Journal of Algebra and Related Topics Vol. 5, No 2, (2017), pp 59-68

SELF-COGENERATOR MODULES AND THEIR APPLICATIONS

Y. TALEBI AND M. HOSSEINPOUR*

ABSTRACT. Let R be a ring and M be a right R-module. In this paper, we give some properties of self-cogenerator modules. If M is self-cogenerator and $S = End_R(M)$ is a cononsingular ring, then M is a \mathcal{K} -module. It is shown that every self-cogenerator Baer is dual Baer.

1. INTRODUCTION

Throughout this paper, R is an associative ring with identity, modules are right and unitary and $S = End_R(M)$ is the ring of all endomorphisms of M. Rad(M), Soc(M) will indicate Jacobson radical of M, Socle of M. A submodule K of M is denoted by $K \leq M$. A submodule K of M is called *essential* in M (denoted by $K \subseteq^e M$), if $K \cap L \neq 0$ for every nonzero submodule L of M, and a submodule K of M is called *small* in M (denoted by $K \ll M$), if $N + K \neq M$ for any proper submodule N of M. A nonzero module is said to be *uniform* if each nonzero submodule is essential. It is said to be *hollow* if each proper submodule is small.

Recall that the singular submodule Z(M) of a module M is the set of $m \in M$ such that mI = 0 for some essential right ideal I of R. If Z(M) = 0 (Z(M) = M) then M is nonsingular (singular) module (see [4]).

A ring R (module M) is called a right *dual* ring (right dual module) if every right ideal I of R is an annihilator, that is, $r_R l_R(I) = I$

MSC(2010): Primary: 16D10; Secondary: 16D80

Keywords: Self-cogenerator modules, Baer rings and modules, dual Baer modules.

Received: 10 December 2017, Accepted: 10 January 2018.

^{*}Corresponding author .

 $(r_M l_S(N) = N \text{ for each submodule } N)$. By [2, Lemma 24.4], for each submodule N of M we have $r_M l_S(N)/N = Rej_{M/N}(M) = \bigcap \{kerh \mid h \in Hom(M/N, M)\}$. Thus M is a dual module if and only if for each submodule N of M, we have $Rej_{M/N}(M) = 0$ if and only if M/N is cogenerated by M for each submodule N of M. Recall that a module M is said to be a *self-cogenerator* if it cogenerates each of its factors, that is, $N = r_M l_S(N)$ for all submodules N of M (see [12]). So self-cogenerator modules are same. Clearly semisimple and cogenerator modules are self-cogenerator.

Let $S = End_R(M)$ be a ring and let ${}_SM$ be a left S-module. Then for any $X \subseteq M$ and $Y \subseteq S$, the left annihilator of X in S and the right annihilator of Y in M are

 $l_S(X) = \{s \in S \mid sx = 0 \text{ for all } x \in X\}$ and $r_M(Y) = \{m \in M \mid ym = 0 \text{ for all } y \in Y\}$, respectively.

For all undefined notions, we refer the reader to [2], [3] and [9].

2. Properties of self-cogenerator modules

In this section, we give some basic properties of self-cogenerator modules that will use in section 3. It is shown that every self-cogenerator module whose endomorphism rings is PP, is continuous (Theorem 2.8). Suppose that R is a commutative ring and M an R-module. We show that, if for any submodule N of M, there exists a two sided ideal Iof R such that $N = r_M(I)$, then M is a self-cogenerator R-module (Theorem 2.10).

Recall that an *R*-module *M* is called *coretractable* if, for any proper submodule *K* of *M*, there exists a nonzero homomorphism $f: M \longrightarrow$ *M* with f(K) = 0, that is, $Hom_R(M/K, M) \neq 0$ (see [1]). Recall that an *R*-module *M* is cosemisimple if for any $K \leq M$, Rad(M/K) = 0(see [12]).

Proposition 2.1. Any self-cogenerator module is coretractable.

Proof. By [1, Lemma 4.1].

A ring R is said to be right *Kasch* if every simple right R-module can be embedded in R_R . By [1, Theorem 2.14], if R is a right Kasch ring, then R_R is a coretractable module. But it is clear that R_R is not self-cogenerator.

Proposition 2.2. Let M be coretractable. If M is cosemisimple, then M is a self-cogenerator module.

Proof. By [1, Corollary 4.2].

