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Abstract. Biorthogonal wavelet-based full-approximation schemes are in-
troduced in this paper for the numerical solution of elasto-hydrodynamic
lubrication line and point contact problems. The proposed methods give
higher accuracy in terms of better convergence with low computational
time, which have been demonstrated through the illustrative problems.

Keywords: CDF wavelets filter coefficients, Full-approximation scheme, Elasto-

hydrodynamic lubrication problems.

AMS Subject Classification: 34K28, 76D07, 97N40.

1 Introduction

In numerical approximations, wavelets are used as efficient tools for the
rapid numerical applications in differential equations. They are widely and
efficiently applied in engineering field for example signal analysis, image
processing, etc. Subsequently, the development of multiresolution analy-
sis and the fast wavelet transforms by Avudainayagam and Vani [2] and
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Bujurke et al. [6–8] led to extensive research in wavelet multigrid schemes
to solve certain differential equations arising in fluid dynamics. Beylkin
et al. [3] observed that wavelet decomposition can be used to approximate
the system of highly sparse matrices. The biorthogonal wavelets exhibit
both higher compression factors and faster execution than corresponding
orthogonal wavelets at comparable accuracy. Thus, they presented a highly
competitive, alternative to Daubechies wavelets and Coiflets for applica-
tions in numerical approximations. For finest results, the wavelets should
have several vanishing moments, good advantages and a support as small as
possible. Faster algorithms are potential if the scaling function also has sev-
eral vanishing moments (except for the zeroth moment, which must be 1).
Orthogonal wavelets are expected to give the best compression ratio, while
biorthogonal wavelets lead to faster decomposition algorithms at slightly
reduced compression.

Non-linearity is essential in the mainstream of physical phenomena and
engineering science processes, resulting in non-linear differential equations.
In fact, these non-linear equations are usually difficult to solve, since no
common procedure works worldwide. Hence each separate equation has
to be studied as a distinct problem. In the particular interest, the non-
linear elliptic type equations are notably fluid flow problems such as, elasto-
hydrodynamic lubrication (EHL) problems. Solutions to this type of prob-
lems are usually required more CPU time with slow convergence.

The EHL is one of the important topics in tribology. It is a form of fluid
film lubrication where the elastic deformation of the contacting surface, un-
der heavy load, plays the dominant role. The most common types of such
bearings are contacting surfaces with low geometric conformity where load
is concentrated in a small region. These are rolling bearings, gears, cams,
synovial joints and others. The deformation of the bearing surface results
in changing the geometry of the lubricanting film which is coupled with the
changes in pressure developed. Salient features of EHL are presented by
Dowson and Higginson [11]. The Mathematical model consists of Reynolds
equation for the pressure distribution, integral equation for surface defor-
mation, force balance equation with applied load, pressure dependent den-
sity and viscosity of the lubricants. These equations are considered together
with appropriate boundary conditions. Usually, many researchers use the
finite difference, finite element, Newton and other methods for the solution
of line as well as point contact EHL problems. The innovative work of Leeds
group (Dowson, Higginson and their associates) and also that of Nether-
land (Lubrecht, Venner and their associates), the work of many dedicated
researchers on EHL has exciting history. The appearance of sharp pressure
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peak, the maximum pressure (the Petruservish spike [15]), near the outlet
and corresponding dip in film thickness is of special interest in EHL due
to its profound impact on lubrication of bearings. The review by Lugt
and Moraes-Espejel [14] presents current activities, listing various meth-
ods used in the analysis, and predicts the useful future developments in
EHL. Once we apply the finite difference/finite element method, the EHL
governing equations are reduced to a system of nonlinear equations and
it is difficult to get good accuracy with low computational time. In fact,
the classical iterative methods (namely, Newton’s method, Jacobi iterative
method, Gauss-Seidel method, etc) are used to solve the problems with
low accuracy in more computational time. The full-approximation scheme
(FAS) is largely applicable in increasing the efficiency of the iterative meth-
ods to solve nonlinear system of algebraic equations. FAS is a well-founded
numerical scheme for solving nonlinear system of equations for approxi-
mating given differential equation. In the history of numerical analysis, the
development of effective iterative solvers for nonlinear systems of algebraic
equations has been a significant research topic in computational engineer-
ing sciences. Nowadays it is recognized that FAS iterative solver is highly
efficient for nonlinear differential equations introduced by Brandt [4]. For
a detailed treatment of FAS see Briggs et al. [5]. An introduction of FAS is
found in Hackbusch and Trottenberg [12], Wesseling [22] and Trottenberg
et al. [19]. Many authors namely, Brandt [4] and Briggs et al. [5], applied
the FAS to some class of differential equations. Lubrecht [13], Venner and
Lubrecht [20], Zargari [23] and others have the significant contributions
in EHL problems. The ill-conditioned matrices are arising in the solution
of system of algebraic equations. The suitable remedy is multigrid scheme
for such matrices namely; standard multigrid, orthogonal wavelet multigrid
and biorthogonal multigrid. But there are large classes of matrices occur-
ring in the modelling of problems of interest, which are not amenable even
to these latest non stationary iterative schemes with classical multigrids
(standard multigrid and orthogonal wavelet multigrid) for their solutions.
But biorthogonal wavelet-based multigrid schemes are found to be effective.
Zargari et al. [23] used decoupled scheme, one of the methods not yield-
ing converging solution for some set of physical parameters. Biorthogonal
wavelet-based multigrid schemes provide some remedy in such challenging
cases. Sweldens [18] highlights effectively the construction of biorthogonal
wavelet filters for the solution of large class of ill-conditioned system.

