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ON SUBALGEBRAS OF AN EVOLUTION ALGEBRA
OF A “CHICKEN” POPULATION

B. A. OMIROV AND U. A. ROZIKOV∗

Abstract. We consider an evolution algebra which corresponds
to a bisexual population with a set of females partitioned into
finitely many different types and the males having only one type.
For such algebras in terms of its structure constants we calculate
right and plenary periods of basis elements. Some results on subal-
gebras of EACP and ideals on low-dimensional EACP are obtained.

1. Introduction

In recent years the non-commutative and non-associative analogies
of the classical constructions become interesting in the connection with
their applications in many branches of mathematics, biology (popula-
tion, genetics, etc.) and physics (string theory, quantum field theory,
etc.).

An algebraic approach in Genetics consists of the study of various
types of genetic algebras (like algebras of free, ”self-reproduction” and
bisexual populations, Bernstein algebras) [4], [6]. Mendel exploited
symbols that are quite algebraically suggestive to express his genetic
laws. The evolution of a population comprises a determined change of
state in the next generations as a result of reproduction and selection
[6],[7].

The main problem for a given algebra of a sex linked population is
to carefully examine how the basic algebraic model must be altered in
order to compensate for this lack of symmetry in the genetic inheritance
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system. In [2] Etherington began the study of this kind of algebras with
the simplest possible case.

Recently in [4] an evolution algebra B is introduced identifying the
coefficients of inheritance of a bisexual population as the structure con-
stants of the algebra. The basic properties of the algebra are studied.
Moreover a detailed analysis of a special case of the evolution algebra
(of bisexual population in which type “1” of females and males have
preference) is given. Since the structural constants of the algebra B
are given by two cubic matrices, the study of this algebra is quite
difficult. To avoid such difficulties one has to consider an algebra of
bisexual population with a simplified form of matrices of structural
constants. In [5] a such simplified model of bisexual population is con-
sidered and basic properties of corresponding evolution algebra (called
evolution algebras of a “chicken” population (CEACP)) are studied. In
[8] a notion of chain of EACP is introduced and several examples (time
homogenous, time non-homogenous, periodic, etc.) of such chains are
given.

In this paper we calculate right and plenary periods for basis ele-
ments of EACP and establish that natural basis of any subalgebra of
EACP (which is also a EACP) can be extended to a natural basis of
whole algebra. Moreover, we describe one-dimensional subalgebras (in
ordinary sense) of EACP. Finally, simplicity of low-dimensional EACP
is investigated.

2. Basic definitions

Following [5] we consider a set {hi, i = 1, . . . , n} (the set of ”hen”s)
and r (a ”rooster”).

Definition 2.1. [5] Let (E , ·) be an algebra over a field K. If it admits
a basis {h1, . . . , hn, r}, such that

hir = rhi =
∑n

j=1 aijhj + bir,
hihj = 0, i, j = 1, . . . , n; rr = 0

(2.1)

then this algebra is called an evolution algebra of a ”chicken” popula-
tion (EACP). We call the basis {h1, . . . , hn, r} a natural basis.

Thus an algebra EACP, E , is defined by a rectangular n × (n + 1)-
matrix

M =


a11 a12 . . . a1n b1

a21 a22 . . . a2n b2

...
... . . .

...
...

an1 an2 . . . ann bn

 ,
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which is called the matrix of structural constants of the algebra E .
Write the matrix M in the form M = A⊕b where A = (aij)i,j=1,...,n

and bT = (b1, . . . , bn).
Assume we have two rectangular n × (n + 1)-matrices M = A ⊕ b

and H = B ⊕ c. Then we define multiplication of such matrices by

MH = AB ⊕ Ac, HM = BA⊕Bb. (2.2)

We note that this multiplication agrees with usual multiplication of
(n+ 1)× (n+ 1)-matrices with zero (n+ 1)-th row.

Let E be a commutative algebra, define principal power of a ∈ E as

a2 = a · a, a3 = a2 · a, . . . , an = an−1 · a;

and plenary powers of a as

a[1] = a · a, a[n] = a[n−1]a[n−1], n ≥ 2.

Define right multiplication operator by

Ra(x) = xa.

Let E be an EACP with the basis set {h1, h2, . . . , hn, r}. We say hi
(or r) occurs in x ∈ E if the coefficient αi (or a) in x =

∑n
i=1 αihi + ar

is non-zero. Write hi ≺ x (r ≺ x).