60

61

We have the following implications:

 $cogenerator module \Longrightarrow self-cogenerator module \Longrightarrow coretractable module$

Proposition 2.3. Let M be a self-cogenerator module. Then:

(1) If $l_S(N) \subseteq^e {}_SS$, then $N \ll M$.

(2) If $I \subseteq^{e} {}_{S}S$, then $r_{M}(I) \ll M$.

(3) If $N \ll M$, then $l_S(N) \subseteq^e {}_SS$.

(4) $Soc(_SS) \subseteq l_S(Rad(M)).$

(5)
$$Z(_SM) = Rad(M).$$

Proof. (1),(2) follow from [1, Proposition 4.5].

(3) For $b \in S$, let $l_S(N) \cap Sb = 0$. By [15, Proposition 2.5], we have $r_M(Sb \cap l_S(N)) = r_M(b) + N$. So $M = r_M(Sb \cap l_S(N)) = r_M(b) + N$, then $r_M(b) + N = M$ and since N is a small submodule, $r_M(b) = M$. Thus b = 0, that is, $l_S(N) \subseteq^e SS$.

(4) We have $l_S(Rad(M)) = l_S(\sum_{N \ll M} N) = \bigcap_{N \ll M} l_S(N)$. By (3), $l_S(N) \subseteq^e {}_SS$ for any $N \ll M$. Thus $Soc({}_SS) \subseteq l_S(Rad(M))$.

(5) Let $x \in Z({}_{S}M) = \{x \in M \mid l_{S}(x) = l_{S}(xR) \subseteq^{e} {}_{S}S\}$. Suppose xR + L = M, then $l_{S}(xR + L) = l_{S}(M) = 0$, so $l_{S}(xR) \cap l_{S}(L) = 0$. By assumption, $l_{S}(L) = 0$, then L = M. Therefore $xR \ll M$ and thus $x \in Rad(M)$. Conversely, let $x \in Rad(M)$. By (3), $l_{S}(xR) \subseteq^{e} {}_{S}S$, so $x \in Z({}_{S}M)$.

Corollary 2.4. Let M be a self-cogenerator R-module and $\nabla(M) = \{f \in S \mid f(M) \ll M\}$. Then $Z(_SS) = \nabla(M)$.

Proof. By [1, Corollary 4.8], we have $Z({}_{S}S) \subseteq \nabla(M)$. Now suppose that $f \in \nabla(M)$. Then by Proposition 2.3, $l_{S}(f) = l_{S}(f(M)) \subseteq {}^{e}{}_{S}S$. Therefore, $f \in Z({}_{S}S)$ and $\nabla(M) \subseteq Z({}_{S}S)$.

Following [12, p. 261], an *R*-module *M* is called *semi-injective* if for any $f \in S$, $Sf = l_S(ker(f)) = l_S(r_M(f))$ (equivalently, for any monomorphism $f: N \longrightarrow M$, where *N* is a factor module of *M*, and for any homomorphism $g: N \longrightarrow M$, there exists $h: M \longrightarrow M$ such that hf = g).

Proposition 2.5. Let M be a semi-injective self-cogenerator module and N a proper submodule of M. If M/N is hollow, then $l_S(N)$ is a uniform ideal of S.

Proof. Assume M/N is a non-zero hollow module. Then $l_S(N) \neq 0$. Suppose $f, g \in l_S(N)$ and $fS \cap gS = 0$. Then $l_S(ker(f) + ker(g)) = l_S(ker(f) \cap l_S(ker(g))) = fS \cap gS = 0$. Since M is self-cogenerator, ker(f) + ker(g) = M, but since $N \subseteq ker(f) \cap ker(g)$, we conclude that M/N = ker(f)/N + ker(g)/N. As M/N is hollow, ker(f) = M and f = 0 or ker(g) = M and g = 0. Thus $l_S(N)$ is a uniform ideal of S.

Consider the following properties for an R-module M:

 (C_1) Every submodule of M is essential in a direct summand of M.

 (C_2) Every submodule isomorphic to a direct summand of M is also a direct summand.

 (C_3) If M_1 and M_2 are direct summands of M with $M_1 \cap M_2 = 0$, then $M_1 \oplus M_2$ is a direct summand of M.

