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σ-SPORADIC PRIME IDEALS AND SUPERFICIAL
ELEMENTS

K. A. ESSAN, A. ABDOULAYE, D. KAMANO ∗, AND E.D. AKEKE

Abstract. Let A be a Noetherian ring, I be an ideal of A and
σ be a semi-prime operation, different from the identity map on
the set of all ideals of A. Results of Essan proved that the sets of
associated prime ideals of σ(In), which denoted by Ass(A/σ(In),
stabilize to Aσ(I). We give some properties of the sets Sσn(I) =
Ass(A/σ(In)\Aσ(I), with n small, which are the sets of σ-sporadic
prime divisors of I. We also give some relationships between σ(fI)-
superficial elements and asymptotic prime σ-divisors, where σ(fI)
is the σ-closure of the I-adic filtration fI = (In)n∈N.

1. Introduction

Let A be a commutative Noetherian ring and I be a regular ideal of
A. A prime ideal P ⊂ A is an associated prime of I if there exists an
element x in A such that P = (I :A x). The set of associated primes of
I, denoted Ass(A/I), is the set of all prime ideals associated to I. A
well-known result of Brodmann [2] proved that the sets of associated
prime ideals of In, which denote by Ass(A/In), stabilize to A∗(I), that
is, there exists a positive integer n0 such that Ass(A/In) = Ass(A/In0)
for all n ≥ n0. For small n it may happen that there are prime ideals P
with P ∈ Ass(A/In) \ A∗(I). Such a prime is called a sporadic prime
divisor of I. In [7], MacAdam gave some properties of sporadic prime
of regular ideals.
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Now let us assume that I is an ideal of A, which is not necessar-
ily regular. Let σ be a semi-prime operation on the set I(A) of all
ideals of A, with σ 6= idI(A). A result of Essan [3] proves that the
sequence (Ass(A/σ(In))n∈N∗ stabilize to a set denoted Aσ(I), that is
Ass(A/σ(In) = Aσ(I) for all large n. For small n it may happen that
there are prime ideals P with P ∈ Ass

(
A/σ(In)

)
− Aσ(I). Such a

prime is called a σ-sporadic prime divisor of I. For all integer n ≥ 1,
we put Sσn (I) = Ass

(
A/σ(In)

)
− Aσ(I) and Sσ(I) = ∪

n∈N∗Sσn (I), that
is Sσ(I) is the set of all σ-sporadic prime of I. Moreover, Essan [4]
proves that the sequence (Ass(A/(In)σ))

n∈N∗ , with (In)σ = σ(Ik+n) :A
σ(Ik), k � 0 is an increasing sequence.
In section 3, we are interested in the σ-sporadic prime of an ideal I of a
ring A. We prove that for all integer n ≥ 1, Sσn (I) ⊆ Ass

(
(In)σ/σ(In)

)
(cf. Theorem 3.4). We will also prove a generalization of [9], Lemma
2.5. and a generalization of [9], 4.15.
In section 4, we suppose that (A,M) is a Noetherian local ring with
infinite residue field. We put σ(fI) = (σ(In))n∈N, which is the σ-
closure of the I-adic filtration fI = (In)n∈N. An element x ∈ I
is said to be σ(fI)-superficial if there exists an integer n0 such that(
σ(In+1) :A x

)
∩ σ(In0) = σ(In), for all n ≥ n0. Let I be an M-

primary ideal of the ring A. We prove that if x ∈ I is a σ(fI)-
superficial element, then for all n ≥ 1 we have (i)

(
(In+1)σ : x

)
=

(In)σ, (ii) (x) ∩ (In+1)σ = x(In)σ (Proposition 4.2). It follows that
σ(Ik+1) : x = σ(Ik) and σ(In+1) : I = σ(In), for all k ≥ ρIσ(A),
with ρIσ(A) = min{n | (I i)σ = σ(I i) for all i ≥ n} (Corollary 4.3 and
Theorem 4.6).

