Journal of Algebra and Related Topics Vol. 5, No 2, (2017), pp 35-45

σ -SPORADIC PRIME IDEALS AND SUPERFICIAL ELEMENTS

K. A. ESSAN, A. ABDOULAYE, D. KAMANO *, AND E.D. AKEKE

ABSTRACT. Let A be a Noetherian ring, I be an ideal of A and σ be a semi-prime operation, different from the identity map on the set of all ideals of A. Results of Essan proved that the sets of associated prime ideals of $\sigma(I^n)$, which denoted by $Ass(A/\sigma(I^n))$, stabilize to $A_{\sigma}(I)$. We give some properties of the sets $S_n^{\sigma}(I) = Ass(A/\sigma(I^n) \setminus A_{\sigma}(I))$, with n small, which are the sets of σ -sporadic prime divisors of I. We also give some relationships between $\sigma(f_I)$ -superficial elements and asymptotic prime σ -divisors, where $\sigma(f_I)$ is the σ -closure of the I-adic filtration $f_I = (I^n)_{n \in \mathbb{N}}$.

1. INTRODUCTION

Let A be a commutative Noetherian ring and I be a regular ideal of A. A prime ideal $P \subset A$ is an associated prime of I if there exists an element x in A such that $P = (I :_A x)$. The set of associated primes of I, denoted Ass(A/I), is the set of all prime ideals associated to I. A well-known result of Brodmann [2] proved that the sets of associated prime ideals of I^n , which denote by $Ass(A/I^n)$, stabilize to $A^*(I)$, that is, there exists a positive integer n_0 such that $Ass(A/I^n) = Ass(A/I^{n_0})$ for all $n \geq n_0$. For small n it may happen that there are prime ideals P with $P \in Ass(A/I^n) \setminus A^*(I)$. Such a prime is called a sporadic prime divisor of I. In [7], MacAdam gave some properties of sporadic prime of regular ideals.

MSC(2010): Primary: 13A15, Secondary: 13C99

Keywords: Noetherian ring, filtration, semi-prime operation, associated prime ideals, superficial elements.

Received: 3 December 2017, Accepted: 28 January 2018.

^{*}Corresponding author .

Now let us assume that I is an ideal of A, which is not necessarily regular. Let σ be a semi-prime operation on the set $\mathcal{I}(A)$ of all ideals of A, with $\sigma \neq id_{\mathcal{I}(A)}$. A result of Essan [3] proves that the sequence $(Ass(A/\sigma(I^n))_{n\in\mathbb{N}^*}$ stabilize to a set denoted $A_{\sigma}(I)$, that is $Ass(A/\sigma(I^n) = A_{\sigma}(I)$ for all large n. For small n it may happen that there are prime ideals P with $P \in Ass(A/\sigma(I^n)) - A_{\sigma}(I)$. Such a prime is called a σ -sporadic prime divisor of I. For all integer $n \geq 1$, we put $S_n^{\sigma}(I) = Ass(A/\sigma(I^n)) - A_{\sigma}(I)$ and $S^{\sigma}(I) = \bigcup_{n \in \mathbb{N}^*} S_n^{\sigma}(I)$, that is $S^{\sigma}(I)$ is the set of all σ -sporadic prime of I. Moreover, Essan [4] proves that the sequence $(Ass(A/(I^n)_{\sigma}))_{n \in \mathbb{N}^*}$, with $(I^n)_{\sigma} = \sigma(I^{k+n}) :_A$ $\sigma(I^k)$, $k \gg 0$ is an increasing sequence.

In section 3, we are interested in the σ -sporadic prime of an ideal I of a ring A. We prove that for all integer $n \geq 1$, $\mathcal{S}_n^{\sigma}(I) \subseteq Ass((I^n)_{\sigma}/\sigma(I^n))$ (cf. Theorem 3.4). We will also prove a generalization of [9], Lemma 2.5. and a generalization of [9], 4.15.

In section 4, we suppose that (A, \mathcal{M}) is a Noetherian local ring with infinite residue field. We put $\sigma(f_I) = (\sigma(I^n))_{n \in \mathbb{N}}$, which is the σ closure of the *I*-adic filtration $f_I = (I^n)_{n \in \mathbb{N}}$. An element $x \in I$ is said to be $\sigma(f_I)$ -superficial if there exists an integer n_0 such that $(\sigma(I^{n+1}) :_A x) \cap \sigma(I^{n_0}) = \sigma(I^n)$, for all $n \geq n_0$. Let *I* be an \mathcal{M} primary ideal of the ring *A*. We prove that if $x \in I$ is a $\sigma(f_I)$ superficial element, then for all $n \geq 1$ we have (i) $((I^{n+1})_{\sigma} : x) =$ $(I^n)_{\sigma}$, (ii) $(x) \cap (I^{n+1})_{\sigma} = x(I^n)_{\sigma}$ (Proposition 4.2). It follows that $\sigma(I^{k+1}) : x = \sigma(I^k)$ and $\sigma(I^{n+1}) : I = \sigma(I^n)$, for all $k \geq \rho_{\sigma}^I(A)$, with $\rho_{\sigma}^I(A) = \min\{n \mid (I^i)_{\sigma} = \sigma(I^i) \text{ for all } i \geq n\}$ (Corollary 4.3 and Theorem 4.6).

2. Preliminary

Throughout this paper the letter A will denote a commutative ring with identity.

(1) A filtration on the ring A is a sequence $f = (I_n)_{n \in \mathbb{N}}$ of ideals of A such that $I_0 = A$, $I_{n+1} \subseteq I_n$ and $I_n I_m \subseteq I_{n+m}$ for all $n, m \in \mathbb{N}$.

