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A NEW BRANCH OF THE LOGICAL ALGEBRA:
UP-ALGEBRAS

A. IAMPAN

Abstract. In this paper, we introduce a new algebraic struc-
ture, called a UP-algebra (UP means the University of Phayao)
and a concept of UP-ideals, UP-subalgebras, congruences and UP-
homomorphisms in UP-algebras, and investigated some related
properties of them. We also describe connections between UP-
ideals, UP-subalgebras, congruences and UP-homomorphisms, and
show that the notion of UP-algebras is a generalization of KU-
algebras.

1. Introduction and Preliminaries

Among many algebraic structures, algebras of logic form important
class of algebras. Examples of these are BCK-algebras [5], BCI-algebras
[6], BCH-algebras [4], KU-algebras [12], SU-algebras [7] and others.
They are strongly connected with logic. For example, BCI-algebras in-
troduced by Iséki [6] in 1966 have connections with BCI-logic being the
BCI-system in combinatory logic which has application in the language
of functional programming. BCK and BCI-algebras are two classes of
logical algebras. They were introduced by Imai and Iséki [5, 6] in
1966 and have been extensively investigated by many researchers. It is
known that the class of BCK-algebras is a proper subclass of the class
of BCI-algebras.
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In 2009, the notion of a KU-algebra was first introduced by Prabpa-
yak and Leerawat [12] as follows:

Definition 1.1. [12] An algebra A = (A; ·, 0) of type (2, 0) is called a
KU-algebra if it satisfies the following axioms: for any x, y, z ∈ A,

(KU-1): (y · x) · ((x · z) · (y · z)) = 0,
(KU-2): 0 · x = x,
(KU-3): x · 0 = 0, and
(KU-4): x · y = y · x = 0 implies x = y.

They gave the concept of homomorphisms of KU-algebras and investi-
gated some related properties.

Lemma 1.2. [11] In a KU-algebra A, we have

z · (y · x) = y · (z · x) for all x, y, z ∈ A.

Several researches were conducted to investigate the characterizat-
ions of KU-algebras such as: In 2011, Mostafa, Abdel Naby and El-
gendy [10] introduced the notion of intuitionistic fuzzy KU-ideals in
KU-algebras and fuzzy intuitionistic image (preimage) of KU-ideals in
KU-algebras. They also introduced the Cartesian product of two intui-
tionistic fuzzy KU-ideals in KU-algebras and investigated some results.
In 2011, Mostafa, Abdel Naby and Elgendy [9] introduced the notion
of interval-valued fuzzy KU-ideals in KU-algebras and studied some of
their properties. In 2011, Mostafa, Abdel Naby and Yousef [11] intro-
duced the notion of fuzzy KU-ideals in KU-algebras and their some
properties are investigated. In 2012, Mostafa, Abdel Naby and You-
sef [8] introduced the notion of anti-fuzzy KU-ideals in KU-algebras,
several appropriate examples are provided and their some properties
are investigated. In 2012, Sitharselvam, Priya and Ramachandran [14]
introduced the concept of anti Q-fuzzy KU-ideals of KU-algebras, lo-
wer level cuts of a fuzzy set and proved that a Q-fuzzy set of a KU-
algebra is a KU-ideal if and only if the complement of this Q-fuzzy
set is an anti Q-fuzzy KU-ideal. In 2013, Yaqoob, Mostafa and Ansari
[15] introduced the notion of cubic KU-ideals of KU-algebras and se-
veral results are presented in this regard. The image, preimage, and
cartesian product of cubic KU-ideals of KU-algebras are defined. In
2013, Akram, Yaqoob and Gulistan [1] provided some new properties
of cubic KU-subalgebras. In 2013, Sithar Selvam, Priya, Nagalakshmi
and Ramachandran [13] introduced the concept of anti Q-fuzzy KU-
subalgebras of KU-algebras. They discussed few results of KU-ideals
of KU-algebras under homomorphisms and anti homomorphisms and
some of its properties. In 2014, Gulistan, Shahzad and Ahmed [3]