2. Preliminary

Throughout this paper the letter A will denote a commutative ring
with identity.
(1) A filtration on the ring A is a sequence f = (In)n∈N of ideals of A
such that I0 = A, In+1 ⊆ In and InIm ⊆ In+m for all n, m ∈ N.

Definition 2.1. [5]
Let I(A) be the set of all ideals of a ring A. We consider the following
properties of a map σ : I(A) −→ I(A):

(a) I ⊆ σ(I) for all I ∈ I(A)

(b) if I ⊆ J then σ(I) ⊆ σ(J) for all I, J ∈ I(A)

(c) σ(σ(I) = σ(I)
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(d) σ(I)σ(J) ⊆ σ(IJ),

(e) σ(b I) = b σ(I) for all regular element b ∈ I
Then σ is a semi-prime operation on I(A) if (a) − (d) hold for all
I, J ∈ I(A); it is a prime operation if (a)− (e) hold for all I, J ∈ I(A)
and any regular element b of A.

It follows from (d) of Definition 2.1 that σ(σ(I)σ(J)) = σ(IJ) for all
I, J ∈ I(A).
(2) If f = (In)n∈N is a filtration on the ring A and σ is a semi-prime
operation on I(A) then σ(f) =

(
σ(In)

)
n∈N is a filtration on A.

(3) Let I be an ideal of A. A filtration f = (In)n∈N on A is said to be
I-good if I.In ⊆ In+1 for all n ≥ 0 and there exists n0 ∈ N such that
∀n ≥ n0, I.In = In+1. It follows that InIn0 = In0+n, ∀n ≥ 1.
(4) Let (A,M) be a Noetherian local ring with infinite residue field
A/M and f = (In)n∈N be an I-good filtration on A. An element
x ∈ I is said to be f -superficial if there is an integer n0 such that(
In+1 :A x

)
∩ In0 = In for all n ≥ n0.

3. σ-sporadic prime of an ideal

Throughout this section A is a Noetherian ring, I is a nonzero ideal
in A and σ is a semi-prime operation on I(A).

Let S ⊂ A be a multiplicative set, that is, suppose that 1A ∈ S and
xy ∈ S for all x, y ∈ S. An ideal I of A is said to be satured with respect
to S (or S-satured) in A if for all (a, s) ∈ A × S such that as ∈ I we
have a ∈ I. Let us put Isat = {a ∈ A/ab ∈ I for some b ∈ S}. Then
Isat is a S-satured ideal of A. It is the intersection of all S-satured
ideal of A containing I. It is obvious that Isat = ∪s∈S(I : s) and I is a
S-satured ideal in A if and only if I = Isat.
Let S−1A be the ring of fractions of A with respect to S. We put

Ie = {a
s
∈ S−1A/a ∈ I, s ∈ S},

which is called the extension of the ideal I to S−1A. For any ideal J
of S−1A we put

J c = {a ∈ A/ a
1
∈ J}.

This is called the contracted ideal of J .
In these notations, the inclusions I ⊆ Iec and J ce ⊆ J follows imme-
diately from the definitions. From the first inclusion we get Ie ⊆ Iece,
but substituting J = Ie in the second gives Iece ⊆ Ie, and hence

Iece = Ie, and similary J cec = J c
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Remark 3.1. Let I be an ideal of the ring A. Then we have Isat = Iec.

Indeed, let a ∈ Iec. We have
a

1
∈ Ie. There exist b ∈ I and s ∈ S

such that
a

1
=
b

s
, that is, there exists u ∈ S such that u(as − b) = 0,

hence usa = ub with ub ∈ I and us ∈ S. It follows that a ∈ Isat and
Iec ⊆ Isat. Conversely let a ∈ Isat. There exists s ∈ S such that as ∈ I,

hence
as

1
∈ Ie. Since

1

s
∈ S−1A , we have

a

1
=

1

s

as

1
∈ Ie, thus a ∈ Iec

and Isat ⊆ Iec, therefore Isat = Iec.

Proposition 3.2. The map σ : I(A) −→ I(A), I 7−→ σ(I) = Isat is a
semi-prime operation on I(A).