Definition 2.2. Let hj be a basis element of an EACP, the right period
pj of hj is defined by

pj = min{m ∈ N : hj ≺ Rm
r (hj)}.

If pj = 1, we say hj is aperiodic; if the set {m ∈ N : hj ≺ Rm
r (hj)} is

empty we define pj =∞.

Definition 2.3. Let hj be a basis element of an EACP, the plenary
period qj of hj is defined by

qj = min{m ∈ N : hj ≺ (hjr)
[m]}.

If qj = 1, we say hj is aperiodic; if the set {m ∈ N : hj ≺ (hjr)
[m]} is

empty we define qj =∞.

3. Conditions of periodicity

Proposition 3.1. For any m ≥ 1 and for any i = 1, . . . , n the following
identities hold

(i) Rm
r (hi) = (Amh)i + (Am−1b)ir;

(ii) (hir)
[m] = γm [(Am+1h)i + (Amb)ir] , where h = {h1, . . . , hn}

and γm satisfies the recurrent equation:

γm+1 = 2γ2m(Amb)i, with γ1 = 2bi.
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Proof. (i) Compute actions of Rr to the set h:

Rr(h) = {Rr(h1), . . . , Rr(hn)} = {h1r, . . . , hnr} = {(Mh)1, . . . , (Mh)n},
where

(Mh)i =
n∑
j=1

aijhj + bir = (Ah)i + bir, i = 1, . . . , n.

Also we have

R2
r(hi) = Rr((Mh)i) =

n∑
s=1

n∑
j=1

aijajshs +
n∑
j=1

aijbjr = (A2h)i + (Ab)ir.

Using induction by m we get

Rm
r (h) = {(Mmh)1, . . . , (M

mh)n},
where

(Mmh)i = Rm
r (hi) = (Amh)i + (Am−1b)ir, i = 1, . . . , n.

(ii) Use induction by m ≥ 1. For m = 1 we have

(hir)
[1] =

(
n∑
j=1

aijhj + bir

)2

= 2bi
[
(A2h)i + (Ab)ir

]
.

Assume now that the formula (ii) is true for m and prove it for m+ 1:

(hir)
[m+1] =

(
γm
[
(Am+1h)i + (Amb)ir

])2
= 2γ2m(Amb)i((A

m+1h)ir). (3.1)

Let Am = (a
(m)
ij )ij=1,...,n. Then from (3.1) we get

(hir)
[m+1] = 2γ2m(Amb)i(

n∑
j=1

a
(m+1)
ij hjr)

= γm+1

[
(Am+2h)i + (Am+1b)ir

]
. (3.2)

�

As a corollary of this proposition we have

Proposition 3.2. 1) The right period of hi is

pi = min{m ∈ N : a
(m)
ii 6= 0}.

2) If bi = 0 then qi =∞, otherwise the plenary period of hi is

qi = min{m ∈ N : a
(m+1)
ii

m−1∏
j=0

(Ajb)i 6= 0},

where A0 = id.
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Proof. 1) This simply follows from the part (i) of Proposition 3.1.
2) Using part (ii) of Proposition 3.1 we get

(hir)
[m] = 22m−1

m−1∏
j=0

(Ajb)2
m−j−1

i

[
(Am+1h)i + (Amb)ir

]
.

Thus the coefficient of hi is

22m−1
m−1∏
j=0

(Ajb)2
m−j−1

i a
(m+1)
ii .

This completes the proof. �

The following proposition reduces an EACP to a simple one.

Proposition 3.3. [1] Let C be an EACP, then there exists a basis
{h1, h2, . . . , hn, r} such that C on this basis is represented by the table
of multiplication as follows

h1r =
n∑
j=1

a1jhj + δr, δ ∈ {0, 1}, hir =
n∑
j=1

aijhj, 2 ≤ i ≤ n.

Using this proposition by Proposition 3.2 we get

Corollary 3.4. For EACP mentioned in Proposition 3.3 the following
hold

a) If δ = 0 then qi = 1 or ∞,
b) If δ = 1 then the plenary period of hi is

qi ∈

{
{1, 2,∞} if i = 1

{1,∞}, if i 6= 1.