Definition 2.1. [5]

Let $\mathcal{I}(A)$ be the set of all ideals of a ring A. We consider the following properties of a map $\sigma : \mathcal{I}(A) \longrightarrow \mathcal{I}(A)$:

- (a) $I \subseteq \sigma(I)$ for all $I \in \mathcal{I}(A)$
- (b) if $I \subseteq J$ then $\sigma(I) \subseteq \sigma(J)$ for all $I, J \in \mathcal{I}(A)$
- (c) $\sigma(\sigma(I) = \sigma(I)$

(d) $\sigma(I)\sigma(J) \subseteq \sigma(IJ)$,

(e) $\sigma(bI) = b\sigma(I)$ for all regular element $b \in I$

Then σ is a semi-prime operation on $\mathcal{I}(A)$ if (a) - (d) hold for all $I, J \in \mathcal{I}(A)$; it is a prime operation if (a) - (e) hold for all $I, J \in \mathcal{I}(A)$ and any regular element b of A.

It follows from (d) of Definition 2.1 that $\sigma(\sigma(I)\sigma(J)) = \sigma(IJ)$ for all $I, J \in \mathcal{I}(A)$.

(2) If $f = (I_n)_{n \in \mathbb{N}}$ is a filtration on the ring A and σ is a semi-prime operation on $\mathcal{I}(A)$ then $\sigma(f) = (\sigma(I_n))_{n \in \mathbb{N}}$ is a filtration on A.

(3) Let I be an ideal of A. A filtration $f = (I_n)_{n \in \mathbb{N}}$ on A is said to be I-good if $I.I_n \subseteq I_{n+1}$ for all $n \ge 0$ and there exists $n_0 \in \mathbb{N}$ such that $\forall n \ge n_0, I.I_n = I_{n+1}$. It follows that $I^n I_{n_0} = I_{n_0+n}, \forall n \ge 1$.

(4) Let (A, \mathcal{M}) be a Noetherian local ring with infinite residue field A/\mathcal{M} and $f = (I_n)_{n \in \mathbb{N}}$ be an *I*-good filtration on *A*. An element $x \in I$ is said to be *f*-superficial if there is an integer n_0 such that $(I_{n+1}:_A x) \cap I_{n_0} = I_n$ for all $n \ge n_0$.

3. σ -sporadic prime of an ideal

Throughout this section A is a Noetherian ring, I is a nonzero ideal in A and σ is a semi-prime operation on $\mathcal{I}(A)$.

Let $S \subset A$ be a multiplicative set, that is, suppose that $1_A \in S$ and $xy \in S$ for all $x, y \in S$. An ideal I of A is said to be *satured* with respect to S (or *S*-satured) in A if for all $(a, s) \in A \times S$ such that $as \in I$ we have $a \in I$. Let us put $I_{sat} = \{a \in A/ab \in I \text{ for some } b \in S\}$. Then I_{sat} is a *S*-satured ideal of A. It is the intersection of all *S*-satured ideal of A containing I. It is obvious that $I_{sat} = \bigcup_{s \in S} (I : s)$ and I is a *S*-satured ideal in A if and only if $I = I_{sat}$.

Let $S^{-1}A$ be the ring of fractions of A with respect to S. We put

$$I^{e} = \{ \frac{a}{s} \in S^{-1}A \, / \, a \in I, \, s \in S \},\$$

which is called the *extension* of the ideal I to $S^{-1}A$. For any ideal J of $S^{-1}A$ we put

$$J^c = \{a \in A \mid \frac{a}{1} \in J\}.$$

This is called the *contracted* ideal of J. In these notations, the inclusions $I \subseteq I^{ec}$ and $J^{ce} \subseteq J$ follows immediately from the definitions. From the first inclusion we get $I^e \subseteq I^{ece}$, but substituting $J = I^e$ in the second gives $I^{ece} \subseteq I^e$, and hence

$$I^{ece} = I^e$$
, and similary $J^{cec} = J^c$

Remark 3.1. Let I be an ideal of the ring A. Then we have $I_{sat} = I^{ec}$.

Indeed, let $a \in I^{ec}$. We have $\frac{a}{1} \in I^e$. There exist $b \in I$ and $s \in S$ such that $\frac{a}{1} = \frac{b}{s}$, that is, there exists $u \in S$ such that u(as - b) = 0, hence usa = ub with $ub \in I$ and $us \in S$. It follows that $a \in I_{sat}$ and $I^{ec} \subseteq I_{sat}$. Conversely let $a \in I_{sat}$. There exists $s \in S$ such that $as \in I$, hence $\frac{as}{1} \in I^e$. Since $\frac{1}{s} \in S^{-1}A$, we have $\frac{a}{1} = \frac{1}{s}\frac{as}{1} \in I^e$, thus $a \in I^{ec}$ and $I_{sat} \subseteq I^{ec}$, therefore $I_{sat} = I^{ec}$.

Proposition 3.2. The map $\sigma : \mathcal{I}(A) \longrightarrow \mathcal{I}(A), I \longmapsto \sigma(I) = I_{sat}$ is a semi-prime operation on $\mathcal{I}(A)$.

Proof. (i) (a), (b), (c) of Definition 2.1 follow immediately from the definition of S-satured ideal.

(ii) Let $I, J \in \mathcal{I}(A)$ such that $I \subseteq J$. For all $a \in I_{sat}$, there exists $s \in S$ such that $as \in I$. Since $I \subseteq J$, $as \in J$, hence $a \in J_{sat}$. This proves that $I_{sat} \subseteq J_{sat}$.

(iii) Let $I, J \in \mathcal{I}(A)$. For all $a \in I_{sat}$ and $b \in J_{sat}$ there exist $s, u \in S$ such that $as \in I$ and $bu \in J$. It follows that $absu \in IJ$, with $su \in S$, hence $ab \in (IJ)_{sat}$ and $I_{sat}J_{sat} \subseteq (IJ)_{sat}$.