In this paper, the governing equations of EHL line and point contact
problems are analyzed by discretizing the equations using finite difference
scheme. The resulting nonlinear system of algebraic equations is solved
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using Newton’s method, one of the efficient numerical methods. As the
Jacobian is full in EHL problems, the convergence of the iteration is not
guaranteed and takes large number of iterations to converge. It is essential
to find effective multigrid schemes. In EHL, matrices are dense with non-
smooth diagonal and smooth away from the diagonal. This smoothness of
the matrix transforms into smallness in wavelet transform and facilitates
in the design or construction of efficient multigrid scheme using biorthog-
onal discrete wavelet transform (BDWT). This matrix designed and im-
plemented by Ruch and Fleet [17] for decomposition and reconstruction of
the given signals and images. Using these decomposition and reconstruction
matrices we introduced restriction and prolongation operators, respectively,
in the implementation of biorthogonal wavelet full-approximation schemes
(BWFAS).

This paper is divided as follows; Biorthogonal wavelets are given in
Section 2. Section 3 deals with the method of solution using intergrid
operators. Numerical findings of the test problems are presented in Section
4. Finally, conclusions of the proposed work are discussed in Section 5.

2 Biorthogonal wavelets

Biorthogonality is a concept for which, engineers are not much aware. In
signal processing, especially in wavelets, however, it is a notion which no-
body can ignore. Biorthogonal wavelets are the working horse overdue
many profitable claims like finger print image compression. In various
filtering applications we need filters with symmetrical coefficients to ac-
complish linear phase. None of the orthogonal wavelet systems apart from
Haar are having symmetrical coefficients. But Haar is too insufficient for
countless practical applications. Biorthogonal wavelet system can be pre-
meditated to have this property. That is our motivation for manipulative
such wavelet system. To understand the entire theory more let us primar-
ily consider some biorthogonal filters and construct corresponding scaling
functions and wavelet functions. Spline-based biorthogonal wavelet systems
are more easy to construct [10].

2.1 Biorthogonal wavelets: Cohen-Daubechies-Feauveau
wavelets (CDF)

In [17], Ruch and Fleet build a biorthogonal structure called dual multires-
olution analysis that allows for the construction of symmetric scaling filters
and that can incorporate spline functions. They used instead of scaling
(h) and wavelet (g) filters, the new construction which yields scaling (h̃)
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and wavelet (g̃) filters as decomposition and reconstruction. Instead of a
single scaling function φ(x) and wavelet function ϕ(x), the dual multires-
olution analysis requires a pair of scaling functions φ(x) and φ̃(x) related
by a duality condition similarly, a pair of wavelet functions ϕ(x) and ˜ϕ(x).
To construct the BDWT matrix, the same thing is used in to build the
orthogonal discrete wavelet transform matrix. Due to excellent properties
of biorthogonality and minimum compact support, CDF wavelets can be
useful and convenient, providing guaranty of convergence and accuracy of
the approximation in a wide variety of situations.