Proof. (i) (a), (b), (c) of Definition 2.1 follow immediately from the
definition of S-satured ideal.
(ii) Let I, J ∈ I(A) such that I ⊆ J . For all a ∈ Isat, there exists s ∈ S
such that as ∈ I. Since I ⊆ J , as ∈ J , hence a ∈ Jsat. This proves
that Isat ⊆ Jsat.
(iii) Let I, J ∈ I(A). For all a ∈ Isat and b ∈ Jsat there exist s, u ∈ S
such that as ∈ I and bu ∈ J . It follows that absu ∈ IJ , with su ∈ S,
hence ab ∈ (IJ)sat and IsatJsat ⊆ (IJ)sat. �

Lemma 3.3. Let P be a prime ideal of the ring A and AP = S−1A
with S = A\P . Then the map σP : I(AP ) −→ I(AP ), IAP 7−→ IsatAP
(where I ∈ I(A)) is a semi-prime operation on I(AP ).

Proof. We put σ(I) = Isat for all ideal I of A. Let us first prove that σP
is well-defined. Indeed, let I, J ∈ I(A) such that IAP = JAP , that is
Ie = Je. Then we have Iec = Jec, so that Isat = Jsat, hence σ(I) = σ(J)
and we have σ(I)AP = σ(J)(AP ), thus σP (IAP ) = σP (JAP ).
We now prove that σP is a semi-prime operation on I(AP ).
(a) Let IAP ∈ I(AP ). Since I ⊆ σ(I), we have IAP ⊆ σ(I)AP .
(b) Let IAP ∈ I(AP ). Since σ is a semi-prime operation, we have
σP [σP (IAP )] = σP [σ(I)AP ] = σ(σ(I))AP = σ(I)AP .
(c) Let IAP , JAP ∈ I(AP ) such that IAP ⊆ JAP , that is Ie ⊆ Je.
Then Iec ⊆ Jec. By remark 3.1, Isat ⊆ Jsat, that is σ(I) ⊆ σ(J). We
have σ(I)AP ⊆ σ(J)AP , therefore σP (IAP ) ⊆ σP (JAP ).
(d) σP (IAP )σP (JAP ) = σ(I)APσ(J)AP = σ(I)σ(J)AP ⊆ σ(IJ)AP =
σP (IJAP ) = σP (IAPJAP ). �

Theorem 3.4. Let A be a Noetherian ring and σ be a semi-prime
operation on I(A). Suppose that for P ∈ Spec(A), there is a semi-
prime operation σ̂P on I(AP ) such that σ̂P (IAP ) = σ(I)AP , ∀ I ∈
I(A). Then
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(i) Iσ is σ-closed.
(ii) Let n and q be large enough integers such that for a nonzero ideal

I in A, we have (Ik)σ = σ(In+k) : σ(In) and σ(Iq+1) : I = σ(Iq)
for all k ≥ 1. Then (Inq)σ = σ(Inq) and Ass

(
A/(Inq)σ

)
=

Aσ(I).
(iii) For every integer n ≥ 1, Sσn (I) ⊆ Ass

(
(In)σ/σ(In)

)
.

Proof. (i) It is sufficient to prove that σ(Iσ) ⊆ Iσ. We have Iσ =
σ(In+1) : σ(In), since n is large enough. It follows that

σ(Iσ) = σ[σ(In+1) : σ(In)] ⊆ σ(σ(In+1)) : σ(σ(In)) = σ(In+1) : σ(In)