An *R*-module *M* is called *continuous* if it has (C_1) and (C_2) , *M* is called *quasi-continuous* if it has (C_1) and (C_3) , and *M* is called an *extending* if it has property (C_1) .

Lemma 2.6. Let M be a self-cogenerator module. Then M is quasicontinuous.

Proof. Let N_1 and N_2 be submodules of M such that $N_1 \cap N_2 = 0$. Since M is self-cogenerator, $0 = N_1 \cap N_2 = r_M l_S(N_1) \cap r_M l_S(N_2) = r_M [l_S(N_1 + N_2)]$. Then $0 = r_M [l_S(N_1 + N_2)]$ and $l_S(0) = l_S r_M [l_S(N_1 + N_2)]$. So $S = l_S(N_1 + N_2)$, and $S = l_S(N_1) + l_S(N_2)$. Hence M is quasi-continuous by [13, Theorem 8].

The converse of Lemma 2.6 does not hold in general, because the \mathbb{Z} -module $\mathbb{Z}_{\mathbb{Z}}$ is quasi-continuous but is not self-cogenerator.

Example 2.7. ([9, Example 2.9]) Let $S = R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, where F is field and $M = {}_{R}R_{R}$. Then M_{R} is not quasi-continuous. It is clear that M is not self-cogenerator. But $J = \begin{pmatrix} 0 & F \\ 0 & 0 \end{pmatrix}$ is the jacobson radical of R. Since J and R/J are semisimple, so they are self-cogenerator.

A ring R is called left PP-ring, if every cyclic left ideal is projective, equivalently, the left annihilator of each element of R is a direct summand of $_RR$.

Theorem 2.8. Let M be self-cogenerator and S a PP-ring. Then M is continuous.

Proof. By Lemma 2.6, M is quasi-continuous. To prove that M is continuous, by [9, Lemma 3.14], it is enough to show that every essential monomorphism $f \in S$ is an isomorphism. Let $f \in S$ a monomorphism, with $f(M) \subseteq^{e} M$. By [12, 39.11], f(M) is a direct summand. Therefore f(M) = M.

Corollary 2.9. Let M be a self-cogenerator module and S a PP-ring, $\Delta(M) = \{f \in S \mid Kerf \subseteq^e M\}$. Then $J(S) = \Delta(M)$.

Proof. It follows from Theorem 2.8 and [9, Proposition 3.15].

Theorem 2.10. Let R be a commutative ring and M an R-module. If for any submodule N of M, there exists a two sided ideal I of R such that $N = r_M(I)$, then M is self-cogenerator R-module.

Proof. Let M be an R-module with stated property and $N \leq M$. Then there exists an ideal I of R such that $N = r_M(I)$. For each $a \in I$, define the map $f_a : M \longrightarrow M$ by $m \mapsto am$. Since R is a commutative ring, f_a is an R-endomorphism. It is clear that for each $a \in I$, $N \subseteq ker(f_a)$ and we have $\bigcap \{kerf \mid f \in S, N \subseteq kerf\} \subseteq \bigcap_{a \in I} kerf_a = N$. So $\bigcap \{kerf \mid f \in S, N \subseteq kerf\} = N$ if and only if M/N cogenerated by M. \Box

Example 2.11. We know that the $M = \mathbb{Z}_{p^{\infty}}$ as a \mathbb{Z} -module is self-cogenerator module (*p* is a prime number). Choose $N = \mathbb{Z}(1/p + \mathbb{Z})$ and set $I = \mathbb{Z}p^i$, $i \geq 0$. It is clear that $N = r_M(I)$. Therefore, by Theorem 2.10, *M* is self-cogenerator.

Corollary 2.12. Let R be a commutative ring and M an R-module. If for any submodule N of M, there exists a two sided ideal I of R such that $N = r_M(I)$ and S is a domain, then M is hollow.

Proof. Let L and K be proper submodules of M, such that L+K = M. By Theorem 2.10, M is self-cogenerator. So there exist $0 \neq f, g \in S$ such that $L \subseteq ker(f)$ and $K \subseteq ker(g)$. Now since S is a domain, we have $fg \neq 0$ and $f, g \neq 0$. Then (fg)(L+K) = (fg)(L) + (fg)(K) =(fg)(M). It follows that (fg)(K) = (fg)(M) so that (fg)(M) = $(fg)(K) \subseteq g(K) = 0$. Hence fg = 0. But this is a contradiction. Therefore L = M or K = M, as required.