In this paper, we use CDF(2, 2) filter coefficients which are; Low pass

filter coefficients: h−1 = −
√
2
8 , h0 =

√
2
4 , h1 = 3

√
2

4 , h2 =
√
2
4 , h3 = −

√
2
8 ;

High pass filter coefficients: g−1 =
√
2
4 , g0 = −

√
2
2 , g1 =

√
2
4 for decompo-

sition matrix. Low pass filter coefficients: h̃−1 = g1, h̃0 = −g0, h̃1 = g−1
High pass filter coefficients: g̃−1 = −h3, g̃0 = h2, g̃1 = −h1, g̃2 = h0,
g̃3 = −h−1 for reconstruction matrix.

2.2 Biorthogonal discrete wavelet transform (BDWT) ma-
trix

The matrix formulation of the biorthogonal discrete wavelet transforms
(BDWT), which play an important role in the biorthogonal wavelet method
for the numerical computations. As we already know about the BDWT
matrix and its applications in the wavelet method and is given in [18] as,
decomposition matrix:

Dw =



h0 h1 h2 h3 0 0 . . . 0 h−1

g0 g1 0 0 . . . . . 0 g−1

0 h−1 h0 h1 h2 h3 0 . . . 0
0 g−1 g0 g1 0 0 . . . . 0
. . . .
. . . .
. . . .
h2 h3 0 0 . . . 0 h−1 h0 h1
0 0 . . . . . 0 g−1 g0 g1


N×N

,

and reconstruction matrix:

Rw =



h̃0 h̃1 0 0 0 0 . . . 0 h̃−1

g̃0 g̃1 g̃2 g̃3 . . . . . 0 g̃−1

0 h̃−1 h̃0 h̃1 0 0 0 . . . 0
0 g̃−1 g̃0 g̃1 g̃2 g̃3 0 . . . 0
. . . .
. . . .
. . . .

0 0 0 0 . . . 0 h̃−1 h̃0 h̃1
g̃2 g̃3 . . . . . 0 g̃−1 g̃0 g̃1


N×N

.

Using these matrices we introduce restriction and prolongation operators,
respectively, based on multigrid restriction and prolongation operators de-
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tailed procedure explained in Section 3.

2.3 New biorthogonal discrete wavelet transform (NBDWT)
matrix

Here, we developed NBDWT matrix similar to BDWT matrix in which by
adding rows and columns consecutively with diagonal element as 1, which
is built as, New decomposition matrix:

NDw =



h0 0 h1 0 h2 0 h3 0 . . . 0 h−1 0
0 1 0 0 . . . . . . 0
g0 0 g1 0 0 . . . 0 0 0 g−1 0
0 0 0 1 0 . . . . . . 0
. . . .
. . . .
. . . .
h2 0 h3 0 . . . 0 h−1 0 h0 0 h1 0
0 0 . . . . . . 0 1 0 0
0 0 . . . . . 0 g−1 0 g0 0 g1 0
0 0 . . . . . . 0 1


N×N

,

and New reconstruction matrix:

NRw =



h̃0 0 h̃1 0 0 0 0 0 . . . 0 h̃−1 0
0 1 0 0 . . . . . . 0
g̃0 0 g̃1 0 g̃2 0 g̃3 0 . . . 0 g̃−1 0
0 0 0 1 0 . . . . . . 0
. . . .
. . . .
. . . .

0 0 . . . 0 0 0 h̃−1 0 h̃0 0 h̃1 0
0 0 . . . . . . 0 1 0 0
g̃2 0 g̃3 0 . . . 0 g̃−1 0 g̃0 0 g̃1 0
0 0 . . . . . . 0 1


N×N

.

Using these matrices we introduced a new restriction and prolongation
operators, respectively, based on multigrid restriction and prolongation op-
erators detailed procedure explained in Section 3.