and σ(In+1) : σ(In) = Iσ, (cf. [4], Proposition 3.3), hence σ(Iσ) ⊆ Iσ.
Since σ is a semi-prime operation on I(A), Iσ ⊆ σ(Iσ), thus Iσ = σ(Iσ).
(ii) Let n and q be large enough integers such that for an ideal I of A,
I 6= {0}, we have (Ik)σ = σ(In+k) : σ(In) and σ(Iq+1) : I = σ(Iq), for
all k ≥ 1. It is obvious that (Inq)σ = σ(In+nq) : σ(In) = σ(In(1+q)) :
σ(In). We put J = In, then (Jq)σ = σ(Jq+1) : σ(J). It follows that
σ(J)(Jq)σ ⊆ σ(Jq+1). Since J ⊆ σ(J), we have J(Jq)σ ⊆ σ(Jq+1) and
(Jq)σ ⊆ σ(Jq+1) : J = σ(Jq), as q is large enough, thus (Inq)σ ⊆ σ(Inq).
By [4], Proposition 3.2, Im ⊆ (Im)σ for all m ≥ 1, hence σ(Im) ⊆
σ((Im)σ) = (Im)σ (we refer to (i)). It follows that σ(Im) ⊆ (Im)σ, for
all m ≥ 1, in particular, σ(Inq) ⊆ (Inq)σ. Therefore (Inq)σ = σ(Inq)
and Ass

(
A/(Inq)σ

)
= Ass

(
A/σ(Inq)

)
= Aσ(I).

(iii) Let P ∈ Sσn (I) = Ass
(
A/σ(In)

)
\ Aσ(I).

(a) Suppose that A is a local ring with maximal ideal P . There is
x /∈ σ(In) such that P = σ(In) : x. Let us assume that (In)σ : x is a
proper ideal of A. We have

P = σ(In) : x ⊆ (In)σ : x ⊆ P

hence (In)σ : x = P and P ∈ Ass
(
A/(In)σ

)
. Since (Ass

(
A/(In)σ

)
)n∈N∗

is an increasing sequence and stabilizes to Aσ(I) (cf. [4]), P ∈ Aσ(I).
This contradicts the fact that P ∈ Sσn (I), thus (In)σ : x = A and
x ∈ (In)σ. It follows that P ∈ Ass

(
(In)σ/σ(In)

)
.

(b) Suppose that A is not a local ring with maximal ideal P . It is well-
known thatAP is a local ring with maximal ideal PAP . We have PAP ∈
Ass[AP/σ(In)AP ] and PAP /∈ Ass[AP/σ(Ik)AP ], k � 0. That is,
PAP ∈ Ass[AP/σ̂P (InAP )] and PAP /∈ Ass[AP/σ̂P (IkAP )], k �
0. Hence, PAP ∈ Ass[AP/σ̂P (InAP )]\Ass[AP/σ̂P (IkAP )], k � 0. By
(a), we obtain PAP ∈ Ass[(InAP )σ̂P /σ̂P (InAP )]. We have

(InAP )σ̂P = σ̂P (In+kAP ) :AP
σ̂P (IkAP ) = σ(In+k)AP :AP

σ(Ik)AP

= [σ(In+k) :A σ(Ik)]AP , k � 0
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The first equality follows immediately from the definition. Let us prove
the second equality. Indeed, let w ∈ [σ(In+k) :A σ(Ik)]AP . There exist

α ∈ σ(In+k) :A σ(Ik) and s ∈ S = A\P such that w =
α

s
. For every

v ∈ σ(Ik)AP there is y ∈ σ(Ik) and t ∈ S such that v =
y

t
. We have

wv =
α

s

y

t
=
αy

st
with αy ∈ σ(In+k) and st ∈ S, hence wv ∈ σ(In+k)AP ,

therefore w ∈ σ(In+k)AP :AP
σ(Ik)AP and

[σ(In+k) :A σ(Ik)]AP ⊆ σ(In+k)AP :AP
σ(Ik)AP .

Conversely, let
α

s
∈ σ(In+k)AP :AP

σ(Ik)AP and (
y1
1
, ...,

yr
1

) be a fi-

nite system of generators of σ(Ik)AP . For all i = 1, . . . , r we have
α

s

yi
1

=
αyi
s

∈ σ(In+k)AP . Hence there exists ui ∈ S such that

ui α yi ∈ σ(In+k). We put u = u1u2...ur. For all i = 1, . . . , r we
have uα yi ∈ σ(In+k), thus αu ∈ σ(In+k) :A σ(Ik), it follows that
α

s
=

αu

su
∈ [σ(In+k) :A σ(Ik)]AP and σ(In+k)AP :AP

σ(Ik)AP ⊆
[σ(In+k) :A σ(Ik)]AP so that we get

σ(In+k)AP :AP
σ(Ik)AP = [σ(In+k) :A σ(Ik)]AP .