A NEW BRANCH OF THE LOGICAL ALGEBRA: UP-ALGEBRAS 37

defined (α, β)-fuzzy KU-ideals of KU-algebras and then some useful
characterizations have provided. Also, they introduced the concept of
(α, β)-fuzzy KU-relations. In 2014, Akram, Yaqoob and Kavikumar

[2] introduced the notion of interval-valued (θ̃, δ̃)-fuzzy KU-ideals of
KU-algebras and some related properties are investigated.

In this paper, we introduce a new algebraic structure, called a UP-
algebra and a concept of UP-ideals, congruences and UP-homomorphisms
in UP-algebras, and investigated some related properties of them. We
also describe connections between UP-ideals, congruences and UP-
homomorphisms, and present some connections between UP-algebras
and KU-algebras.

Before we begin our study, we will introduce to the definition of a
UP-algebra.

Definition 1.3. An algebra A = (A; ·, 0) of type (2, 0) is called a UP-
algebra if it satisfies the following axioms: for any x, y, z ∈ A,

(UP-1): (y · z) · ((x · y) · (x · z)) = 0,
(UP-2): 0 · x = x,
(UP-3): x · 0 = 0, and
(UP-4): x · y = y · x = 0 implies x = y.

Example 1.4. Let X be a universal set. Define a binary operation ·
on the power set of X by putting A ·B = B ∩A′ = A′∩B = B−A for
all A,B ∈ P(X). Then (P(X); ·, ∅) is a UP-algebra and we shall call
it the power UP-algebra of type 1. In fact, for any A,B,C ∈ P(X), we
have

(A ·B) · (A · C) = (B ∩ A′) · (C ∩ A′)
= (C ∩ A′) ∩ (B ∩ A′)′

= (C ∩ A′) ∩ (B′ ∪ A)

= ((C ∩ A′) ∩B′) ∪ ((C ∩ A′) ∩ A)

= ((C ∩ A′) ∩B′) ∪ ∅
= (C ∩ A′) ∩B′.
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Thus

(B · C) · ((A ·B) · (A · C)) = (B · C) · ((C ∩ A′) ∩B′)
= (C ∩B′) · ((C ∩ A′) ∩B′)
= ((C ∩ A′) ∩B′) ∩ (C ∩B′)′

= A′ ∩ (C ∩B′) ∩ (C ∩B′)′

= A′ ∩ ∅
= ∅,

(UP-1) holding. Also, ∅·A = A∩∅′ = A∩X = A and A·∅ = ∅∩A′ = ∅,
(UP-2) and (UP-3) are valid. Moreover, if A · B = B · A = ∅, then
B ∩ A′ = A ∩ B′ = ∅. Thus B ⊆ A and A ⊆ B and so A = B, (UP-4)
holding.

Example 1.5. Let X be a universal set. Define a binary operation ∗
on the power set of X by putting A ∗ B = B ∪ A′ = A′ ∪ B for all
A,B ∈ P(X). Then (P(X); ∗, X) is a UP-algebra and we shall call it
the power UP-algebra of type 2. In fact, for any A,B,C ∈ P(X), we
have

(A ∗B) ∗ (A ∗ C) = (B ∪ A′) ∗ (C ∪ A′)
= (C ∪ A′) ∪ (B ∪ A′)′

= (C ∪ A′) ∪ (B′ ∩ A)

= ((C ∪ A′) ∪B′) ∩ ((C ∪ A′) ∪ A)

= ((C ∪ A′) ∪B′) ∩X
= (C ∪ A′) ∪B′.