3 Method of solution

Consider the nonlinear partial differential equation. After discretizing the
partial differential equation through the finite difference method, we get
the system of nonlinear equations of the form,

A(Pij) = fij , (1)
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where i, j = 1, 2, . . . , N , which have N × N equations with N × N un-
knowns. Solve Eq. (1) through Gauss Seidel (GS) iterative method, we
get approximate solution P̃ij . Approximate solution containing some er-
ror, therefore required solution equals to sum of approximate solution and
error. There are many methods to minimize such error to get the accu-
rate solution. Some of them are FAS, BWFAS, NBWFAS, etc. Now we
are discussing the method of solution of the above mentioned methods as
below.

3.1 Biorthogonal wavelet full-approximation scheme (BW-
FAS)

The same procedure is applied as explained in the Briggs et al. [5]. Instead
of using Restriction and Prolongation matrices, we use biorthogonal wavelet
intergrid operators as, Biorthogonal wavelet restriction operator:

Bwr =



h0 h1 h2 h3 0 0 . . . 0 h−1
g0 g1 0 0 . . . . . 0 g−1
0 h−1 h0 h1 h2 h3 0 . . . 0
0 g−1 g0 g1 0 0 . . . . 0
. . . .
. . . .
. . . .
0 . . . h−1 h0 h1 h2 h3 0 0
0 . . . g−1 g0 g1 0 . . 0


N
2
×N

,

and Biorthogonal wavelet prolongation operator:

Bwp =



h̃0 h̃1 0 0 . . . 0 h̃−1
g̃0 g̃1 g̃2 g̃3 0 . . . 0 g̃−1
0 h̃−1 h̃0 h̃1 0 . . . 0 0
0 g̃−1 g̃0 g̃1 g̃2 g̃3 0 . . . 0
. . . .
. . . .
. . . .

0 . . . 0 h̃−1 h̃0 h̃1 0 0 0
0 . . . 0 g̃−1 g̃0 g̃1 g̃2 g̃3 0



T

N
2
×N

.

Step 1: From the system Eq. (1), we get the approximate solution P̃ij for
Pij . Now we find the residual as

rN×N = fN×N −A(P̃ij)N×N . (2)
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Step 2:

rN
2
×N

2
= RestrN

2
×NrNXNProlgN×N

2
.

Similarly,

P̃N
2
X N

2
= RestrN

2
XN P̃NXNProlgNX N

2
,

and

A(P̃N
2
×N

2
+ eN

2
×N

2
)−A(P̃N

2
×N

2
) = rN

2
×N

2
. (3)

Solve Eq. (3) with initial guess ’0’, we get eN
2
×N

2
.

Step 3:

rN
4
×N

4
= RestrN

4
×N

2
rN

2
×N

2
ProlgN

2
×N

4
.

Similarly,

P̃N
4
×N

4
= RestrN

4
×N

2
P̃N

2
×N

2
ProlgN

2
×N

4
,

and

A(P̃N
4
×N

4
+ eN

4
×N

4
)−A(P̃N

4
×N

4
) = rN

4
×N

4
. (4)

Solve Eq. (4) with initial guess ‘0’, we get eN
4
×N

4
.

Step 4: The following procedure is continue up to the coarsest level. We
have

r1X1 = Restr1×2r2×2Prolg2×1.

Similarly,

P̃1×1 = Restr1×2P̃2×2Prolg2×1,

and

A(P̃1×1 + e1×1)−A(P̃1×1) = r1×1. (5)

Solve Eq. (5) we get, e1×1.
Step 5: Interpolate error up to the finer level, i.e.,

e2×2 = Prolg2×1e1×1Restr1×2,

e4×4 = Prolg4×2e2×2Restr2×4,

and so on, we have

eN×N = ProlgN×N
2
eN

2
×N

2
RestrN

2
×N .