Proof. a) If hi is present in hir then qi = 1, otherwise since (hir)
[m] = 0

for all m ≥ 2 we get qi =∞.
b) Case i = 1. If h1 is present in h1r then q1 = 1, otherwise consider

(h1r)
[2] if this contains h1 then q1 = 2, if (h1r)

[2] does not contain h1
then since (h1r)

[m] = 0 for all m ≥ 3 we get qi =∞.
Case i 6= 1 is similar to part a). �

4. Subalgebras of an EACP

By definition of an EACP we know that this algebra depends on a
natural basis {h1, h2, . . . , hn, r}.

Definition 4.1. [5]
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1) Let C be an EACP and C1 be a subspace of C. If C1 has a
natural basis {h′1, h′2, . . . , h′m, r′} with multiplication table like
(2.1), then we call C1 an evolution subalgebra of a CP.

2) Let I ⊂ C be an evolution subalgebra of a CP. If CI ⊆ I, we
call I an evolution ideal of a CP.

3) Let C and D be EACPs, we say a linear homomorphism f from
C to D is an evolution homomorphism, if f is an algebraic map
and for a natural basis {h1, . . . , hn, r} of C, {f(h1), . . . , f(hn), f(r)}
spans an evolution subalgebra of a CP in D. Furthermore, if
an evolution homomorphism is one to one and onto, it is an
evolution isomorphism.

4) An EACP C is called simple if it has no proper evolution ideals.
5) C is called irreducible if it has no proper subalgebras.

In fact, for linear subspace C1 of an EACP C we can consider three
type of subalgebras:

(i) C1 is a subalgebra in ordinary sense;
(ii) C1 is subalgebra and there exists a natural basis of C1;
(iii) C1 is subalgebra and there exist a natural basis of C1 which can

be extended to a natural basis of C.
Note that Definition 4.1 agrees with the second type of subalgebra.
The following proposition gives equivalence of (ii) and (iii).

Proposition 4.2. Definitions (ii) and (iii) are equivalent.

Proof. Part (iii)⇒ (ii) is straightforward. We shall prove (ii)⇒ (iii).
Let C1 = 〈f1, f2, . . . , fm, r′〉 be a subalgebra of C = 〈h1, . . . , hn, r〉 in
sense (ii). We shall show that the natural basis of C1 can be extended
to a natural basis of C. We have

fi =
∑n

j=1 αijhj + γir, i = 1, . . . ,m,

r′ =
∑n

j=1 βjhj + γr.
(4.1)

Case γ 6= 0. Take the following change of the basis

f ′i = fi −
γi
γ
r′, 1 ≤ i ≤ m, r′′ = r′.

This new basis also is a natural basis, moreover the vectors f ′i do not
contain r in their decompositions. Thus vectors {f ′1, . . . , f ′m} generate
a subspace in the vector space generated by {h1, . . . , hn}. Then using
theorem about change of basis (see [10]) we can replace {hi1 , . . . , him}
by {f ′1, . . . , f ′m}. Moreover r can be replaced by r′. Hence for γ 6= 0 we
can extend the natural basis of C1 to the natural basis of C.
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Case γ = 0 and γi = 0 for all i. In this case all fi and r′ do not
depend on r. So we can again use theorem about change of basis and
replace {hi1 , . . . , him , him+1} by {f1, . . . , fm, r′}.

Case γ = 0 and γi 6= 0 for some i. By change Xi = r′;Xj = fj, j 6=
i; r′′ = fi we reduce this case to the first case. This completes the proof.

�

The following is an example of a subalgebra (as in (i)) of C, which is
not an evolution subalgebra of a CP (as in (ii)).

Example 4.3. [5] Let C be an EACP over a field K with basis {h1, h2, h3, r}
and multiplication defined by hir = hi+r, i = 1, 2, 3. Take u1 = h1+r,
u2 = h2 + r. Then

(au1 + bu2)(cu1 + du2) = acu21 + (ad+ bc)u1u2 + bdu22

= (2ac+ ad+ bc)u1 + (2bd+ ad+ bc)u2.

Hence, F = Ku1 + Ku2 is a subalgebra of C, but it is not an evolution
subalgebra of a CP. Indeed, assume v1, v2 be a basis of F . Then v1 =
au1 + bu2 and v2 = cu1 + du2 for some a, b, c, d ∈ K such that D =
ad − bc 6= 0. We have v21 = (2a2 + 2ab)u1 + (2b2 + 2ab)u2 and v22 =
(2c2 + 2cd)u1 + (2d2 + 2cd)u2. We must have v21 = v22 = 0, i.e.

a2 + ab = 0, b2 + ab = 0, c2 + cd = 0, d2 + cd = 0.