Thus

(B ∗ C) ∗ ((A ∗B) ∗ (A ∗ C)) = (B ∗ C) ∗ ((C ∪ A′) ∪B′)
= (C ∪B′) ∗ ((C ∪ A′) ∪B′)
= ((C ∪ A′) ∪B′) ∪ (C ∪B′)′

= A′ ∪ (C ∪B′) ∪ (C ∪B′)′

= A′ ∪X
= X,

(UP-1) holding. Also, X∗A = A∪X ′ = A∪∅ = A and A∗X = X∪A′ =
X, (UP-2) and (UP-3) are valid. Moreover, if A ∗ B = B ∗ A = X,
then B ∪ A′ = A ∪B′ = X. Thus B ⊆ A ∪B′ and A ⊆ B ∪ A′ and so
B ⊆ A and A ⊆ B. Hence, A = B, (UP-4) holding.

We can easily show the following example.
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Example 1.6. Let A = {0, 1, 2, 3} be a set with a binary operation ·
defined by the following Cayley table:

· 0 1 2 3
0 0 1 2 3
1 0 0 0 0
2 0 1 0 3
3 0 1 2 0

(1.1)

Then (A; ·, 0) is a UP-algebra.

The following proposition is very important for the study of UP-
algebras.

Proposition 1.7. In a UP-algebra A, the following properties hold:
for any x, y, z ∈ A,

(1) x · x = 0,
(2) x · y = 0 and y · z = 0 imply x · z = 0,
(3) x · y = 0 implies (z · x) · (z · y) = 0,
(4) x · y = 0 implies (y · z) · (x · z) = 0,
(5) x · (y · x) = 0,
(6) (y · x) · x = 0 if and only if x = y · x, and
(7) x · (y · y) = 0.

Proof. (1) By the definition of a UP-algebra, we have

0 = (0 · x) · ((0 · 0) · (0 · x)) (By (UP-1))

= (0 · x) · (0 · x) (By (UP-2))

= x · x. (By (UP-2))

Hence, x · x = 0.
(2) Assume that x · y = 0 and y · z = 0. Then

x · z = 0 · (0 · (x · z)) (By (UP-2))

= (y · z) · ((x · y) · (x · z)) (By substituting)

= 0. (By (UP-1))

Hence, x · z = 0.
(3) Assume that x · y = 0. Then

(z · x) · (z · y) = 0 · ((z · x) · (z · y)) (By (UP-2))

= (x · y) · ((z · x) · (z · y)) (By substituting)

= 0. (By (UP-1))

Hence, (z · x) · (z · y) = 0.
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(4) Assume that x · y = 0. Then

(y · z) · (x · z) = (y · z) · (0 · (x · z)) (By (UP-2))

= (y · z) · ((x · y) · (x · z)) (By substituting)

= 0. (By (UP-1))

Hence, (y · z) · (x · z) = 0.
(5) By (UP-1), (UP-2) and (UP-3), we have x · (y · x) = (0 · x) · ((y ·
0) · (y · x)) = 0
(6) If (y · x) · x = 0, then by (5), x · (y · x) = 0. By (UP-4), x = y · x.
By (1), we have the converse.
(7) By (UP-3) and (1), we have x · (y · y) = x · 0 = 0. �

On a UP-algebra A = (A; ·, 0), we define a binary relation ≤ on A
as follows: for all x, y ∈ A,

x ≤ y if and only if x · y = 0. (1.2)

Proposition 1.8 obviously follows from Proposition 1.7.

Proposition 1.8. In a UP-algebra A, the following properties hold:
for any x, y, z ∈ A,

(1) x ≤ x,
(2) x ≤ y and y ≤ x imply x = y,
(3) x ≤ y and y ≤ z imply x ≤ z,
(4) x ≤ y implies z · x ≤ z · y,
(5) x ≤ y implies y · z ≤ x · z,
(6) x ≤ y · x, and
(7) x ≤ y · y.

From Proposition 1.8 and (UP-3), we have Proposition 1.9.

Proposition 1.9. Let A be a UP-algebra with a binary relation ≤
defined by (1.2). Then (A,≤) is a partially ordered set with 0 as the
greatest element.