Lemma 3.3. Let P be a prime ideal of the ring A and $A_P = S^{-1}A$ with $S = A \setminus P$. Then the map $\sigma_P : \mathcal{I}(A_P) \longrightarrow \mathcal{I}(A_P), IA_P \longmapsto I_{sat}A_P$ (where $I \in \mathcal{I}(A)$) is a semi-prime operation on $\mathcal{I}(A_P)$.

Proof. We put $\sigma(I) = I_{sat}$ for all ideal I of A. Let us first prove that σ_P is well-defined. Indeed, let $I, J \in \mathcal{I}(A)$ such that $IA_P = JA_P$, that is $I^e = J^e$. Then we have $I^{ec} = J^{ec}$, so that $I_{sat} = J_{sat}$, hence $\sigma(I) = \sigma(J)$ and we have $\sigma(I)A_P = \sigma(J)(A_P)$, thus $\sigma_P(IA_P) = \sigma_P(JA_P)$.

We now prove that σ_P is a semi-prime operation on $\mathcal{I}(A_P)$.

(a) Let $IA_P \in \mathcal{I}(A_P)$. Since $I \subseteq \sigma(I)$, we have $IA_P \subseteq \sigma(I)A_P$.

(b) Let $IA_P \in \mathcal{I}(A_P)$. Since σ is a semi-prime operation, we have $\sigma_P[\sigma_P(IA_P)] = \sigma_P[\sigma(I)A_P] = \sigma(\sigma(I))A_P = \sigma(I)A_P$.

(c) Let $IA_P, JA_P \in \mathcal{I}(A_P)$ such that $IA_P \subseteq JA_P$, that is $I^e \subseteq J^e$. Then $I^{ec} \subseteq J^{ec}$. By remark 3.1, $I_{sat} \subseteq J_{sat}$, that is $\sigma(I) \subseteq \sigma(J)$. We have $\sigma(I)A_P \subseteq \sigma(J)A_P$, therefore $\sigma_P(IA_P) \subseteq \sigma_P(JA_P)$.

$$(d) \ \sigma_P(IA_P)\sigma_P(JA_P) = \sigma(I)A_P\sigma(J)A_P = \sigma(I)\sigma(J)A_P \subseteq \sigma(IJ)A_P = \sigma_P(IA_PJA_P) = \sigma_P(IA_PJA_P).$$

Theorem 3.4. Let A be a Noetherian ring and σ be a semi-prime operation on $\mathcal{I}(A)$. Suppose that for $P \in Spec(A)$, there is a semiprime operation $\hat{\sigma}_P$ on $\mathcal{I}(A_P)$ such that $\hat{\sigma}_P(IA_P) = \sigma(I)A_P, \forall I \in \mathcal{I}(A)$. Then

- (i) I_{σ} is σ -closed.
- (ii) Let n and q be large enough integers such that for a nonzero ideal I in A, we have $(I^k)_{\sigma} = \sigma(I^{n+k}) : \sigma(I^n)$ and $\sigma(I^{q+1}) : I = \sigma(I^q)$ for all $k \geq 1$. Then $(I^{nq})_{\sigma} = \sigma(I^{nq})$ and $Ass(A/(I^{nq})_{\sigma}) = A_{\sigma}(I)$.
- (iii) For every integer $n \ge 1$, $\mathcal{S}_n^{\sigma}(I) \subseteq Ass((I^n)_{\sigma}/\sigma(I^n))$.

Proof. (i) It is sufficient to prove that $\sigma(I_{\sigma}) \subseteq I_{\sigma}$. We have $I_{\sigma} = \sigma(I^{n+1}) : \sigma(I^n)$, since *n* is large enough. It follows that

$$\sigma(I_{\sigma}) = \sigma[\sigma(I^{n+1}) : \sigma(I^n)] \subseteq \sigma(\sigma(I^{n+1})) : \sigma(\sigma(I^n)) = \sigma(I^{n+1}) : \sigma(I^n)$$

and $\sigma(I^{n+1}) : \sigma(I^n) = I_{\sigma}$, (cf. [4], Proposition 3.3), hence $\sigma(I_{\sigma}) \subseteq I_{\sigma}$. Since σ is a semi-prime operation on $\mathcal{I}(A)$, $I_{\sigma} \subseteq \sigma(I_{\sigma})$, thus $I_{\sigma} = \sigma(I_{\sigma})$. (ii) Let n and q be large enough integers such that for an ideal I of A, $I \neq \{0\}$, we have $(I^k)_{\sigma} = \sigma(I^{n+k}) : \sigma(I^n)$ and $\sigma(I^{q+1}) : I = \sigma(I^q)$, for all $k \geq 1$. It is obvious that $(I^{nq})_{\sigma} = \sigma(I^{n+nq}) : \sigma(I^n) = \sigma(I^{n(1+q)}) :$ $\sigma(I^n)$. We put $J = I^n$, then $(J^q)_{\sigma} = \sigma(J^{q+1}) : \sigma(J)$. It follows that $\sigma(J)(J^q)_{\sigma} \subseteq \sigma(J^{q+1})$. Since $J \subseteq \sigma(J)$, we have $J(J^q)_{\sigma} \subseteq \sigma(J^{q+1})$ and $(J^q)_{\sigma} \subseteq \sigma(J^{q+1}) : J = \sigma(J^q)$, as q is large enough, thus $(I^{nq})_{\sigma} \subseteq \sigma(I^{nq})$. By [4], Proposition 3.2, $I^m \subseteq (I^m)_{\sigma}$ for all $m \geq 1$, hence $\sigma(I^m) \subseteq$ $\sigma((I^m)_{\sigma}) = (I^m)_{\sigma}$ (we refer to (i)). It follows that $\sigma(I^m) \subseteq (I^m)_{\sigma}$, for all $m \geq 1$, in particular, $\sigma(I^{nq}) \subseteq (I^{nq})_{\sigma}$. Therefore $(I^{nq})_{\sigma} = \sigma(I^{nq})$ and $Ass(A/(I^{nq})_{\sigma}) = Ass(A/\sigma(I^{nq})) = A_{\sigma}(I)$.