3. Applications

In this section, we consider applications of self-cogenerator and selfgenerator modules in other modules, in particular in *Baer*, *dual Baer* and extending modules. This is the focus of our investigations in this paper. We provide some additional motivation as follows. In [5], Kaplansky introduced the concept of a Baer ring. A ring R is called Baer if the right annihilator of any nonempty subset of R is generated by an idempotent. According to [10], M is called a Baer module if the right annihilator in M of any left ideal of S is a direct summand of M. Following [7], a module M is called a dual Baer module if for every right ideal I of S, $\sum_{\phi \in I} Im\phi$ is a direct summand of M.

63

Recall from [11], a module M is called \mathcal{K} -nonsingular if, for every $0 \neq \phi \in End_R(M)$, $Ker\phi$ is not essential in M. In [6], a module M is called \mathcal{T} -noncosingular if, $\forall \phi \in End_R(M)$, $Im\phi \ll M$ implies $\phi = 0$. A module M is said to be \mathcal{K} -module if, $D_S(N) = \{\varphi \in S \mid Im\varphi \subseteq N\} = 0$ implies $N \ll M$. A ring R is said to be cononsingular if $\forall I \leq R, rI \neq 0 \ \forall 0 \neq r \in R$ implies that $I \subseteq^e R$ and a module M is \mathcal{K} -cononsingular if, for all $N \leq M, l_S(N) = 0$ implies $N \subseteq^e M$.

Lemma 3.1. ([14, Lemma 1]) If $I \leq S$ and $N \leq M$, then:

(1) $D_{S}(N)M \subseteq N.$ (2) $N \subseteq r_{M}(l_{S}(N)).$ (3) $l_{S}(N)D_{S}(N) = 0.$ (4) $D_{S}(r_{M}(I)) = r_{S}(I).$ (5) $l_{S}(IM) = l_{S}(I).$

Lemma 3.2. ([14, Lemma 2]) Let M be an R-module. Then:

- (1) If $D_S(N)M = N$, then $l_S(N) = l_S(D_S(N))$.
- (2) If $r_M(l_S(N)) = N$, then $D_S(N) = r_S(l_S(N))$.

Recall from [12], a module M is said to be *self-generator* if it generates each of its submodules, i.e. N = Hom(M, N)M for all $N \leq M$. We call M weakly *self-generator*, if M generates $r_M(I)$ for every $I \leq {}_SS$. It is clear that every self-generator module is weakly self-generator. It is easy to check that a module M is weakly self-generator if and only if M generates any submodule N with M/N being cogenerated by Mif and only if $r_M(I) = r_S(I)M$ for every left ideal I of S (Lemma 3.1).

Proposition 3.3. The following are equivalent for a module M:

- (1) M is a Baer module;
- (2) M is weakly self-generator and S is a Baer ring.

Proof. (1) \Longrightarrow (2) Let I be a left ideal of S. Since M is a Baer module, $r_M(I) = eM$ for some $e^2 = e \in S$. Then IeM = 0, so Ie = 0. Thus $e \in r_S(I)$ and $eM \subseteq \sum_{\phi \in r_S(I)} Im\phi = r_SIM$. Therefore $r_M(I) = r_S(I)M$ and M is weakly self-generator. Now from [10, Theorem 4.1], S is a Baer ring.

 $(2) \Longrightarrow (1)$ Let I be a left ideal of S. We have $r_S(I) = eS$ for some $e^2 = e \in S$ because S is a Baer ring. Since M is weakly self-generator, $r_M(I) = r_S(I)M = eSM = eM$.

Corollary 3.4. Let M be weakly self-generator. If M is a dual Baer module, then M is Baer.

Proof. Let I be a left ideal of S. Since M is dual Baer, $r_S(I)M = eM$ for some $e^2 = e \in S$. But $r_M(I) = r_S(I)M$, so M is Baer.

Let M be a module. We call M weakly self-cogenerator, if $r_M l_S(I) = IM$ for each $I \leq {}_SS$ and $IM \leq M$.

Every self-cogenerator module is weakly self-cogenerator

Proposition 3.5. The following are equivalent for a module M:

- (1) M is dual Baer module;
- (2) M is weakly self-cogenerator and S is a Baer ring.

