases by the increase of the
time.
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Figure 10: Surface plot of the resistive impedance.

5 Conclusion

The unsteady, laminar and two-dimensional flow of blood through a con-
striction artery is studied. Using Crank-Nicolson sheme, the discretized
form of the governing nonlinear partial differential equations and the influ-
ences of the effective parameters on flow specifications such as the velocity
profile, the rate of flow and the resistive to flow are examined. Our results
demonstrate that the axial velocity and the rate of flow decreases by the
increase in the stenosis size and also, the magnetic field has reduced effect
on the blood fluid velocity. The resistive impedance decreases with the
increase in the Hartmann number, so the action of a magnetic field, the
volume of blood flow can be adjusted during surgeries. The blood flow char-
acteristics among elastic artery is compared with the rigid ones and this
difference between the axial velocity of the rigid and the elastic arteries
shows the importance of the hypothesis of elastic blood vessels.
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