We often call the partial ordering ≤ defined by (1.2) the UP-ordering
on A. From now on, the symbol ≤ will be used to denote the UP-
ordering, unless specified otherwise.

This means that a UP-algebra can be considered as a partially orde-
red set with some additional properties.

Proposition 1.10. An algebra A = (A; ·, 0) of type (2, 0) with a binary
relation ≤ defined by (1.2) is a UP-algebra if and only if it satisfies the
following conditions: for all x, y, z ∈ A,

(1) (y · z) ≤ (x · y) · (x · z),
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(2) 0 · x = x,
(3) x ≤ 0, and
(4) x ≤ y and y ≤ x imply x = y.

The following theorem is an important result of KU-algebras for
study in the connections between UP-algebras and KU-algebras.

Theorem 1.11. Any KU-algebra is a UP-algebra.

Proof. It only needs to show (UP-1). By Lemma 1.2, we have that any
KU-algebra satisfies (UP-1). �

Example 1.12. Let A = {0, 1, 2, 3, 4} be a set with a binary operation
· defined by the following Cayley table:

· 0 1 2 3 4
0 0 1 2 3 4
1 0 0 0 0 0
2 0 2 0 0 0
3 0 2 2 0 0
4 0 2 2 4 0

(1.3)

By routine calculations it can be seen that (A; ·, 0) is a UP-algebra.
Since (0 ·3) · ((3 ·1) · (0 ·1)) = 3 · (2 ·1) = 3 ·2 = 2, we have that (KU-1)
is not satisfied. Hence, (A; ·, 0) is not a KU-algebra.

We give an example showing that the notion of UP-algebras is a
generalization of KU-algebras.

Theorem 1.13. An algebra A = (A; ·, 0) of type (2, 0) is a KU-algebra
if and only if it satisfies the following conditions: for all x, y, z ∈ A,

(1) (KU-1): (y · x) · ((x · z) · (y · z)) = 0,
(2) y · ((y · x) · x) = 0,
(3) x · x = 0,
(4) (KU-3): x · 0 = 0, and
(5) (KU-4): x · y = y · x = 0 implies x = y.

Proof. Necessity: It suffices to prove (2) and (3). By (KU-1) and (KU-
2), we have

y · ((y · x) · x) = (0 · y) · ((y · x) · (0 · x) = 0

and

x · x = 0 · (x · x) = (0 · 0) · ((0 · x) · (0 · x) = 0,

(2) and (3) holding.



42 A. IAMPAN

Sufficiency: It only needs to show (KU-2). Replacing y by 0 in (2),
we get

0 · ((0 · x) · x) = 0. (1.4)

Substituting 0 · x for y and x for z in (1), it follows

((0 · x) · x) · ((x · x) · ((0 · x) · x)) = 0.

By (3), we have

((0 · x) · x) · (0 · ((0 · x) · x)) = 0. (1.5)

An application of (1.4) to (1.5) gives

((0 · x) · x) · 0 = 0. (1.6)

Comparing (1.4) with (1.6) and using (5), we obtain

(0 · x) · x = 0. (1.7)

Also, by (2) and (3), the following holds:

x · (0 · x) = x · ((x · x) · x) = 0. (1.8)

Now, combining (1.7) with (1.8) and using (5) once again, it yields
0 · x = 0, showing (KU-2). Hence, A = (A; ·, 0) is a KU-algebra. �

Theorem 1.14. In a UP-algebra A, the following statements are equi-
valent:

(1) A is a KU-algebra,
(2) x · (y · z) = y · (x · z) for all x, y, z ∈ A, and
(3) x · (y · z) = 0 implies y · (x · z) = 0 for all x, y, z ∈ A.

Proof. (1)⇒(2) By Theorem 1.13 (2), we get x ≤ (x · z) · z, then by
Proposition 1.8 (5) implies

((x · z) · z) · (y · z) ≤ x · (y · z).

