تعداد نشریات | 31 |
تعداد شمارهها | 744 |
تعداد مقالات | 7,082 |
تعداد مشاهده مقاله | 10,200,498 |
تعداد دریافت فایل اصل مقاله | 6,876,108 |
شناسایی مناطق ژنومی مرتبط با صفات تولیدمثلی در گوسفند بلوچی با استفاده از نشانگرهای با تراکم بالا | ||
تحقیقات تولیدات دامی | ||
مقاله 3، دوره 6، شماره 3، آذر 1396، صفحه 29-41 اصل مقاله (318.98 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/ar.2017.2608 | ||
نویسندگان | ||
مجید پسندیده* 1؛ قدرت رحیمی میانجی2؛ محسن قلی زاده3؛ لوکا فونتانزی4 | ||
1دانش آموخته دکتری تخصصی ژنتیک و اصلاح نژاد دام، دانشگاه علوم کشاورزی و منابع طبیعی ساری | ||
2استاد بخش ژنتیک و اصلاح نژاد دام، دانشگاه علوم کشاورزی و منابع طبیعی ساری | ||
3استادیار بخش ژنتیک و اصلاح نژاد دام، دانشگاه علوم کشاورزی و منابع طبیعی ساری | ||
4عضو هیات علمی بخش ژنتیک و اصلاح نژاد دام، دانشگاه بلونیا ایتالیا | ||
چکیده | ||
در این تحقیق، یک پویش ژنومی برای شناسایی جایگاههای مؤثر بر صفات تولیدمثلی در گوسفند بلوچی انجام شد. به این منظور، نمونهبرداری خون از 96 رأس میش همراه با دادههای فنوتیپی مربوط به صفات تولیدمثلی شامل مجموع وزن همزادان متولد شده، میانگین وزن همزادان در تولد، مجموع وزن همزادان شیرگیری شده، میانگین وزن همزادان شیرگیری شده و تعداد برههای زنده در شش ماهگی در چهار نوبت زایش بدست آورده شد. پس از استخراج DNA، نمونهها با استفاده از تراشههایSNP گوسفندی (50K) تعیین ژنوتیپ شدند. تجزیه مطالعه ارتباط ژنومی با استفاده از نرمافزار PLINK در مدلهای رگرسیون خطی و لجستیک شامل اثرات SNPها و عوامل ثابت جنس و نوبت زایش انجام شد. در مجموع، هشت نشانگر معنیدار در سطح کروموزومی روی کروموزومهای 1، 4، 10، 15 و 17 مرتبط با صفات تولیدمثلی مورد مطالعه شناسایی شد (05/0>P). بررسی ژنها و QTLها در این مناطق نیز نشاندهنده وجود ژنها و QTLهای مؤثر بر صفات رشد و تولیدمثلی بود. از نتایج این تحقیق میتوان برای کشف واریانتهای مسبب صفات تولیدمثلی در برنامههای اصلاح نژادی گوسفند استفاده نمود. | ||
کلیدواژهها | ||
جایگاههای صفات کمّی؛ صفات تولیدمثلی؛ گوسفند بلوچی؛ مطالعه ارتباط ژنومی | ||
مراجع | ||
ضمیری م. ج. 1385. فیزیولوژی تولید مثل، انتشارات حق شناس. Al- Mamun H. A., Kwan P., Clark S. A., Ferdosi M. H., Tellam R. and Gondro C. 2015. Genome-wide association study of body weight in Australian Merino sheep reveals an orthologous region on OAR6 to human and bovine genomic regions affecting height and weight. Genetics Selection Evolution, 47: 66.
Andersson L. and Georges M. 2004. Domestic-animal genomics: deciphering the genetics of complex traits. Nature Reviews Genetics, 5: 202-212.
Ayllon F., Kjærner-Semb E., Furmanek T., Wennevik V., Solberg M. F., Dahle G., Taranger G. L., Glover K. A., Almén M. S. and Rubin C. J. 2015. The vgll3 locus controls age at maturity in wild and domesticated Atlantic salmon (Salmo salar L.) males. PLoS Genetics, 11: 1-15.
Barrett J. C., Fry B., Maller J. and Daly M. J. 2004. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21: 263-265.
Boichard D., Grohs C., Bourgeois F., Cerqueira F., Faugeras R., Neau A., Rupp R., Amigues Y., Boscher M. Y. and Levéziel H. 2003. Detection of genes influencing economic traits in three French dairy cattle breeds. Genetics Selection Evolution, 35: 77-102.