Consequently,

Ass[(InAP )σ̂P /σ̂P (InAP )] = Ass[[σ(In+k) :A σ(Ik)]AP/[σ(In)]AP ].

Since PAP ∈ Ass[(InAP )σ̂P /σ̂P (InAP )], it follows that

PAP ∈ Ass[[σ(In+k) :A σ(Ik)/σ(In)]AP ] = Ass[[(In)σ/σ(In)]AP ],

hence P ∈ Ass[(In)σ/σ(In)] and Sσn (I) ⊆ Ass[(In)σ/σ(In)]. �

Remark 3.5. By Lemma 3.3, if σ = sat then σ̂P exists for every P ∈
Spec(A).

The following proposition is a generalization of [9], Lemma 2.5.

Proposition 3.6. Let H be an ideal containing I, V = {P1, P2, ..., Pn}
be a finite set of associated prime ideals of I such that every Pi is isoled
in V . Suppose that σ(I)AQ  σ(H)AQ for every Q ∈ V . Let P ∈ V
and σP be a semi-prime operation on I(AP ) such that σP (KAP ) =
σ(K)AP for all K ∈ I(A). We put J = σ(I) + P1 . . . Pn σ(H). Then

(i) V ⊆ Ass
(
A/σ(J)

)
,

(ii) If Q ∈ Sσ1 (J) and Q contains no P ∈ V then Q ∈ Sσ1 (H).

Proof. Let P ∈ V , P is a minimal and maximal element in V . We have
JAP = σ(I)AP + PAPσ(H)AP . Since σ(I)AP  σ(H)AP , we have
JAP  σ(H)AP = σP (HAP ). We also have σP (JAP )  σP (HAP ) and
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σ(J)AP  σ(H)AP , since σP is a semi-prime operation on I(AP ). It
follows that σ(J)AP : σ(H)AP is a proper ideal of the local ring AP .
We have PAPσ(H)AP ⊆ σ(I)AP + PAPσ(H)AP = JAP , therefore
PAP ⊆ σ(J)AP : σ(H)AP and PAP = σ(J)AP : σ(H)AP , since PAP
is the maximal ideal of AP . Hence PAP ∈ Ass

(
AP/σ(J)AP

)
and

P ∈ Ass
(
A/σ(J)

)
. This proves that V ⊆ Ass

(
A/σ(J)

)
.

ii) Suppose Q ∈ Sσ1 (J) and Q contains no P ∈ V . Since PAQ = AQ,
we have JAQ = σ(I)AQ + σ(H)AQ. It follows that σ(H)AQ ⊆ JAQ
and σ(H)AQ ⊆ σ(J)AQ. We have JAQ = σ(I)AQ + σ(H)AQ and
σ(I)AQ ⊆ σ(H)AQ, therefore JAQ ⊆ σ(H)AQ = σQ(HAQ). It follows
that σ(J)AQ ⊆ σ(H)AQ and σ(J)AQ = σ(H)AQ. Since Q ∈ Sσ1 (J) =
Ass

(
A/σ(J)

)
\Aσ(J), we haveQAQ ∈ Ass

(
AQ/σ(J)AQ

)
\AσQ(JAQ) =

Ass
(
AQ/σ(H)AQ

)
\ AσQ(HAQ), hence Q ∈ Ass

(
A/σ(H)

)
\ Aσ(H) =

Sσ1 (H). �

Theorem 3.7. Let I be a nonzero ideal of the ring A.

(i) For all k ≥ 1, (Ik)σ ⊆ (Ik−1)σ.
(ii)

(
(In)σ

)
n∈N is a filtration on the ring A.

