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SELF-COGENERATOR MODULES AND THEIR
APPLICATIONS

Y. TALEBI AND M. HOSSEINPOUR∗

Abstract. Let R be a ring and M be a right R-module. In this
paper, we give some properties of self-cogenerator modules. If M
is self-cogenerator and S = EndR(M) is a cononsingular ring, then
M is a K-module. It is shown that every self-cogenerator Baer is
dual Baer.

1. Introduction

Throughout this paper, R is an associative ring with identity, mod-
ules are right and unitary and S = EndR(M) is the ring of all en-
domorphisms of M . Rad(M), Soc(M) will indicate Jacobson radical
of M , Socle of M . A submodule K of M is denoted by K ≤ M . A
submodule K of M is called essential in M (denoted by K ⊆e M), if
K∩L 6= 0 for every nonzero submodule L of M , and a submodule K of
M is called small in M (denoted by K � M), if N +K 6= M for any
proper submodule N of M . A nonzero module is said to be uniform
if each nonzero submodule is essential. It is said to be hollow if each
proper submodule is small.

Recall that the singular submodule Z(M) of a module M is the set
of m ∈ M such that mI = 0 for some essential right ideal I of R. If
Z(M) = 0 (Z(M) = M) then M is nonsingular (singular) module (see
[4]).

A ring R (module M) is called a right dual ring (right dual mod-
ule) if every right ideal I of R is an annihilator, that is, rRlR(I) = I
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(rM lS(N) = N for each submodule N). By [2, Lemma 24.4], for each
submodule N of M we have rM lS(N)/N = RejM/N(M) =

⋂
{kerh |

h ∈ Hom(M/N,M)}. Thus M is a dual module if and only if for each
submodule N of M , we have RejM/N(M) = 0 if and only if M/N is
cogenerated by M for each submodule N of M . Recall that a module
M is said to be a self-cogenerator if it cogenerates each of its fac-
tors, that is, N = rM lS(N) for all submodules N of M (see [12]). So
self-cogenerator and dual modules are same. Clearly semisimple and
cogenerator modules are self-cogenerator.

Let S = EndR(M) be a ring and let SM be a left S-module. Then
for any X ⊆M and Y ⊆ S, the left annihilator of X in S and the right
annihilator of Y in M are
lS(X) = {s ∈ S | sx = 0 for all x ∈ X} and rM(Y ) = {m ∈ M |

ym = 0 for all y ∈ Y }, respectively.
For all undefined notions, we refer the reader to [2], [3] and [9].

2. Properties of self-cogenerator modules

In this section, we give some basic properties of self-cogenerator mod-
ules that will use in section 3. It is shown that every self-cogenerator
module whose endomorphism rings is PP , is continuous (Theorem 2.8).
Suppose that R is a commutative ring and M an R-module. We show
that, if for any submodule N of M , there exists a two sided ideal I
of R such that N = rM(I), then M is a self-cogenerator R-module
(Theorem 2.10).

Recall that an R-module M is called coretractable if, for any proper
submodule K of M , there exists a nonzero homomorphism f : M −→
M with f(K) = 0, that is, HomR(M/K,M) 6= 0 (see [1]). Recall that
an R-module M is cosemisimple if for any K ≤ M , Rad(M/K) = 0
(see [12]).

Proposition 2.1. Any self-cogenerator module is coretractable.

Proof. By [1, Lemma 4.1]. �

A ring R is said to be right Kasch if every simple right R-module
can be embedded in RR. By [1, Theorem 2.14], if R is a right Kasch
ring, then RR is a coretractable module. But it is clear that RR is not
self-cogenerator.

Proposition 2.2. Let M be coretractable. If M is cosemisimple, then
M is a self-cogenerator module.

Proof. By [1, Corollary 4.2]. �
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We have the following implications:
cogenerator module=⇒ self-cogenerator module=⇒ coretractable mod-

ule

Proposition 2.3. Let M be a self-cogenerator module. Then:
(1) If lS(N) ⊆e SS, then N �M .
(2) If I ⊆e SS, then rM(I)�M .
(3) If N �M , then lS(N) ⊆e SS.
(4) Soc(SS) ⊆ lS(Rad(M)).
(5) Z(SM) = Rad(M).