(iii) Let
$$P \in \mathcal{S}_n^{\sigma}(I) = Ass(A/\sigma(I^n)) \setminus A_{\sigma}(I)$$

(a) Suppose that A is a local ring with maximal ideal P. There is $x \notin \sigma(I^n)$ such that $P = \sigma(I^n) : x$. Let us assume that $(I^n)_{\sigma} : x$ is a proper ideal of A. We have

$$P = \sigma(I^n) : x \subseteq (I^n)_{\sigma} : x \subseteq P$$

hence $(I^n)_{\sigma} : x = P$ and $P \in Ass(A/(I^n)_{\sigma})$. Since $(Ass(A/(I^n)_{\sigma}))_{n \in \mathbb{N}^*}$ is an increasing sequence and stabilizes to $A_{\sigma}(I)$ (cf. [4]), $P \in A_{\sigma}(I)$. This contradicts the fact that $P \in \mathcal{S}^{\sigma}_n(I)$, thus $(I^n)_{\sigma} : x = A$ and $x \in (I^n)_{\sigma}$. It follows that $P \in Ass((I^n)_{\sigma}/\sigma(I^n))$.

(b) Suppose that A is not a local ring with maximal ideal P. It is wellknown that A_P is a local ring with maximal ideal PA_P . We have $PA_P \in Ass[A_P/\sigma(I^n)A_P]$ and $PA_P \notin Ass[A_P/\sigma(I^k)A_P]$, $k \gg 0$. That is, $PA_P \in Ass[A_P/\hat{\sigma}_P(I^nA_P)]$ and $PA_P \notin Ass[A_P/\hat{\sigma}_P(I^kA_P)]$, $k \gg 0$. Hence, $PA_P \in Ass[A_P/\hat{\sigma}_P(I^nA_P)] \setminus Ass[A_P/\hat{\sigma}_P(I^kA_P)]$, $k \gg 0$. By (a), we obtain $PA_P \in Ass[(I^nA_P)\hat{\sigma}_P(I^nA_P)]$. We have

$$(I^{n}A_{P})_{\hat{\sigma}_{P}} = \hat{\sigma}_{P}(I^{n+k}A_{P}) :_{A_{P}} \hat{\sigma}_{P}(I^{k}A_{P}) = \sigma(I^{n+k})A_{P} :_{A_{P}} \sigma(I^{k})A_{P}$$
$$= [\sigma(I^{n+k}) :_{A} \sigma(I^{k})]A_{P}, \quad k \gg 0$$

The first equality follows immediately from the definition. Let us prove the second equality. Indeed, let $w \in [\sigma(I^{n+k}) :_A \sigma(I^k)]A_P$. There exist $\alpha \in \sigma(I^{n+k}) :_A \sigma(I^k)$ and $s \in S = A \setminus P$ such that $w = \frac{\alpha}{s}$. For every $v \in \sigma(I^k)A_P$ there is $y \in \sigma(I^k)$ and $t \in S$ such that $v = \frac{y}{t}$. We have $wv = \frac{\alpha}{s} \frac{y}{t} = \frac{\alpha y}{st}$ with $\alpha y \in \sigma(I^{n+k})$ and $st \in S$, hence $wv \in \sigma(I^{n+k})A_P$, therefore $w \in \sigma(I^{n+k})A_P :_{A_P} \sigma(I^k)A_P$ and

$$[\sigma(I^{n+k}):_A \sigma(I^k)]A_P \subseteq \sigma(I^{n+k})A_P:_{A_P} \sigma(I^k)A_P.$$

Conversely, let $\frac{\alpha}{s} \in \sigma(I^{n+k})A_P :_{A_P} \sigma(I^k)A_P$ and $(\frac{y_1}{1}, ..., \frac{y_r}{1})$ be a finite system of generators of $\sigma(I^k)A_P$. For all i = 1, ..., r we have $\frac{\alpha}{s}\frac{y_i}{1} = \frac{\alpha y_i}{s} \in \sigma(I^{n+k})A_P$. Hence there exists $u_i \in S$ such that $u_i \alpha y_i \in \sigma(I^{n+k})$. We put $u = u_1 u_2 ... u_r$. For all i = 1, ..., r we have $u \alpha y_i \in \sigma(I^{n+k})$, thus $\alpha u \in \sigma(I^{n+k}) :_A \sigma(I^k)$, it follows that $\frac{\alpha}{s} = \frac{\alpha u}{su} \in [\sigma(I^{n+k}) :_A \sigma(I^k)]A_P$ and $\sigma(I^{n+k})A_P :_{A_P} \sigma(I^k)A_P \subseteq [\sigma(I^{n+k}) :_A \sigma(I^k)]A_P$ so that we get

$$\sigma(I^{n+k})A_P :_{A_P} \sigma(I^k)A_P = [\sigma(I^{n+k}) :_A \sigma(I^k)]A_P.$$

Consequently,

 $Ass[(I^{n}A_{P})_{\hat{\sigma}_{P}}/\hat{\sigma}_{P}(I^{n}A_{P})] = Ass[[\sigma(I^{n+k}):_{A}\sigma(I^{k})]A_{P}/[\sigma(I^{n})]A_{P}].$ Since $PA_{P} \in Ass[(I^{n}A_{P})_{\hat{\sigma}_{P}}/\hat{\sigma}_{P}(I^{n}A_{P})]$, it follows that $PA_{P} \in Ass[[\tau(I^{n+k}):_{A}\sigma(I^{k})]A_{P}] = Ass[[\tau(I^{n+k}):_{A}\sigma(I^{k})]A_{P}].$

$$PA_P \in Ass[[\sigma(I^{n+\kappa}):_A \sigma(I^{\kappa})/\sigma(I^n)]A_P] = Ass[[(I^n)_{\sigma}/\sigma(I^n)]A_P],$$

hence $P \in Ass[(I^n)_{\sigma}/\sigma(I^n)]$ and $\mathcal{S}_n^{\sigma}(I) \subseteq Ass[(I^n)_{\sigma}/\sigma(I^n)].$

Remark 3.5. By Lemma 3.3, if $\sigma = sat$ then $\hat{\sigma}_P$ exists for every $P \in Spec(A)$.