(iii) Let n ≥ 1 be an integer, J be an ideal of A such that J ⊆
(In)σ. If P ∈ Ass

(
A/σ(J)

)
then P ∈ Ass

(
(In−1)σ/σ(J)

)
. In

particular, Ass
(
(In)σ/σ(J)

)
⊆ Ass

(
(In−1)σ/σ(J)

)
.

(iv) Let n ≥ 1 be an integer. If J ⊆ (In)σ then for every integer
0 ≤ k < n, we have Ass

(
A/σ(J)

)
= Ass

(
(Ik)σ/σ(J)

)
.

Proof. (i) Let k ∈ N∗ and x ∈ (Ik)σ, we have xσ(In) ⊆ σ(In+k) ⊆
σ(In+k−1) for n large enough, hence x ∈ (Ik−1)σ.
(ii) It is obvious that (I0)σ = Aσ = A. We also have (In)σ ⊆ (In−1)σ
(we refer to (i)) and (Ip)σ(Iq)σ ⊆ (Ip+q)σ (cf. [4], Proposition 3.2).
(iii) It is clear for n = 1. Assume that n > 1. If P ∈ Ass

(
A/σ(J)

)
then there exists x ∈ A \ σ(J) such that P = σ(J) : x. It follows that
xP ⊆ σ(J) and x ∈ σ(J) : P . Since I ⊆ P , we have xσ(I) ⊆ σ(J)
and x ∈ σ(J) : σ(I). We also have J ⊆ (In)σ, so that σ(J) ⊆ (In)σ,
since (In)σ is σ-closed. Therefore x ∈ (In)σ : σ(I) = (In−1)σ ([4],
Proposition 3.4), hence P = σ(J) : x with x ∈ (In−1)σ and x /∈ σ(J). It
follows that P ∈ Ass

(
(In−1)σ/σ(J)

)
, in particular Ass

(
(In)σ/σ(J)

)
⊆

Ass
(
(In−1)σ/σ(J)

)
(we refer to (i)).

(iv) By (i) and (iii), we have Ass
(
A/σ(J)

)
⊆ Ass

(
(In−1)σ/σ(J)

)
⊆

... ⊆ Ass
(
Iσ/σ(J)

)
⊆ Ass

(
A/σ(J)

)
. �

Theorem 3.7, (iii) is a generalization of [9], 4.15.2

Proposition 3.8. Let A be a commutative ring with identity and σ be
a semi-prime operation on I(A). Let I and J be ideals of A. Assume
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that there exists a regular element u of A such that uI = J . For all
n ∈ N∗ we have Ass

(
A/σ(In)

)
⊆ Ass

(
A/σ(Jn)

)
.

Proof. Let P ∈ Ass
(
A/σ(In)

)
. There exists x ∈ A \ σ(In) such that

P = σ(In) : x. For every a ∈ σ(In) : x, we have ax ∈ σ(In). Therefore
axun ∈ unσ(In) = σ((uI)n) = σ(Jn) and a ∈ σ(Jn) : xun. Conversely,
if b ∈ σ(Jn) : xun then bxun ∈ σ(Jn) = unσ(In). Since u is a
regular element, un is a regular element. It follows that bx ∈ σ(In),
hence b ∈ σ(In) : x. We have σ(In) : x = σ(Jn) : xun, therefore
P = σ(In) : x = σ(Jn) : xun and P ∈ Ass

(
A/σ(Jn)

)
. �

Corollary 3.9. Let A be an Artinian ring and σ be a prime operation
on I(A). Let x be a regular element of a (regular) ideal I such that
the principal ideal (x) is a reduction of I. Then there exists an integer
r > 0 such that

(i) for all n ∈ N∗, Ass(A/σ(Irn)) ⊆ Ass(A/σ(I(r+1)n)),
(ii) Sσr (I) ⊆ Ass

(
(Ir−1)σ/σ(Ir+1)

)
.