Proof. (1),(2) follow from [1, Proposition 4.5].
(3) For b ∈ S, let lS(N) ∩ Sb = 0. By [15, Proposition 2.5], we have

rM(Sb ∩ lS(N)) = rM(b) + N . So M = rM(Sb ∩ lS(N)) = rM(b) + N ,
then rM(b) + N = M and since N is a small submodule, rM(b) = M .
Thus b = 0, that is, lS(N) ⊆e SS.

(4) We have lS(Rad(M)) = lS(
∑

N�M N) =
⋂
N�M lS(N). By (3),

lS(N) ⊆e SS for any N �M . Thus Soc(SS) ⊆ lS(Rad(M)).
(5) Let x ∈ Z(SM) = {x ∈ M | lS(x) = lS(xR) ⊆e SS}. Suppose

xR + L = M , then lS(xR + L) = lS(M) = 0, so lS(xR) ∩ lS(L) = 0.
By assumption, lS(L) = 0, then L = M . Therefore xR�M and thus
x ∈ Rad(M). Conversely, let x ∈ Rad(M). By (3), lS(xR) ⊆e SS, so
x ∈ Z(SM). �

Corollary 2.4. Let M be a self-cogenerator R-module and ∇(M) =
{f ∈ S | f(M)�M}. Then Z(SS) = ∇(M).

Proof. By [1, Corollary 4.8], we have Z(SS) ⊆ ∇(M). Now suppose
that f ∈ ∇(M). Then by Proposition 2.3, lS(f) = lS(f(M)) ⊆e SS.
Therefore, f ∈ Z(SS) and ∇(M) ⊆ Z(SS). �

Following [12, p. 261], an R-module M is called semi-injective if
for any f ∈ S, Sf = lS(ker(f)) = lS(rM(f)) (equivalently, for any
monomorphism f : N −→ M , where N is a factor module of M , and
for any homomorphism g : N −→ M , there exists h : M −→ M such
that hf = g).

Proposition 2.5. Let M be a semi-injective self-cogenerator module
and N a proper submodule of M . If M/N is hollow, then lS(N) is a
uniform ideal of S.

Proof. Assume M/N is a non-zero hollow module. Then lS(N) 6= 0.
Suppose f, g ∈ lS(N) and fS ∩ gS = 0. Then lS(ker(f) + ker(g)) =
lS(ker(f) ∩ lS(ker(g)) = fS ∩ gS = 0. Since M is self-cogenerator,
ker(f)+ker(g) = M , but since N ⊆ ker(f)∩ker(g), we conclude that
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M/N = ker(f)/N + ker(g)/N . As M/N is hollow, ker(f) = M and
f = 0 or ker(g) = M and g = 0. Thus lS(N) is a uniform ideal of
S. �

Consider the following properties for an R-module M :
(C1) Every submodule of M is essential in a direct summand of M .
(C2) Every submodule isomorphic to a direct summand of M is also

a direct summand.
(C3) If M1 and M2 are direct summands of M with M1 ∩M2 = 0,

then M1 ⊕M2 is a direct summand of M .
An R-module M is called continuous if it has (C1) and (C2), M is

called quasi-continuous if it has (C1) and (C3), and M is called an
extending if it has property (C1).

Lemma 2.6. Let M be a self-cogenerator module. Then M is quasi-
continuous.

Proof. Let N1 and N2 be submodules of M such that N1 ∩ N2 = 0.
Since M is self-cogenerator, 0 = N1 ∩ N2 = rM lS(N1) ∩ rM lS(N2) =
rM [lS(N1 +N2)]. Then 0 = rM [lS(N1 +N2)] and lS(0) = lSrM [lS(N1 +
N2)]. So S = lS(N1 + N2), and S = lS(N1) + lS(N2). Hence M is
quasi-continuous by [13, Theorem 8]. �

The converse of Lemma 2.6 does not hold in general, because the
Z-module ZZ is quasi-continuous but is not self-cogenerator.