The following proposition is a generalization of [9], Lemma 2.5.

Proposition 3.6. Let H be an ideal containing $I, V = \{P_1, P_2, ..., P_n\}$ be a finite set of associated prime ideals of I such that every P_i is isoled in V. Suppose that $\sigma(I)A_Q \subsetneq \sigma(H)A_Q$ for every $Q \in V$. Let $P \in V$ and σ_P be a semi-prime operation on $\mathcal{I}(A_P)$ such that $\sigma_P(KA_P) = \sigma(K)A_P$ for all $K \in \mathcal{I}(A)$. We put $J = \sigma(I) + P_1 ... P_n \sigma(H)$. Then

- (i) $V \subseteq Ass(A/\sigma(J))$,
- (ii) If $Q \in \mathcal{S}_1^{\sigma}(J)$ and Q contains no $P \in V$ then $Q \in \mathcal{S}_1^{\sigma}(H)$.

Proof. Let $P \in V$, P is a minimal and maximal element in V. We have $JA_P = \sigma(I)A_P + PA_P\sigma(H)A_P$. Since $\sigma(I)A_P \subsetneq \sigma(H)A_P$, we have $JA_P \subsetneq \sigma(H)A_P = \sigma_P(HA_P)$. We also have $\sigma_P(JA_P) \subsetneq \sigma_P(HA_P)$ and

 $\sigma(J)A_P \subsetneq \sigma(H)A_P$, since σ_P is a semi-prime operation on $\mathcal{I}(A_P)$. It follows that $\sigma(J)A_P : \sigma(H)A_P$ is a proper ideal of the local ring A_P . We have $PA_P\sigma(H)A_P \subseteq \sigma(I)A_P + PA_P\sigma(H)A_P = JA_P$, therefore $PA_P \subseteq \sigma(J)A_P : \sigma(H)A_P$ and $PA_P = \sigma(J)A_P : \sigma(H)A_P$, since PA_P is the maximal ideal of A_P . Hence $PA_P \in Ass(A_P/\sigma(J)A_P)$ and $P \in Ass(A/\sigma(J))$. This proves that $V \subseteq Ass(A/\sigma(J))$.

ii) Suppose $Q \in \mathcal{S}_1^{\sigma}(J)$ and Q contains no $P \in V$. Since $PA_Q = A_Q$, we have $JA_Q = \sigma(I)A_Q + \sigma(H)A_Q$. It follows that $\sigma(H)A_Q \subseteq JA_Q$ and $\sigma(H)A_Q \subseteq \sigma(J)A_Q$. We have $JA_Q = \sigma(I)A_Q + \sigma(H)A_Q$ and $\sigma(I)A_Q \subseteq \sigma(H)A_Q$, therefore $JA_Q \subseteq \sigma(H)A_Q = \sigma_Q(HA_Q)$. It follows that $\sigma(J)A_Q \subseteq \sigma(H)A_Q$ and $\sigma(J)A_Q = \sigma(H)A_Q$. Since $Q \in \mathcal{S}_1^{\sigma}(J) =$ $Ass(A/\sigma(J)) \setminus A_{\sigma}(J)$, we have $QA_Q \in Ass(A_Q/\sigma(J)A_Q) \setminus A_{\sigma_Q}(JA_Q) =$ $Ass(A_Q/\sigma(H)A_Q) \setminus A_{\sigma_Q}(HA_Q)$, hence $Q \in Ass(A/\sigma(H)) \setminus A_{\sigma}(H) =$ $\mathcal{S}_1^{\sigma}(H)$.

Theorem 3.7. Let I be a nonzero ideal of the ring A.

- (i) For all $k \geq 1$, $(I^k)_{\sigma} \subseteq (I^{k-1})_{\sigma}$.
- (ii) $((I^n)_{\sigma})_{n \in \mathbb{N}}$ is a filtration on the ring A.
- (iii) Let $n \ge 1$ be an integer, J be an ideal of A such that $J \subseteq (I^n)_{\sigma}$. If $P \in Ass(A/\sigma(J))$ then $P \in Ass((I^{n-1})_{\sigma}/\sigma(J))$. In particular, $Ass((I^n)_{\sigma}/\sigma(J)) \subseteq Ass((I^{n-1})_{\sigma}/\sigma(J))$.
- (iv) Let $n \ge 1$ be an integer. If $J \subseteq (I^n)_{\sigma}$ then for every integer $0 \le k < n$, we have $Ass(A/\sigma(J)) = Ass((I^k)_{\sigma}/\sigma(J))$.

Proof. (i) Let $k \in \mathbb{N}^*$ and $x \in (I^k)_{\sigma}$, we have $x\sigma(I^n) \subseteq \sigma(I^{n+k}) \subseteq \sigma(I^{n+k-1})$ for *n* large enough, hence $x \in (I^{k-1})_{\sigma}$.