Proof. (i) Follows from Proposition 3.8.
(ii) By Theorem 3.4, (iii) we have Sσr (I) ⊆ Ass

(
(Ir)σ/σ(Ir)

)
for

all r ∈ N∗. Since Ir ⊆ (Ir)σ, it follows from Theorem 3.7, (iii)
that Ass

(
(Ir)σ/σ(Ir)

)
⊆ Ass

(
(Ir−1)σ/σ(Ir)

)
. Since xIr = Ir+1, it

follows from Proposition 3.8 that Ass(A/σ(Ir)) ⊆ Ass(A/σ(Ir+1)).
Now we show that Ass((Ir−1)σ/σ(Ir)) ⊆ Ass((Ir−1)σ/σ(Ir+1)). Let
P ∈ Ass((Ir−1)σ/σ(Ir)). There exists y ∈ (Ir−1)σ \ σ(Ir) such that
P = σ(Ir) : y. Since (σ(In) : y)n∈N is a decreasing sequence of ideals
of the Artinian ring A, σ(Ir) : y = σ(Ir+1) : y for r large enough. It
follows that P ∈ Ass((Ir−1)σ/σ(Ir+1)), hence Ass((Ir−1)σ/σ(Ir)) ⊆
Ass((Ir−1)σ/σ(Ir+1)). �

Proposition 3.10. ([1], Prop. 4) For all n ∈ N∗, there is an ideal J(n)
of the ring A such that Sσn (I) = Ass

(
J(n)/σ(In)

)
.

Proof. We refer to [1], Chap.4, Proposition 4. �

Proposition 3.11. Let k, m ∈ N such that k < m. There exist

J(k), J(m) ∈ I(A) such that Ass
(J(k)∩J(m)

σ(Im)

)
⊆ Sσm(I).

Proof. We use the fact that
J(k)∩J(m)

σ(Im)
⊆ J(m)/σ(Im). �

4. σ(fI)-superficial elements of an ideal

Throughout this section (A,M) is a Noetherian local ring with infi-
nite residue field K = A

M and I is an M-primary ideal of the ring A.
Let σ be a semi-prime operation on I(A). We put σ(fI) = (σ(In))n∈N,
which is the σ-closure of the I-adic filtration fI = (In)n∈N.
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Definition 4.1. An element x ∈ I is said to be σ(fI)-superficial if
there exists an integer n0 such that

(
σ(In+1) :A x

)
∩ σ(In0) = σ(In),

for all n ≥ n0.

Proposition 4.2. Let x ∈ I be a σ(fI)-superficial. For all n ≥ 1 we
have

(i)
(
(In+1)σ : x

)
= (In)σ,

(ii) (x) ∩ (In+1)σ = x(In)σ.

Proof. Suppose that x ∈ I is a σ(fI)-superficial element.
(i) By [4], Proposition 3.2, we have x(In)σ ⊆ I(In)σ ⊆ (In+1)σ for
all n ≥ 1, hence x(In)σ ⊆ (In+1)σ and (In)σ ⊆

(
(In+1)σ : x

)
, for

all n ≥ 1. Conversely, let a ∈
(
(In+1)σ : x

)
, then ax ∈ (In+1)σ =

σ(In+1+k) : σ(Ik), ∀ k � 0. It follows that aσ(Ik) ⊆
(
σ(In+1+k) : x

)
,

∀ k � 0. Since x ∈ I is a σ(fI)-superficial element, there exists an
integer k0 such that

(
σ(Im+1) :A x

)
∩ σ(Ik0) = σ(Im), for all m ≥ k0.

For k large enough, we obtain aσ(Ik) ⊆
(
σ(In+1+k) : x

)
and aσ(Ik) ⊆

σ(Ik0). Therefore aσ(Ik) ⊆
(
σ(In+k+1) : x

)
∩ σ(Ik0) = σ(In+k) with

n + k > k0, thus a ∈ σ(In+k) : σ(Ik) = (In)σ, ∀ k � 0. This proves
that

(
(In+1)σ : x

)
= (In)σ, for all n ≥ 1.