Proof. (1) \Longrightarrow (2) Let I be an ideal of S. Since M is dual Baer, there exists $e^2 = e \in S$ such that IM = eM. Thus $(1 - e) \in l_S(I)$. Let $m \in r_M(l_S(I))$. Then (1 - e)m = 0, so $m \in eM = IM$. Therefore M is weakly self-cogenerator. Second part, follows from [8, Theorem 3.6].

(2) \Longrightarrow (1) Let I be an ideal of S and $l_S(I) = Se$, for some $e^2 = e \in S$. Hence $\forall \phi \in I$, $e\phi = 0$, so $\phi = (1 - e)\phi$ and $\phi M \subseteq (1 - e)M$. Thus $IM \subseteq (1 - e)M$. But $(1 - e)M \subseteq r_M(Se) = r_M(l_S(I)) = IM$ because M is a weakly self-cogenerator module. Therefore M is a dual Baer module.

Example 3.6. (1) If G is a divisible abelian group, then G is dual Baer and so End(G) is a Baer ring.

(2) Let M be the \mathbb{Z} -module $\mathbb{Z}_{\mathbb{Z}}$. Then $End(M) \cong \mathbb{Z}$ is a Baer ring but M is not a dual Baer module.

Proposition 3.7. Let M be a weakly self-cogenerator module. If M is a Baer module, then M is dual Baer.

Proof. Let I be an ideal of S. Since M is Baer, $r_M(l_S(I)) = eM$ for some $e^2 = e \in S$. But $IM = r_M(l_S(I))$, so M is dual Baer.

Corollary 3.8. Let M be a self-cogenerator module. If M is a Baer module, then M is dual Baer.

Proof. It follows by Proposition 3.7.

Lemma 3.9. Let M be an R-module and S a cononsingular ring. Then:

(1) If M is a self-generator, then M is \mathcal{K} -cononsingular.

(2) If M be a self-cogenerator, then M is \mathcal{K} -module.

Proof. (1) Let $N \leq M$ such that $l_S(N) = 0$. First, we show that $D_S(N) \subseteq^e S$. Let $0 \neq \phi \in S$ and $\phi l_S(N) = 0$. Then $\phi \in l_S(D_S(N))$. Since M is a self-generator, $l_S(D_S(N)) = l_S(N)$ (Lemma 3.2). Thus $\phi \in l_S(N) = 0$. It follows that $\phi D_S(N) \neq 0$, $\forall 0 \neq \phi \in S$. Hence, by cononsingularity of S, $D_S(N) \subseteq^e S$. Next, let $K \leq M$ such that $K \cap N = 0$. Then $D_S(N) \cap D_S(K) = 0$. Hence $D_S(K) = 0$. As M is a self-generator, K = 0 and so $N \subseteq^e M$. This shows that M is \mathcal{K} -cononsingular. (2) Let $N \leq M$ such that $D_S(N) = 0$. First, we show that $l_S(N) \subseteq^e$ S. Let $0 \neq \phi \in S$ and $l_S(N)\phi = 0$. Then $\phi \in r_S(l_S(N))$. Since M is a self-cogenerator, $r_S(l_S(N)) = D_S(N)$ (Lemma 3.2). Thus $\phi \in$ $D_S(N) = 0$. It follows that $l_S(N)\phi \neq 0$, $\forall 0 \neq \phi \in S$. Hence, by cononsingularity of S, $l_S(N) \subseteq^e S$. Next, let $K \leq M$ such that K + N = M. Then $l_S(N) \cap l_S(K) = 0$. Hence $l_S(K) = 0$. As M is a self-cogenerator, K = M and so $N \ll M$. This proves that M is \mathcal{K} -module. \Box

Theorem 3.10. ([10, Theorem 2.12]) A module M is extending and \mathcal{K} -nonsingular if and only if M is Baer and \mathcal{K} -cononsingular.

Proposition 3.11. Let M be a self-generator module and S is extending and nonsingular. Then M is extending.

Proof. Since S is a nonsingular extending ring, by Theorem 3.10, it is Baer. Then by Proposition 3.3, M is Baer module and by Lemma 3.9(1), M is \mathcal{K} -cononsingular. From Theorem 3.10, M is extending. \Box

Remark 3.12. Let M be a self-cogenerator module and S a Baer ring. Then M is \mathcal{T} -noncosingular.