(ii) It is obvious that $(I^0)_{\sigma} = A_{\sigma} = A$. We also have $(I^n)_{\sigma} \subseteq (I^{n-1})_{\sigma}$ (we refer to (i)) and $(I^p)_{\sigma}(I^q)_{\sigma} \subseteq (I^{p+q})_{\sigma}$ (cf. [4], Proposition 3.2).

(iii) It is clear for n = 1. Assume that n > 1. If $P \in Ass(A/\sigma(J))$ then there exists $x \in A \setminus \sigma(J)$ such that $P = \sigma(J) : x$. It follows that $xP \subseteq \sigma(J)$ and $x \in \sigma(J) : P$. Since $I \subseteq P$, we have $x\sigma(I) \subseteq \sigma(J)$ and $x \in \sigma(J) : \sigma(I)$. We also have $J \subseteq (I^n)_{\sigma}$, so that $\sigma(J) \subseteq (I^n)_{\sigma}$, since $(I^n)_{\sigma}$ is σ -closed. Therefore $x \in (I^n)_{\sigma} : \sigma(I) = (I^{n-1})_{\sigma}$ ([4], Proposition 3.4), hence $P = \sigma(J) : x$ with $x \in (I^{n-1})_{\sigma}$ and $x \notin \sigma(J)$. It follows that $P \in Ass((I^{n-1})_{\sigma}/\sigma(J))$, in particular $Ass((I^n)_{\sigma}/\sigma(J)) \subseteq$ $Ass((I^{n-1})_{\sigma}/\sigma(J))$ (we refer to (i)).

(iv) By (i) and (iii), we have $Ass(A/\sigma(J)) \subseteq Ass((I^{n-1})_{\sigma}/\sigma(J)) \subseteq$... $\subseteq Ass(I_{\sigma}/\sigma(J)) \subseteq Ass(A/\sigma(J)).$

Theorem 3.7, (*iii*) is a generalization of [9], 4.15.2

Proposition 3.8. Let A be a commutative ring with identity and σ be a semi-prime operation on $\mathcal{I}(A)$. Let I and J be ideals of A. Assume

that there exists a regular element u of A such that uI = J. For all $n \in \mathbb{N}^*$ we have $Ass(A/\sigma(I^n)) \subseteq Ass(A/\sigma(J^n))$.

Proof. Let $P \in Ass(A/\sigma(I^n))$. There exists $x \in A \setminus \sigma(I^n)$ such that $P = \sigma(I^n) : x$. For every $a \in \sigma(I^n) : x$, we have $ax \in \sigma(I^n)$. Therefore $axu^n \in u^n \sigma(I^n) = \sigma((uI)^n) = \sigma(J^n)$ and $a \in \sigma(J^n) : xu^n$. Conversely, if $b \in \sigma(J^n)$: xu^n then $bxu^n \in \sigma(J^n) = u^n \sigma(I^n)$. Since u is a regular element, u^n is a regular element. It follows that $bx \in \sigma(I^n)$, hence $b \in \sigma(I^n)$: x. We have $\sigma(I^n)$: $x = \sigma(J^n)$: xu^n , therefore $P = \sigma(I^n) : x = \sigma(J^n) : xu^n \text{ and } P \in Ass(A/\sigma(J^n)).$

Corollary 3.9. Let A be an Artinian ring and σ be a prime operation on $\mathcal{I}(A)$. Let x be a regular element of a (regular) ideal I such that the principal ideal (x) is a reduction of I. Then there exists an integer r > 0 such that

- (i) for all $n \in \mathbb{N}^*$, $Ass(A/\sigma(I^{rn})) \subseteq Ass(A/\sigma(I^{(r+1)n}))$, (ii) $\mathcal{S}_r^{\sigma}(I) \subseteq Ass((I^{r-1})_{\sigma}/\sigma(I^{r+1}))$.

Proof. (i) Follows from Proposition 3.8.

(ii) By Theorem 3.4, (iii) we have $\mathcal{S}_r^{\sigma}(I) \subseteq Ass((I^r)_{\sigma}/\sigma(I^r))$ for all $r \in \mathbb{N}^*$. Since $I^r \subseteq (I^r)_{\sigma}$, it follows from Theorem 3.7, (iii) that $Ass((I^r)_{\sigma}/\sigma(I^r)) \subseteq Ass((I^{r-1})_{\sigma}/\sigma(I^r))$. Since $xI^r = I^{r+1}$, it follows from Proposition 3.8 that $Ass(A/\sigma(I^r)) \subseteq Ass(A/\sigma(I^{r+1}))$. Now we show that $Ass((I^{r-1})_{\sigma}/\sigma(I^r)) \subseteq Ass((I^{r-1})_{\sigma}/\sigma(I^{r+1}))$. Let $P \in Ass((I^{r-1})_{\sigma}/\sigma(I^r))$. There exists $y \in (I^{r-1})_{\sigma} \setminus \sigma(I^r)$ such that $P = \sigma(I^r) : y$. Since $(\sigma(I^n) : y)_{n \in \mathbb{N}}$ is a decreasing sequence of ideals of the Artinian ring A, $\sigma(I^r): y = \sigma(I^{r+1}): y$ for r large enough. It follows that $P \in Ass((I^{r-1})_{\sigma}/\sigma(I^{r+1}))$, hence $Ass((I^{r-1})_{\sigma}/\sigma(I^{r})) \subseteq$ $Ass((I^{r-1})_{\sigma}/\sigma(I^{r+1})).$

Proposition 3.10. ([1], Prop. 4) For all $n \in \mathbb{N}^*$, there is an ideal $J_{(n)}$ of the ring A such that $\mathcal{S}_n^{\sigma}(I) = Ass(J_{(n)}/\sigma(I^n)).$

Proof. We refer to [1], Chap.4, Proposition 4.