Step 6: Correct the solution using error, PN×N = P̃N×N + eN×N . This is
the required solution of the given partial differential equation.
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3.2 New biorthogonal wavelet full-approximation scheme
(NBWFAS)

Here also the same procedure is applied as explained in the above methods.
Instead of using ′Restr′ and ′Prolg′ matrices, we use new biorthogonal
wavelet intergrid operators as,
New biorthogonal wavelet restriction operator:

NBwr =



h0 0 h1 0 h2 0 h3 0 . . . 0 h−1 0
0 1 0 0 . . . . . . 0
g0 0 g1 0 0 . . . 0 0 0 g−1 0
0 0 0 1 0 . . . . . . 0
. . . .
. . . .
. . . .
0 . 0 h−1 0 h0 0 h1 h2 0 h3 0 . 0
0 0 . . . 0 1 0 . . . 0 0
0 . 0 g−1 0 g0 0 g1 0 . . . 0 0
0 0 . . . 0 1 0 . . . 0


N
2 ×N

,

and New reconstruction matrix:

NBwp =



h̃0 0 h̃1 0 . . . 0 h̃−1 0
0 1 0 0 . . . . . . 0
g̃0 0 g̃1 0 g̃2 0 g̃3 0 . . . 0 g̃−1 0
0 0 0 1 0 . . . . . . 0
. . . .
. . . .
. . . .

0 . 0 h̃−1 0 h̃0 0 h̃1 0 . . . 0 0
0 0 . . . 0 1 0 . . . 0 0
0 . 0 g̃−1 0 g̃0 0 g̃1 0 g̃2 g̃3 0 . 0
0 0 . . . 0 1 0 . . . 0


N
2 ×N

.

4 Numerical experiments

Here, we present two test EHL problems, which show the efficiency of
WFAS.
Test Problem 1. Consider the elasto-hydrodynamic lubrication with line
contact problem [1],

∂

∂x
(ε(P )

∂P

∂x
)− ∂

∂x
(ρ(P )H(P )) = 0, (6)
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where ε(P ) = ρ(P )H(P )3

λη(P ) , P (x) and H(x) are unknown pressure and film

thickness, λ a dimensionless speed parameter, λ = 12p0V R2

b2ph
. The boundary

conditions are given as follows.

P (xa) = P (xb) =
∂P (xc)

∂x
= 0. (7)

The domain of the problem is from the inlet xa to the cavitation point
xb. Boundary conditions of zero pressure are imposed at xa and xb. The
nondimensional film thickness equation is given, in integral form as

H(x) = H00 +
x2

2
− 1

π

∫ xb

xa

log |x− x′|P (x′)dx′, (8)

where H00 is the central offset film thickness, the second term defines the
undeformed contact shape and the integral term represents the elastic de-
formation of the contact.

The nondimensional force balance equation, given by∫ xb

xa

P (x)dx =
π

2
, (9)

represents the balance between the applied load and the total internal pres-
sure in the lubricant. The nondimensional form for viscosity η(P ), which
was established by Roelands [16], and density ρ(P ), which was presented
by Dowson and Higginson [11], are

ρ(P ) =
0.59e+ 9 + 1.34Pph

0.59e+ 9 + Pph
, η(P ) = exp(

αp0
z

[−1 + (1 +
Pph
p0

)z]), (10)

where z = 0.6 is the viscosity index, α = 2.165e−8 is the pressure viscosity
index, p0 = 1.98e + 8 is the ambient pressure and ph = 1.84e + 9 is the
maximum Hertzian pressure. The three non-dimensional physical parame-
ters that characterize the line contact problem are velocity (U), load force
(W) and elasticity (G). The equations (6)-(9) are discretized using finite
differences with uniform grid of N points xi, 1 ≤ i ≤ N , and the domain of
interest is [xa, xb] = [−5, 2.5], xc is the cavitation point, to be determined
in the solution process, is an internal point near exit. The discretized form
of Reynolds equation is as

( εi+εi+1

2 )(Pi+1−Pi

Mx )− ( εi+εi−1

2 )(Pi−Pi−1

Mx )

M x
− ρiHi − ρi−1Hi−1

M x
= 0, (11)
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where εi =
ρiH

3
i

ληi
. The film thickness equation approximated at xi on the

regular grid is given by

H(xi) = H00 +
x2i
2
− 1

π

N∑
j=1

KijP (xj), (12)

where

Kij = (xi − xj +
M x

2
)(log|xi − xj +

M x

2
| − 1)