Example 2.7. ([9, Example 2.9]) Let S = R =

(
F F
0 F

)
, where F is

field and M = RRR. Then MR is not quasi-continuous. It is clear that

M is not self-cogenerator. But J =

(
0 F
0 0

)
is the jacobson radical

of R. Since J and R/J are semisimple, so they are self-cogenerator.

A ring R is called left PP -ring, if every cyclic left ideal is projec-
tive, equivalently, the left annihilator of each element of R is a direct
summand of RR.

Theorem 2.8. Let M be self-cogenerator and S a PP -ring. Then M
is continuous.

Proof. By Lemma 2.6, M is quasi-continuous. To prove that M is
continuous, by [9, Lemma 3.14], it is enough to show that every essential
monomorphism f ∈ S is an isomorphism. Let f ∈ S a monomorphism,
with f(M) ⊆e M . By [12, 39.11], f(M) is a direct summand. Therefore
f(M) = M . �
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Corollary 2.9. Let M be a self-cogenerator module and S a PP -ring,
∆(M) = {f ∈ S | Kerf ⊆e M}. Then J(S) = ∆(M).

Proof. It follows from Theorem 2.8 and [9, Proposition 3.15]. �

Theorem 2.10. Let R be a commutative ring and M an R-module. If
for any submodule N of M , there exists a two sided ideal I of R such
that N = rM(I), then M is self-cogenerator R-module.

Proof. Let M be an R-module with stated property and N ≤M . Then
there exists an ideal I of R such that N = rM(I). For each a ∈ I, define
the map fa : M −→ M by m 7→ am. Since R is a commutative ring,
fa is an R-endomorphism. It is clear that for each a ∈ I, N ⊆ ker(fa)
and we have

⋂
{kerf | f ∈ S,N ⊆ kerf} ⊆

⋂
a∈I kerfa = N . So⋂

{kerf | f ∈ S,N ⊆ kerf} = N if and only if M/N cogenerated by
M . �

Example 2.11. We know that the M = Zp∞ as a Z-module is self-
cogenerator module (p is a prime number). Choose N = Z(1/p + Z)
and set I = Zpi, i ≥ 0. It is clear that N = rM(I). Therefore, by
Theorem 2.10, M is self-cogenerator.

Corollary 2.12. Let R be a commutative ring and M an R-module. If
for any submodule N of M , there exists a two sided ideal I of R such
that N = rM(I) and S is a domain, then M is hollow.

Proof. Let L and K be proper submodules of M , such that L+K = M .
By Theorem 2.10, M is self-cogenerator. So there exist 0 6= f, g ∈ S
such that L ⊆ ker(f) and K ⊆ ker(g). Now since S is a domain, we
have fg 6= 0 and f, g 6= 0. Then (fg)(L + K) = (fg)(L) + (fg)(K) =
(fg)(M). It follows that (fg)(K) = (fg)(M) so that (fg)(M) =
(fg)(K) ⊆ g(K) = 0. Hence fg = 0. But this is a contradiction.
Therefore L = M or K = M , as required. �

3. Applications

In this section, we consider applications of self-cogenerator and self-
generator modules in other modules, in particular in Baer, dual Baer
and extending modules. This is the focus of our investigations in this
paper. We provide some additional motivation as follows. In [5], Ka-
plansky introduced the concept of a Baer ring. A ring R is called Baer
if the right annihilator of any nonempty subset of R is generated by
an idempotent. According to [10], M is called a Baer module if the
right annihilator in M of any left ideal of S is a direct summand of M .
Following [7], a module M is called a dual Baer module if for every
right ideal I of S,

∑
φ∈I Imφ is a direct summand of M .
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Recall from [11], a module M is called K-nonsingular if, for every
0 6= φ ∈ EndR(M), Kerφ is not essential in M . In [6], a module M is
called T -noncosingular if, ∀φ ∈ EndR(M), Imφ � M implies φ = 0.
A module M is said to be K-module if, DS(N) = {ϕ ∈ S | Imϕ ⊆
N} = 0 implies N � M . A ring R is said to be cononsingular if
∀I ≤ R, rI 6= 0 ∀0 6= r ∈ R implies that I ⊆e R and a module M is
K-cononsingular if, for all N ≤M , lS(N) = 0 implies N ⊆e M .