Proposition 3.11. Let $k, m \in \mathbb{N}$ such that k < m. $J_{(k)}, J_{(m)} \in \mathcal{I}(A)$ such that $Ass\left(\frac{J_{(k)} \cap J_{(m)}}{\sigma(I^m)}\right) \subseteq S_m^{\sigma}(I)$. There exist

Proof. We use the fact that $\frac{J_{(k)}\cap J_{(m)}}{\sigma(I^m)} \subseteq J_{(m)}/\sigma(I^m)$.

4. $\sigma(f_I)$ -superficial elements of an ideal

Throughout this section (A, \mathcal{M}) is a Noetherian local ring with infinite residue field $K = \frac{A}{M}$ and I is an \mathcal{M} -primary ideal of the ring A. Let σ be a semi-prime operation on $\mathcal{I}(A)$. We put $\sigma(f_I) = (\sigma(I^n))_{n \in \mathbb{N}}$, which is the σ -closure of the *I*-adic filtration $f_I = (I^n)_{n \in \mathbb{N}}$.

Definition 4.1. An element $x \in I$ is said to be $\sigma(f_I)$ -superficial if there exists an integer n_0 such that $(\sigma(I^{n+1}):A x) \cap \sigma(I^{n_0}) = \sigma(I^n)$, for all $n \geq n_0$.

Proposition 4.2. Let $x \in I$ be a $\sigma(f_I)$ -superficial. For all $n \geq 1$ we have

- (i) $((I^{n+1})_{\sigma} : x) = (I^n)_{\sigma},$ (ii) $(x) \cap (I^{n+1})_{\sigma} = x(I^n)_{\sigma}.$

Proof. Suppose that $x \in I$ is a $\sigma(f_I)$ -superficial element.

(i) By [4], Proposition 3.2, we have $x(I^n)_{\sigma} \subseteq I(I^n)_{\sigma} \subseteq (I^{n+1})_{\sigma}$ for all $n \ge 1$, hence $x(I^n)_{\sigma} \subseteq (I^{n+1})_{\sigma}$ and $(I^n)_{\sigma} \subseteq ((I^{n+1})_{\sigma} : x)$, for all $n \ge 1$. Conversely, let $a \in ((I^{n+1})_{\sigma} : x)$, then $ax \in (I^{n+1})_{\sigma} =$ $\sigma(I^{n+1+k}): \sigma(I^k), \forall k \gg 0$. It follows that $a\sigma(I^k) \subseteq (\sigma(I^{n+1+k}): x),$ $\forall k \gg 0$. Since $x \in I$ is a $\sigma(f_I)$ -superficial element, there exists an integer k_0 such that $(\sigma(I^{m+1}): A_x) \cap \sigma(I^{k_0}) = \sigma(I^m)$, for all $m \geq k_0$. For k large enough, we obtain $a\sigma(I^k) \subseteq (\sigma(I^{n+1+k}):x)$ and $a\sigma(I^k) \subseteq$ $\sigma(I^{k_0})$. Therefore $a\sigma(I^k) \subseteq (\sigma(I^{n+k+1}): x) \cap \sigma(I^{k_0}) = \sigma(I^{n+k})$ with $n+k > k_0$, thus $a \in \sigma(I^{n+k}) : \sigma(I^k) = (I^n)_{\sigma}, \forall k \gg 0$. This proves that $((I^{n+1})_{\sigma}: x) = (I^n)_{\sigma}$, for all $n \ge 1$.

(ii) Let $n \in \mathbb{N}^*$ and $y \in (x) \cap (I^{n+1})_{\sigma}$. There exists $a \in A$ such y = ax. Since $y = ax \in (I^{n+1})_{\sigma}$, $a \in (I^{n+1})_{\sigma}$: x. By (i), we have $a \in (I^n)_{\sigma}$ and $ax \in x(I^n)_{\sigma}$, hence $(x) \cap (I^{n+1})_{\sigma} \subseteq x(I^n)_{\sigma}$. Conversely, we have $x(I^n)_{\sigma} \subseteq I(I^n)_{\sigma} \subseteq I_{\sigma}(I^n)_{\sigma} \subseteq (I^{n+1})_{\sigma}$, it follows that $x(I^n)_{\sigma} \subseteq (x) \cap (I^{n+1})_{\sigma}$. Hence $(x) \cap (I^{n+1})_{\sigma} = x(I^n)_{\sigma}$.

By Theorem 3.4, (ii), there exist large enough integers n such that $(I^n)_{\sigma} = \sigma(I^n)$. Set $\rho_{\sigma}^I(A) = \min\{n \mid (I^i)_{\sigma} = \sigma(I^i) \text{ for all } i \ge n\}$. The fact that such an integer $\rho_{\sigma}^{I}(A)$ may exist follows from [8], 2.6.

Corollary 4.3. If $x \in I$ is a $\sigma(f_I)$ -superficial, then $\sigma(I^{i+1}) : x = \sigma(I^i)$ for all $i \geq \rho_{\sigma}^{I}(A)$.

Proof. Let $x \in I$ be a $\sigma(f)$ -superficial element. By Proposition 4.2, $(I^{i+1})_{\sigma}: x = (I^i)_{\sigma}, \forall i \ge 1$. For all $i \ge \rho_{\sigma}^I(A), (I^i)_{\sigma} = \sigma(I^i)$. It follows that $\sigma(I^{i+1}): x = \sigma(I^i)$ for all $i \ge \rho_{\sigma}^I(A)$.