−(xi − xj −
M x

2
)(log|xi − xj −

M x

2
| − 1), (13)

for i = 0, 1, . . . , N and j = 0, 1, . . . , N and the force balance equation in
discrete from is

M x

N−1∑
j=0

(
Pj + Pj+1

2
)− π

2
= 0. (14)

Discretizing Eqs. (6) and (8) a piecewise constant form of P (x) is assumed.
The boundary conditions are

P (xa) = 0,
dP

dx
|x=xc ≥ 0. (15)

Using these boundary conditions we take Eqns. (11), (12) and (14) together
in the form of A(Pij) = fij . To solve this equation as explained in Section
3, we get the numerical solutions presented in Figure 1. Comparison of
residual v/s iterations is given in Figure 2 and residual with iterations for
different N are presented in Table 1. And also, comparison of CPU time
for different schemes is given in Table 3.

Test Problem 2. We consider the dimensionless Reynolds equation of
elasto-hydrodynamic lubrication point contact problem [21],

∂

∂x
(ε
∂P

∂x
) + α2 ∂

∂y
(ε
∂P

∂y
)− ∂

∂x
(ρ′H) = 0, (16)

where ε = ρ′H3

λη′ , P (x, y) and H(x, y) are unknown pressure and film thick-

ness, x is the dimensionless coordinate (x = X
a , a is the half length of the

elliptic contact area in the x direction), y is the dimensionless coordinate
(y = Y

b , b is the half length of the elliptic contact area in the y direction),

λ is the dimensionless speed parameter, λ = 12η0UR2
x

a3phK2
ex

. η′ is dimensionless
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Figure 1: Comparison of numerical solutions for N = 256 of Test Problem
1.
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Figure 2: Comparison of residual v/s iterations for N = 128 of Test Prob-
lem 1.

lubricant viscosity (η′ = η
η0

), ρ′ is dimensionless lubricant density (ρ′ = ρ
ρ0

),
Kex is the elliptic coefficient of the surface in the x direction, α is a ra-
tio parameter (α = a

b ), P is dimensionless pressure (P = p
ph

), ph is the
maximum Hertzian contact stress and H is the dimensionless film thick-
ness (H = hRx

a2
). The boundary conditions of (16) are, Inlet boundary

conditions P (xa, y) = 0, Outlet boundary conditions P (xb, y) = 0 and
∂P (xb,y)

∂x = 0, Side boundary conditions P (x, ya) = P (x,−yb) = 0, where
xa and xb are the dimensionless coordinates of the inlet and outlet, xa is
given but xb should be determined by the outlet boundary conditions and
y = ±1 are the two sides of the contact region. The Film thickness equation
is given, in integral form as

H(x, y) = H00 +
x2 + y2

2
− 2

π2

∫ xb

xa

∫ yb

ya

P (S, T )dSdT√
(x− S)2 + (y − T )2

, (17)

where H00 is the central offset film thickness, the second term defines the
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undeformed contact shape and the integral term represents the elastic de-
formation of the contact.

The dimensionless Force balance equation, given by∫ xb

xa

∫ yb

ya

P (x, y)dxdy =
2π

3
, (18)

which represents the balance between the applied load and the total internal
pressure in the lubricant. The dimensionless form for viscosity η′ , which
was established by Roelands [16], and density ρ′ , which was presented by
Dowson and Higginson [11], are

ρ′ = (1 +
0.6P

1 + 1.7P
), η′ = exp (ln(η0) + 9.67)[−1 + (1 + 5.1e− 9Pph)z],

where z = 0.68 is the viscosity index, η0 = 1.98e+08 is the ambient pressure
and ph = 1.84e+ 09 is the maximum Hertzian pressure, α is the ratio of a
and b. Kex is the relative curvature in the x direction. For the equivalent
curvature of the point contact, Kex = 1. The following discussions are
based on α = 1. The finite difference discretization of Eq. (16) can be
written as{

(
εi,j+εi−1,j

2 )Pi−1,j + (
εi,j+εi+1,j

2 )Pi+1,j − (2εi,j + εi−1,j + εi+1,j)Pij

M x2

}

+α2

{
(
εi,j+εi,j−1

2 )Pi,j−1 + (
εi,j+εi,j+1

2 )Pi,j+1 − (2εi,j + εi,j−1 + εi,j+1)Pij

M y2

}

−
{
ρ′i,jHi,j − ρ′i−1,jHi−1

M x

}
= 0. (19)