From this we get a = −b and c = −d. Then D = 0, a contradiction.
If a = 0 then b = 0 (resp. c = 0 then d = 0), we reach the same
contradiction. Hence v21 6= 0 and v22 6= 0, and consequently F is not an
evolution subalgebra of a CP.

In sequel for a subalgebra we mean a subalgebra in the sense (iii).

Proposition 4.4. Let C be an EACP over R with basis {h1, . . . , hn, r}
and matrix of structural constants M = A ⊕ b. If rankA = n, then
any subalgebra of C has the form 〈f1, . . . , fm, ar〉, where 0 ≤ m ≤ n,
a ∈ {0, 1} and

fi =
n∑
j=1

αijhj, αij ∈ R, i = 1, . . . ,m.

Proof. Let C̃ = 〈ϕ1, . . . , ϕm〉 be a subalgebra of C. Then we have

ϕi =
n∑
k=1

βikhk + βir, i = 1, . . . ,m.
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Since ϕ2
i = 0, then we have

2βi

n∑
k=1

βikhkr = 2βi

(
n∑
k=1

n∑
s=1

βikakshs +
n∑
k=1

βikbkr

)
= 0. (4.2)

Hence βi = 0 or

n∑
k=1

βikaks = 0 for any s and
n∑
k=1

βikbk = 0. (4.3)

Since rankA = n from (4.3) we get βik = 0 for all k. Hence ϕi is equal
to βir or to

∑n
k=1 βikhk. This completes the proof. �

Proposition 4.5. Let C be an EACP with matrix of structural con-
stants M = A ⊕ b. Then X = 〈x〉, where 0 6= x = y + βr =∑n

i=1 αihi + βr generates an one-dimensional subalgebra if one of the
following conditions is satisfied

a. β = 0 or Ay = 0, by = 0.
b. β 6= 0, by = 1 and y is an eigenvector of A with eigenvalue

1/β.

Proof. An arbitrary x =
∑n

i=1 αihi + βr generates a subalgebra iff
x2 = cx for some c. Here one can consider only the case c = 0 and
c = 1. Thus x generates a subalgebra iff it is an absolute nilpotent or
idempotent of C. Now the proof follows from Propositions 3.4 and 3.5
of [5]. �

Proposition 4.6. Let C be an EACP as in Proposition 3.3, δ = 1 and
with matrix of structural constants M = A⊕ b. Then X = 〈x〉, where
x =

∑n
i=1 αihi + βr generates an one-dimensional ideal iff one of the

following conditions is satisfied

a. β = α1 =
∑n

i=2 ai1αi = 0 and x (with α1 = 0) is an eigenvector
of A1 with a real eigenvalue, where A1 = (aij)i,j=2,...,n is the
minor of the matrix A.

b. β = 1 and αj = a1j and akj = 0, for all k = 2, . . . , n, j =
1, . . . , n.

Proof. Take an arbitrary element y =
∑n

i=1 γihi + νr ∈ C we should
have xy ∈ X , i.e. there exists c such that xy = cx. The last equality
is equivalent to{ ∑n

i=1(ναi + βγi)aij = cαj; j = 1, 2, . . . , n

να1 + βγ1 = cβ.
(4.4)
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a. For case β = 0 if ν = 0 then in (4.4) one can take c = 0. If ν 6= 0
then α1 = 0 and

ν
∑n

i=2 αiaij = cαj; j = 2, . . . , n∑n
i=2 αiai1 = 0.

This completes the proof of a.
b. In the case β 6= 0 one can take β = 1. For y = hk, k = 2, . . . , n

from (4.4) for some c = ck we get the system akj = ckαj, j = 1, . . . , n
and ck = 0. This implies akj = 0 for all k = 2, . . . , n and j = 1, . . . , n.
In case y = h1 we get the system a1j = c1αj, j = 1, . . . , n and c1 = 1.
Hence a1j = αj. Taking into account the above obtained results, for
y = r we get α1a1j = cαj and α1 = c. Thus we proved that if A has
the following form

A =


α1 α2 . . . αn

0 0 . . . 0

...
...

...
...