Lemma 4.4. Let $n \in \mathbb{N}^*$. If $x \in I$ is a $\frac{A}{\sigma(I^{n+1})}$ -regular element then $\sigma(I^{n+k}): x^k = \sigma(I^{n+1}): x \text{ for all } k \ge 1.$

Proof. Let $n, k \in \mathbb{N}^*$. If $a \in \sigma(I^{n+k}) : x^k$ then $ax^k \in \sigma(I^{n+k}) \subseteq$ $\sigma(I^{n+1})$. It follows that $x(ax^{k-1} + \sigma(I^{n+1})) = \overline{0}$ and since $x \in I$ is a $\frac{A}{\sigma(I^{n+1})}$ -regular element, $ax^{k-1} \in \sigma(I^{n+1})$. By iterating we get $ax \in \sigma(I^{n+1})$ et $a \in \sigma(I^{n+1}) : x$. Conversely, if $a \in \sigma(I^{n+1}) : x$ then $ax^k \in I^{k-1}\sigma(I^{n+1}) \subseteq \sigma(I^{n+k})$ and $a \in \sigma(I^{n+k}) : x^k$. **Lemma 4.5.** Let $n \ge \rho_{\sigma}^{I}(A)$. If $x \in I$ is both a $\sigma(f)$ -superficial and a $\frac{A}{\sigma(I^{n+1})}$ -regular element then $\sigma(I^{n+k}): x^{k} = \sigma(I^{n})$ for all $k \ge 1$.

Proof. Follows from Corollary 4.3 and Lemma 4.4.

In [3], Lemma 1, the author proved that if A is a Noetherian ring and $k \geq 1$ such that I is an ideal of A containing a $\frac{A}{\sigma(I^{k+1})}$ -regular element then there exists an integer $m_0 > k$ such that $\sigma(I^{m_0+1}) : I = \sigma(I^{m_0})$. He also proves Theorem 5 [3], assuming that condition $(E_{\sigma}) \quad \sigma(I^{n+1}) : I = \sigma(I^{n_0})$.

Theorem 4.6. If $x \in I$ is a $\sigma(f_I)$ -superficial element, then $\sigma(I^{n+1})$: $I = \sigma(I^n)$, for all $n \geq \rho_{\sigma}^I(A)$.

Proof. If I = xA and x is $\sigma(f)$ -superficial element, then $\sigma(I^{n+1}) : I = \sigma(I^{n+1}) : x = \sigma(I^n)$ for all $n \ge \rho_{\sigma}^I(A)$. Suppose that $I \ne xA$ and $x \in I$ is a $\sigma(f)$ -superficial element. Let $n \ge \rho_{\sigma}^I(A)$ be an integer and $a \in \sigma(I^{n+1}) : I$, then $aI \subseteq \sigma(I^{n+1})$ and $ax \in \sigma(I^{n+1})$, hence $a \in \sigma(I^{n+1}) : x = \sigma(I^n)$ by Corollary 4.3. It follows that $\sigma(I^{n+1}) : I \subseteq \sigma(I^n)$, pour tout $n \ge \rho_{\sigma}^I(A)$. Conversely, let $n \ge 1$ be an integer. If $a \in \sigma(I^n)$, then $aI \subseteq I\sigma(I^n) \subseteq \sigma(I)\sigma(I^n) \subseteq \sigma(I^{n+1})$, thus $a \in \sigma(I^{n+1}) : I$ and $\sigma(I^n) \subseteq \sigma(I^{n+1}) : I$. It follows that $\sigma(I^{n+1}) : I = \sigma(I^n)$ for all $n \ge \rho_{\sigma}^I(A)$.

Acknowledgments

The authors would like to thank the referee for careful reading.

References

- 1. N. Bourbaki, Algèbre commutative, Chap. 4, Masson, Paris 1985.
- M. Brodmann, Asymptotic stability of Ass(M/IⁿM), Proc. Amer. Math. Soc., 74 (1979), 16-18.
- E.K. Ambroise, Opérations de clôture sur les sous-modules d'un module, Annales Mathématiques Africaines, 3 (2012), 89-100.
- 4. E.K. Ambroise, Filtrations, opérations de clôture et la suite $\{Ass(A/(f^{(k)})_{\sigma})\}_{k\in\mathbb{N}}$, Annales Mathématiques Africaines, **4** (2013), 117-124.
- D. Kirby, Closure operations on ideals and submodules, J. London. Maths. Soc., 44 (1969), 283-291.
- 6. H. Matsumura, Commutative ring theory, Cambridge University Press, 1986.
- S. McAdam, *Primes Associated to an Ideal*, Contemporary Mathematics, Amer. Math. Soc., **102**, 1989.
- S. McAdam, Asymptotic prime divisors, no. 1023, Berlin HeidelbergNewYork: Springer-Verlag, 1983.

44

- 9. S. McAdam and L.J. Ratliff, *Sporadic and irrelevant prime divisors*, Trans. Amer. Math. Soc., (1) **303** (1987), 311–324.
- L.J. Ratliff and D.E. Rush, Two notes on reductions of ideals, Indiana Univ. Math. J., (6) 27 (1978), 929-934.
- 11. T.J. Puthenpurakal and F. Zulfeqarr, *Ratliff-Rush filtrations associated with ideals and modules in a noetherian ring*, J. Algebra, (2) **311** (2007), 551-583.

Komoe Ambroise Essan

UFR Sciences sociales, Université Péléforo Gon Coulibaly, Korhogo, Côte d'Ivoire. Email:ambroisessan@yahoo.fr

Assane Abdoulaye

Laboratoire de Mathématiques et Informatique, Université Nangui Abrogoua, Abidjan, Côte d'Ivoire. Email:abdoulassan2002@yahoo.fr

Damase Kamano

Départment de Sciences et Technologie, Section Mathématiques, Ecole normale supérieure, Abidjan, Côte d'Ivoire. Email:kamanodamase@yahoo.fr

Eric Dago Akeke

UFR de Mathématiques et Informatique, Université Félix Houphouet Boigny, Abidjan, Côte d'Ivoire. Email:ericdago@yahoo.fr