The film thickness equation becomes

Hij = H00 +
x2i + yj

2
+

2

π2

N∑
k=1

N∑
l=1

Dkl
ijPkl, (20)

where Dkl
ij is the stiffness coefficient of the elastic deformation

Dkl
ij = (xi − xj +

M x

2
)(log|xi − xj +

M x

2
| − 1)

−(xi − xj −
M x

2
)(log|xi − xj −

M x

2
| − 1)

(yk − yl +
M y

2
)(log|yk − yl +

M y

2
| − 1)

−(yk − yl −
M y

2
)(log|yk − yl −

M y

2
| − 1), (21)
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for i, k = 0, 1, . . . , N and j, l = 0, 1, . . . , N the force balance equation which
as

M x M y
N∑
i=1

N∑
j=1

Pij =
2π

3
, (22)

three non-dimensional physical parameters that characterize the point con-
tact problem are velocity (U), load force (W) and elasticity (G). To solve
equations (19), (20) and (22) as explained in Section 3, we get the numerical
solutions presented in Figure 3 and Figure 4, pressure and film thickness,
respectively. Comparison of residual with iterations for different N is pre-
sented in Table 2. And also, comparison of CPU time for different schemes
is given in Table 3.

Table 1: Comparison of residual with iterations of different schemes of the
Test Problem 1.

Residual (Iterations)

N FDM FAS BWFAS NBWFAS

16 2.11e-01(21) 3.78e-03(10) 5.34e-05(6) 3.98e-05(5)
32 9.91e-01(39) 8.13e-03(30) 5.42e-06(15) 4.01e-06(10)
64 1.83e-02(75) 2.42e-04(59) 9.28e-06(34) 7.15e-07(22)
128 9.26e-02(200) 8.08e-04(135) 4.57e-07(48) 5.79e-07(29)
256 1.40e-03(289) 9.11e-05(198) 5.71e-08(63) 7.42e-08(31)

Table 2: Comparison of residual with iterations of different schemes of the
Test Problem 2.

Residual (Iterations)

N FDM FAS BWFAS NBWFAS

8 7.32e-03(173) 5.92e-04(65) 2.72e-04(47) 9.98e-05(41)
16 2.23e-03(214) 8.85e-05(188) 6.82e-05(91) 4.92e-05(84)
32 7.45e-04(259) 6.89e-05(201) 8.65e-06(112) 5.90e-06(98)
64 6.51e-04(286) 4.84e-05(215) 3.01e-06(154) 1.98e-06(121)
128 4.40e-05(315) 8.13e-06(250) 1.10e-06(159) 8.13e-07(126)
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Figure 3: Pressure numerical solutions comparison for N = 64 of equation
(19).
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Figure 4: Film thickness numerical solution comparison for N = 64 of
equation (20).

5 Conclusion

In this paper, we have introduced an efficient biorthogonal wavelet-based
full-approximation schemes for the numerical solution of EHL line and point
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Table 3: The comparison of CPU time (in seconds) of the different methods.

Problem Method Setup time Running time Total time

FDM 9.10 7.21 16.31
Test Problem 1 FAS 8.01 5.53 13.54
(N=256) BWFAS 7.24 3.98 11.22

NBWFAS 7.21 2.64 9.85

FDM 11.28 8.13 19.41
Test Problem 2 FAS 10.89 6.41 17.30
(N=64) BWFAS 9.01 4.62 13.63

NBWFAS 8.54 3.05 11.59

contact problems. Solutions obtained from the figures looking like similar
but from the tables, we found that residual error of the proposed schemes
decreases in less number of iteration then the existing methods. Also from
the last table, the presented schemes give better solutions with fast conver-
gence in less computational time compared to standard techniques (FDM
and FAS), which have been demonstrated through the tested problems.
Hence the biorthogonal wavelet methods are very efficient and convenient
for the numerical solution of differential equations arising in fluid dynamics.
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