Proof. It follows by Proposition 3.5, Since every dual Baer module is \mathcal{T} -noncosingular.

Example 3.13. The \mathbb{Z} -module $\mathbb{Q}_{\mathbb{Z}}$ is \mathcal{T} -noncosingular. Although it is not self-cogenerator, since $Hom_{\mathbb{Z}}(\mathbb{Q}/\mathbb{Z},\mathbb{Q}) = 0$.

We conclude this paper by investigating the connection of the \mathcal{T} -noncosingularity and \mathcal{K} -nonsingularity of a module to its endomorphism ring.

Proposition 3.14. Let M be a self-cogenerator module. The following hold:

(1) M is \mathcal{T} -noncosingular if and only if $_{S}S$ is \mathcal{K} -nonsingular.

(2) M is \mathcal{K} -nonsingular and S a PP-ring if and only if $_{S}S$ is \mathcal{T} -nonconsingular.

Proof. (1) It follows from Corollary 2.4 and [11, Proposition 2.7]. (2) It follows from Corollary 2.9 and [6, Corollary 2.7]. \Box

Following example presents an application of Proposition 3.14.

Example 3.15. The \mathbb{Z} -module $\mathbb{Z}_{p^{\infty}}$ is self-cogenerator and \mathcal{T} -noconsingular. By [10, Example 4.3], S is Baer. So by [10, Lemma 2.15], S is \mathcal{K} -nonsingular.

Theorem 3.16. Let M be a self-cogenerator module and S a Baer ring. If M is discrete module, then M is \mathcal{K} -nonsingular if and only if M is \mathcal{T} -nonconsingular.

Proof. By [9, Theorem 5.4] and Corollaries 2.4, 2.9, we have $Z(_SS) = J(_SS)$. This completes the proof.

Let M be \mathbb{Z} -module \mathbb{Z}_p (p is a prime number). Then M is \mathcal{K} nonsingular and \mathcal{T} -noncosingular.

Acknowledgments

The authors would like to thank the referee for careful reading.

References

- B. Amini, M. Ershad, and H. Sharif, *Coretractable modules*, J. Aust. Math. Soc., 86 (2009), 289-304.
- F.W. Anderson and K.R. Fuller, *Rings and Categories of Modules*, Springer-Verlag, New York, 1974.
- J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules. Supplements and Projectivity in Module Theory, Frontiers in Math. Boston: Birkhäuser, 2006.
- R.E. Johnson, Structure theory of faithful rings. I. Closure operations on lattices. II. Restricted rings, Trans. Amer. Math. Soc., 84 (1957), 508-522.
- I. Kaplansky, *Rings of Operators*, Math. Lecture Note Ser., W. A. Benjamin, New York, 1968.
- D. Keskin Tütüncü and R. Tribak, On *T*-noconsingular modules, Bull. Aust. Math. Soc., 80 (2009), 462-471.
- D. Keskin Tütüncü and R. Tribak, On dual Baer modules, Glasg. Math. J., 52 (2010), 261–269.
- D. Keskin Tütüncü, P. F. Smith, and S. E. Toksoy, On dual Baer modules, Contemporary Mathematics, 609 (2014), 173-184.
- S. H. Mohamed and B. J. Müller, *Continuous and Discrete Modules*, London Math. Soc. Lecture Notes Series 147, Cambridge, University Press, 1990.
- S.T. Rizvi and C.S. Roman, Baer and Quasi-Baer Modules, Comm. Algebra, 32 (2004), 103-123.
- S.T. Rizvi and C.S. Roman, On K-nonsingular modules and applications, Comm. Algebra, 35 (2007), 1–22.
- R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.
- R. Wisbauer, M.F. Yousif, and Y. Zhou, *Ikeda-Nakayama modules*, Beitr. Algebra Geom. (1) 43 (2002), 111-119.
- 14. K.G. Wolfson, Baer rings of endomorphisms, Math. Ann. 143 (1961), 19-28.
- D. Zhou, D. Li, and L. Guo, Annihilator conditions relative to a class of modules, Thai J. Math., (3) 8 (2010), 419-428.

TALEBI AND HOSSEINPOUR

Yahya Talebi

Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran Email: talebi@umz.ac.ir

Mehrab Hosseinpour

Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran Email: mehrab.hosseinpour@gmail.com