Lemma 3.1. ([14, Lemma 1]) If I ≤ S and N ≤M , then:
(1) DS(N)M ⊆ N .
(2) N ⊆ rM(lS(N)).
(3) lS(N)DS(N) = 0.
(4) DS(rM(I)) = rS(I).
(5) lS(IM) = lS(I).

Lemma 3.2. ([14, Lemma 2]) Let M be an R-module. Then:
(1) If DS(N)M = N , then lS(N) = lS(DS(N)).
(2) If rM(lS(N)) = N , then DS(N) = rS(lS(N)).

Recall from [12], a module M is said to be self-generator if it gener-
ates each of its submodules, i.e. N = Hom(M,N)M for all N ≤ M .
We call M weakly self-generator, if M generates rM(I) for every I ≤ SS.
It is clear that every self-generator module is weakly self-generator. It
is easy to check that a module M is weakly self-generator if and only
if M generates any submodule N with M/N being cogenerated by M
if and only if rM(I) = rS(I)M for every left ideal I of S (Lemma 3.1).

Proposition 3.3. The following are equivalent for a module M :
(1) M is a Baer module;
(2) M is weakly self-generator and S is a Baer ring.

Proof. (1) =⇒ (2) Let I be a left ideal of S. Since M is a Baer module,
rM(I) = eM for some e2 = e ∈ S. Then IeM = 0, so Ie = 0. Thus e ∈
rS(I) and eM ⊆

∑
φ∈rS(I) Imφ = rSIM . Therefore rM(I) = rS(I)M

and M is weakly self-generator. Now from [10, Theorem 4.1], S is a
Baer ring.

(2) =⇒ (1) Let I be a left ideal of S. We have rS(I) = eS for some
e2 = e ∈ S because S is a Baer ring. Since M is weakly self-generator,
rM(I) = rS(I)M = eSM = eM . �

Corollary 3.4. Let M be weakly self-generator. If M is a dual Baer
module, then M is Baer.

Proof. Let I be a left ideal of S. Since M is dual Baer, rS(I)M = eM
for some e2 = e ∈ S. But rM(I) = rS(I)M , so M is Baer. �
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Let M be a module. We call M weakly self-cogenerator, if rM lS(I) =
IM for each I ≤ SS and IM �M .

Every self-cogenerator module is weakly self-cogenerator

Proposition 3.5. The following are equivalent for a module M :
(1) M is dual Baer module;
(2) M is weakly self-cogenerator and S is a Baer ring.

Proof. (1) =⇒ (2) Let I be an ideal of S. Since M is dual Baer, there
exists e2 = e ∈ S such that IM = eM . Thus (1 − e) ∈ lS(I). Let
m ∈ rM(lS(I)). Then (1 − e)m = 0, so m ∈ eM = IM . Therefore M
is weakly self-cogenerator. Second part, follows from [8, Theorem 3.6].

(2) =⇒ (1) Let I be an ideal of S and lS(I) = Se, for some e2 = e ∈
S. Hence ∀φ ∈ I, eφ = 0, so φ = (1− e)φ and φM ⊆ (1− e)M . Thus
IM ⊆ (1− e)M . But (1− e)M ⊆ rM(Se) = rM(lS(I)) = IM because
M is a weakly self-cogenerator module. Therefore M is a dual Baer
module. �

Example 3.6. (1) If G is a divisible abelian group, then G is dual
Baer and so End(G) is a Baer ring.

(2) Let M be the Z-module ZZ. Then End(M) ∼= Z is a Baer ring
but M is not a dual Baer module.

Proposition 3.7. Let M be a weakly self-cogenerator module. If M is
a Baer module, then M is dual Baer.