(ii) Let n ∈ N∗ and y ∈ (x) ∩ (In+1)σ. There exists a ∈ A such
y = ax. Since y = ax ∈ (In+1)σ, a ∈ (In+1)σ : x. By (i), we have
a ∈ (In)σ and ax ∈ x(In)σ, hence (x) ∩ (In+1)σ ⊆ x(In)σ. Conversely,
we have x(In)σ ⊆ I(In)σ ⊆ Iσ(In)σ ⊆ (In+1)σ, it follows that x(In)σ ⊆
(x) ∩ (In+1)σ. Hence (x) ∩ (In+1)σ = x(In)σ. �

By Theorem 3.4, (ii), there exist large enough integers n such that
(In)σ = σ(In). Set ρIσ(A) = min{n | (I i)σ = σ(I i) for all i ≥ n}. The
fact that such an integer ρIσ(A) may exist follows from [8], 2.6.

Corollary 4.3. If x ∈ I is a σ(fI)-superficial, then σ(I i+1) : x = σ(I i)
for all i ≥ ρIσ(A).

Proof. Let x ∈ I be a σ(f)-superficial element. By Proposition 4.2,
(I i+1)σ : x = (I i)σ, ∀ i ≥ 1. For all i ≥ ρIσ(A), (I i)σ = σ(I i). It follows
that σ(I i+1) : x = σ(I i) for all i ≥ ρIσ(A). �

Lemma 4.4. Let n ∈ N∗. If x ∈ I is a A
σ(In+1)

-regular element then

σ(In+k) : xk = σ(In+1) : x for all k ≥ 1.

Proof. Let n, k ∈ N∗. If a ∈ σ(In+k) : xk then axk ∈ σ(In+k) ⊆
σ(In+1). It follows that x

(
axk−1 + σ(In+1)

)
= 0 and since x ∈ I

is a A
σ(In+1)

-regular element, axk−1 ∈ σ(In+1). By iterating we get

ax ∈ σ(In+1) et a ∈ σ(In+1) : x. Conversely, if a ∈ σ(In+1) : x then
axk ∈ Ik−1σ(In+1) ⊆ σ(In+k) and a ∈ σ(In+k) : xk. �
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Lemma 4.5. Let n ≥ ρIσ(A). If x ∈ I is both a σ(f)-superficial and a
A

σ(In+1)
-regular element then σ(In+k) : xk = σ(In) for all k ≥ 1.

Proof. Follows from Corollary 4.3 and Lemma 4.4. �

In [3], Lemma 1, the author proved that if A is a Noetherian ring and
k ≥ 1 such that I is an ideal of A containing a A

σ(Ik+1)
-regular element

then there exists an integer m0 > k such that σ(Im0+1) : I = σ(Im0).
He also proves Theorem 5 [3], assuming that condition (Eσ) σ(In+1) :
I = σ(In) ∀n� 0 (these are the Ratliff-Rush ideals if σ = Id).

Theorem 4.6. If x ∈ I is a σ(fI)-superficial element, then σ(In+1) :
I = σ(In), for all n ≥ ρIσ(A).

Proof. If I = xA and x is σ(f)-superficial element, then σ(In+1) : I =
σ(In+1) : x = σ(In) for all n ≥ ρIσ(A). Suppose that I 6= xA and
x ∈ I is a σ(f)-superficial element. Let n ≥ ρIσ(A) be an integer
and a ∈ σ(In+1) : I , then aI ⊆ σ(In+1) and ax ∈ σ(In+1), hence
a ∈ σ(In+1) : x = σ(In) by Corollary 4.3. It follows that σ(In+1) : I ⊆
σ(In), pour tout n ≥ ρIσ(A). Conversely, let n ≥ 1 be an integer. If a ∈
σ(In), then aI ⊆ Iσ(In) ⊆ σ(I)σ(In) ⊆ σ(In+1), thus a ∈ σ(In+1) : I
and σ(In) ⊆ σ(In+1) : I. It follows that σ(In+1) : I = σ(In) for all
n ≥ ρIσ(A). �
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Email:ambroisessan@yahoo.fr

Assane Abdoulaye
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