Cousminer D. L., Berry D. J., Timpson N. J., Ang W., Thiering E., Byrne E., Taal H. R., Huikari V., Bradfield J. P. and Kerkhof M. 2013. Genome-wide association and longitudinal analyses reveal genetic loci linking pubertal height growth, pubertal timing, and childhood adiposity. Human Molecular Genetics, 22: 2735–2747.
Devlin B. and Roeder K. 1999. Genomic control for association studies. Biometrics, 55: 997-1004.
Dolan J., Walshe K., Alsbury S., Hokamp K., O'keeffe S., Okafuji T., Miller S. F., Tear G. and Mitchell K. J. 2007. The extracellular leucine-rich repeat superfamily; a comparative survey and analysis of evolutionary relationships and expression patterns. BMC Genomics, 8: 1-24.
Duguma G., Schoeman S., Cloete S. and Jordaan G. 2002. Genetic parameter estimates of early growth traits in the Tygerhoek Merino flock. South African Journal of Animal Science, 32: 66-75.
Ekiz B., Özcan M., Yilmaz A. and Ceyhan A. 2005. Estimates of phenotypic and genetic parameters for ewe productivity traits of Turkish Merino (Karacabey Merino) sheep. Turkish Journal of Veterinary and Animal Sciences, 29: 557-564.
Falconer D. S. and Mackay T. F. C. 1996. Introduction to Quantitative Genetics, Ed 4. Longmans Green, Harlow, Essex, UK.
Fogarty N. 1995. Genetic parameters for live weight, fat and muscle measurements, wool production and reproduction in sheep: a review. Animal Breeding Abstracts.
Gholizadeh M., Rahimi-Mianji G., Nejati-Javaremi A., De Koning D. J. and Jonas E. 2014. Genomewide association study to detect QTL for twinning rate in Baluchi sheep. Journal of Genetics, 93: 489-493.
Halperin D. S., Pan C., Lusis A. J. and Tontonoz P. 2013. Vestigial-like 3 is an inhibitor of adipocyte differentiation. Journal of Lipid Research, 54: 473-481.
Hayashi T., Ogawa T., Sato M., Tsuchida N., Fotovati A., Iwamoto H., Ikeuchi Y., Cassens R. G. and Ito T. 2001. S-myotrophin promotes the hypertrophy of myotube as insulin-like growth factor-I does. The International Journal of Biochemistry and Cell Biology, 33: 831-838.
Hayashi T., Takeshita K., Tsuchida N., Kitano K., Kawabata S.-I., Iwanaga S. and Ito T. 1998. Purification of a novel muscle cell growth factor S-myotrophin from porcine skeletal muscle. The International Journal of Biochemistry and Cell Biology, 30: 897-908.
Hirschhorn J. N. and Daly M. J. 2005. Genome-wide association studies for common diseases and complex traits. Nature Reviews Genetics, 6: 95-108.
Höglund J. K., Buitenhuis A., Guldbrandtsen B., Su G., Thomsen B. and Lund M. 2009. Overlapping chromosomal regions for fertility traits and production traits in the Danish Holstein population. Journal of Dairy Science, 92: 5712-5719.
Höglund J. K., Guldbrandtsen B., Lund M. S. and Sahana G. 2012. Analyzes of genome-wide association follow-up study for calving traits in dairy cattle. BMC Genetics, 13: 1-9.
Kogo H., Tsutsumi M., Inagaki H., Ohye T., Kiyonari H. and Kurahashi H. 2012. HORMAD2 is essential for synapsis surveillance during meiotic prophase via the recruitment of ATR activity. Genes to Cells, 17: 897-912.
Lopes M. S., Bastiaansen J. W., Harlizius B., Knol E. F. and Bovenhuis H. 2014. A genome-wide association study reveals dominance effects on number of teats in pigs. PloS one, 9: e105867.
Mcclure M., Morsci N., Schnabel R., Kim J., Yao P., Rolf M., Mckay S., Gregg S., Chapple R. and Northcutt S. 2010. A genome scan for quantitative trait loci influencing carcass, post‐natal growth and reproductive traits in commercial Angus cattle. Animal Genetics, 41: 597-607.
Mcdowell E. N., Kisielewski A. E., Pike J. W., Franco H. L., Yao H. H. and Johnson K. J. 2012. A transcriptome-wide screen for mRNAs enriched in fetal Leydig cells: CRHR1 agonism stimulates rat and mouse fetal testis steroidogenesis. PloS one, 7: e47359.
Meyer K. 2006. WOMBAT–A program for mixed model analyses by restricted maximum likelihood. User notes.’(Animal Genetic and Breeding Unit. University of New England: Armidale) Meyer K, Graser HU, Citeseer.
Miller S., Dykes D. and Polesky H. 1988. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16: 1215.