Proof. Let I be an ideal of S. Since M is Baer, rM(lS(I)) = eM for
some e2 = e ∈ S. But IM = rM(lS(I)), so M is dual Baer. �

Corollary 3.8. Let M be a self-cogenerator module. If M is a Baer
module, then M is dual Baer.

Proof. It follows by Proposition 3.7. �

Lemma 3.9. Let M be an R-module and S a cononsingular ring.
Then:

(1) If M is a self-generator, then M is K-cononsingular.
(2) If M be a self-cogenerator, then M is K-module.

Proof. (1) Let N ≤ M such that lS(N) = 0. First, we show that
DS(N) ⊆e S. Let 0 6= φ ∈ S and φlS(N) = 0. Then φ ∈ lS(DS(N)).
Since M is a self-generator, lS(DS(N)) = lS(N) (Lemma 3.2). Thus
φ ∈ lS(N) = 0. It follows that φDS(N) 6= 0, ∀0 6= φ ∈ S. Hence,
by cononsingularity of S, DS(N) ⊆e S. Next, let K ≤ M such that
K ∩ N = 0. Then DS(N) ∩ DS(K) = 0. Hence DS(K) = 0. As M
is a self-generator, K = 0 and so N ⊆e M . This shows that M is
K-cononsingular.



66 TALEBI AND HOSSEINPOUR

(2) Let N ≤M such that DS(N) = 0. First, we show that lS(N) ⊆e
S. Let 0 6= φ ∈ S and lS(N)φ = 0. Then φ ∈ rS(lS(N)). Since
M is a self-cogenerator, rS(lS(N)) = DS(N) (Lemma 3.2). Thus φ ∈
DS(N) = 0. It follows that lS(N)φ 6= 0, ∀0 6= φ ∈ S. Hence, by
cononsingularity of S, lS(N) ⊆e S. Next, let K ≤ M such that K +
N = M . Then lS(N) ∩ lS(K) = 0. Hence lS(K) = 0. As M is a
self-cogenerator, K = M and so N � M . This proves that M is
K-module. �

Theorem 3.10. ([10, Theorem 2.12]) A module M is extending and
K-nonsingular if and only if M is Baer and K-cononsingular.

Proposition 3.11. Let M be a self-generator module and S is extend-
ing and nonsingular. Then M is extending.

Proof. Since S is a nonsingular extending ring, by Theorem 3.10, it
is Baer. Then by Proposition 3.3, M is Baer module and by Lemma
3.9(1), M is K-cononsingular. From Theorem 3.10, M is extending. �

Remark 3.12. Let M be a self-cogenerator module and S a Baer ring.
Then M is T -noncosingular.

Proof. It follows by Proposition 3.5, Since every dual Baer module is
T -noncosingular. �

Example 3.13. The Z-module QZ is T -noncosingular. Although it is
not self-cogenerator, since HomZ(Q/Z,Q) = 0.

We conclude this paper by investigating the connection of the T -
noncosingularity and K-nonsingularity of a module to its endomor-
phism ring.

Proposition 3.14. Let M be a self-cogenerator module. The following
hold:

(1) M is T -noncosingular if and only if SS is K-nonsingular.
(2) M is K-nonsingular and S a PP -ring if and only if SS is T -

nonconsingular.

Proof. (1) It follows from Corollary 2.4 and [11, Proposition 2.7].
(2) It follows from Corollary 2.9 and [6, Corollary 2.7]. �

Following example presents an application of Proposition 3.14.

Example 3.15. The Z-module Zp∞ is self-cogenerator and T -noconsingular.
By [10, Example 4.3], S is Baer. So by [10, Lemma 2.15], S is K-
nonsingular.
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Theorem 3.16. Let M be a self-cogenerator module and S a Baer
ring. If M is discrete module, then M is K-nonsingular if and only if
M is T -nonconsingular.

Proof. By [9, Theorem 5.4] and Corollaries 2.4, 2.9, we have Z(SS) =
J(SS). This completes the proof. �

Let M be Z-module Zp (p is a prime number). Then M is K-
nonsingular and T -noncosingular.
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