0 0 . . . 0


then there are ck and c such that xy = ckx if y = hk and xy = cx if
y = r. Using this result for an arbitrary y =

∑n
i=1 γihi + νr ∈ C we

obtain

xy =
n∑
i=1

γixhi + νxr = (
n∑
i=1

γici + c)x = Cx.

Thus X = 〈x =
∑n

i=1 αihi + r〉 is an ideal of the algebra C with matrix

M =


α1 α2 . . . αn 1

0 0 . . . 0 0

...
...

...
...

...

0 0 . . . 0 0

 .

�

5. Simple three-dimensional complex EACPs

In the following theorem the classification of three dimensional EACP
is presented.

Theorem 5.1. 1. [5] Any 2-dimensional, non-trivial EACP C is
isomorphic to one of the following pairwise non isomorphic al-
gebras:
C1: rh = hr = h, h2 = r2 = 0,
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C2: rh = hr = 1
2
(h+ r), h2 = r2 = 0.

2. [1] An arbitrary three dimensional complex EACP C is isomor-
phic to one of the following pairwise non-isomorphic algebras

If dim C2 = 1 then

C1 : h1r = 1
2
r

C2 : h1r = 1
2
h2;

C3 : h1r = 1
2
h1 + 1

2
r.

If dim C2 = 2 then

C4 : h1r = 1
2
(h1 + h2), h2r = 1

2
h2;

C5(β) : h1r = 1
2
h1, h2r = β

2
h2, β 6= 0;

C6(α, β) : h1r = 1
2
(αh1 + βh2 + r), h2r = 1

2
h1;

C7(α) : h1r = 1
2
(αh1 + r), h2r = 1

2
h2;

C8 : h1r = 1
2
(h1 + h2 + r), h2r = 1

2
h2.

where one of non-zero parameter α, β in the algebra C6(α, β)
can be assumed to be equal to 1.

The following theorem describes simple and not simple EACP listed
in Theorem 5.1.

Theorem 5.2. a. The two-dimensional algebra C1 and C2 are not
simple.

b. The three-dimensional algebra Ci is not simple for i = 1, 2, 3, 4, 5, 7, 8
and i = 6 for β = 0. Moreover, C6(α, β) is simple for β 6= 0.

Proof. a. It is easy to see that 〈h〉� C1 and 〈h+ r〉� C2.
b. Consider some possible subalgebras (in sense (iii)) of C = 〈h1, h2, r〉:

D1 = 〈h1〉, D2 = 〈h1, h2〉, D3 = 〈h1, r〉,

D4 = 〈h2〉, D5 = 〈h2, r〉, D6 = 〈r〉.



EVOLUTION ALGEBRA OF A “CHICKEN” POPULATION 23

It is easy to check that

Dj =



is ideal for C1 if j = 3, 4, 5, 6 and is not ideal if j = 1, 2;

is ideal for C2 if j = 2, 4, 5 and is not ideal if j = 1, 6;

is ideal for C3 if j = 3, 4 and is not ideal if j = 1, 2, 5, 6;

is ideal for C4 if j = 2, 4, 5 and is not ideal if j = 1, 6;

is ideal for C5 if j = 1, 2, 4, and is not ideal if j = 3, 5, 6;

is not ideal for C6 if j = 1, 2, 4, 6;

is ideal for C7 if j = 4 and is not ideal if j = 1, 2, 3, 5, 6;

is ideal for C8 if j = 4 and is not ideal for j = 1, 2, 5, 6.

Now consider C6:
Case β = 0. In this case D3 will be an ideal, i.e. C6(α, 0) is not

simple.
Case β 6= 0. This β can be reduced to β = 1. We have rankA = 2.

So we can use Proposition 4.5: consider a general subalgebra C̃6 =
〈ah1 + bh2, δr〉. For δ = 0 it is easy to see that C̃6C6 6⊂ C̃6. If δ = 1 then

C̃6C6 = 〈(aα + b)h1 + ah2 + ar, αh1 + h2 + r, h1〉.
Simple calculations show that (aα + b)h1 + ah2 + ar ∈ C̃6 iff b =
−a

2
· (α ∓

√
α2 + 4). For this value of b one gets αh1 + h2 + r ∈ C̃6

iff α
√
α2 + 4 = α2 + 2. But the last equation has not solution. Hence

C6(α, β) is simple for any β 6= 0. �
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