Nishio M. and Satoh M. 2014. Including dominance effects in the genomic BLUP method for genomic evaluation. PloS one, 9: 1-6.
Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M. A., Bender D., Maller J., Sklar P., De Bakker P. I. and Daly M. J. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81: 559-575.
Rosati A., Mousa E., Van Vleck L. and Young L. 2002. Genetic parameters of reproductive traits in sheep. Small Ruminant Research, 43: 65-74.
Sas S. and Guide S. U. S. 2003. Version 9.1. SAS Institute Inc., Cary, NC.
Schreiweis M. A., Hester P. Y. and Moody D. E. 2005. Identification of quantitative trait loci associated with bone traits and body weight in an F2 resource population of chickens. Genetics Selection Evolution, 37: 1-22.
Sen S., Kundu G., Mekhail N., Castel J., Misono K. and Healy B. 1990. Myotrophin: purification of a novel peptide from spontaneously hypertensive rat heart that influences myocardial growth. Journal of Biological Chemistry, 265: 16635-16643.
Shabir M., Ganai T., Misra S., Shah R. and Ahmad T. 2013. Polymorphism study of growth differentiation factor 9B (GDF9B) gene and its association with reproductive traits in sheep. Gene, 515: 432-438.
Shiraishi S., Nakamura Y.-N., Iwamoto H., Haruno A., Sato Y., Mori S., Ikeuchi Y., Chikushi J., Hayashi T. and Sato M. 2006. S-myotrophin promotes the hypertrophy of skeletal muscle of mice in vivo. The International Journal of Biochemistry and Cell Biology, 38: 1114-1122.
Snyman M., Olivier J., Erasmus G. and Van Wyk J. 1997. Genetic parameter estimates for total weight of lamb weaned in Afrino and Merino sheep. Livestock Production Science, 48: 111-116.
Speliotes E. K., Willer C. J., Berndt S. I., Monda K. L., Thorleifsson G., Jackson A. U., Allen H. L., Lindgren C. M., Luan J. A. and Mägi R. 2010. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genetics, 42: 937-948.
Su G., Christensen O. F., Ostersen T., Henryon M. and Lund M. S. 2012. Estimating additive and non-additive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers. PloS one, 7: 1-7.
Thomas L. A., Akins M. R. and Biederer T. 2008. Expression and adhesion profiles of SynCAM molecules indicate distinct neuronal functions. Journal of Comparative Neurology, 510: 47-67.
Vatankhah M., Talebi M. and Edriss M. 2008. Estimation of genetic parameters for reproductive traits in Lori-Bakhtiari sheep. Small Ruminant Research, 74: 216-220.
Verardo L. L., Silva F. F., Lopes M. S., Madsen O., Bastiaansen J. W., Knol E. F., Kelly M., Varona L., Lopes P. S. and Guimarães S. E. 2016. Revealing new candidate genes for reproductive traits in pigs: combining Bayesian GWAS and functional pathways. Genetics Selection Evolution, 48: 1-9.
Veugelers M., De Cat B., Ceulemans H., Bruystens A.-M., Coomans C., Dürr J., Vermeesch J., Marynen P. and David G. 1999. Glypican-6, a new member of the glypican family of cell surface heparan sulfate proteoglycans. Journal of Biological Chemistry, 274: 26968-26977.
Vitezica Z., Moreno C., Bodin L., François D., Barillet F., Brunel J. and Elsen J. 2006. No associations between PrP genotypes and reproduction traits in INRA 401 sheep. Journal of Animal Science, 84: 1317-1322.
Wang L. and Wang Y. 2012. Molecular characterization, expression patterns and subcellular localization of Myotrophin (MTPN) gene in porcine skeletal muscle. Molecular Biology Reports, 39: 2733-2738.
Wojtasz L., Daniel K., Roig I., Bolcun-Filas E., Xu H., Boonsanay V., Eckmann C. R., Cooke H. J., Jasin M. and Keeney S. 2009. Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase. PLoS Genetics, 5: e1000702.
Zhang H., Wang Z., Wang S. and Li H. 2012. Progress of genome wide association study in domestic animals. Journal of Animal Science and Biotechnology, 3: 1-26.
Zhao X., Zhao K., Ren J., Zhang F., Jiang C., Hong Y., Jiang K., Yang Q., Wang C. and Ding N. 2015. An imputation‐based genome‐wide association study on traits related to male reproduction in a White Duroc× Erhualian F2 population. Animal Science Journal, 87: 646-654. | ||
آمار تعداد مشاهده مقاله: 1,260 تعداد دریافت فایل اصل مقاله: 919 |