Substituting x·z for x in (KU-1), we have (y ·(x·z))·(((x·z)·z)·(y ·z)) =
0. Thus

y · (x · z) ≤ ((x · z) · z) · (y · z).

The transitivity of ≤ gives

y · (x · z) ≤ x · (y · z) for all x, y, z ∈ A. (1.9)

Replacing y by x and x by y in (1.9), we obtain

x · (y · z) ≤ y · (x · z). (1.10)

Hence, the anti-symmetry of ≤ implies that x · (y · z) = y · (x · z).
(2)⇒(3) Assume that x · (y · z) = 0 where x, y, z ∈ A. By (2), we have
y · (x · z) = 0.
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(3)⇒(1) It only needs to show (KU-1). By (UP-1), we get (y ·z)·((x·y)·
(x ·z)) = 0 for all x, y, z ∈ A. By (3), we have (x ·y) ·((y ·z) ·(x ·z)) = 0,
showing (KU-1). �

Theorem 1.15. An algebra A = (A; ·, 0) of type (2, 0) is a UP-algebra
if and only if it satisfies the following conditions: for all x, y, z ∈ A,

(1) (UP-1): (y · z) · ((x · y) · (x · z)) = 0,
(2) (y · 0) · x = x, and
(3) (UP-4): x · y = y · x = 0 implies x = y.

Proof. Necessity: It suffices to prove (2). By (UP-2) and (UP-3), we
have

(y · 0) · x = 0 · x = x,

(2) holding.
Sufficiency: It suffices to show (UP-2) and (UP-3). Replacing y and

z by 0 in (1) and using (2), we get

0 = (0 · 0) · ((x · 0) · (x · 0)) = (0 · 0) · (x · 0) = x · 0, (1.11)

(UP-3) holding. Combining (1.11) with (2), we obtain

0 · x = (x · 0) · x = x,

showing (UP-2). Hence, A = (A; ·, 0) is a UP-algebra. �

2. UP-Ideals and UP-Subalgebras

Definition 2.1. Let A be a UP-algebra. A subset B of A is called a
UP-ideal of A if it satisfies the following properties:

(1) the constant 0 of A is in B, and
(2) for any x, y, z ∈ A, x · (y · z) ∈ B and y ∈ B imply x · z ∈ B.

Clearly, A and {0} are UP-ideals of A.

We can easily show the following example.

Example 2.2. Let A = {0, 1, 2, 3, 4} be a set with a binary operation
· defined by the following Cayley table:

· 0 1 2 3 4
0 0 1 2 3 4
1 0 0 2 3 4
2 0 0 0 3 4
3 0 0 2 0 4
4 0 0 0 0 0

(2.1)

Then (A; ·, 0) is a UP-algebra and {0, 1, 2} and {0, 1, 3} are UP-ideals
of A.
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Theorem 2.3. Let A be a UP-algebra and B a UP-ideal of A. Then
the following statements hold: for any x, a, b ∈ A,

(1) if b · x ∈ B and b ∈ B, then x ∈ B. Moreover, if b ·X ⊆ B and
b ∈ B, then X ⊆ B,

(2) if b ∈ B, then x · b ∈ B. Moreover, if b ∈ B, then X · b ⊆ B,
and

(3) if a, b ∈ B, then (b · (a · x)) · x ∈ B.

Proof. (1) Let x, b ∈ A be such that b · x ∈ B and b ∈ B. By (UP-2),
we get 0 · (b · x) = b · x ∈ B and b ∈ B. Since B is a UP-ideal of A and
(UP-2), we have x = 0 · x ∈ B. If b ·X ⊆ B and b ∈ B, then b · x ∈ B
for all x ∈ X. From the previous result, x ∈ B for all x ∈ X. Thus
X ⊆ B.
(2) Let x ∈ A and b ∈ B. By (UP-3) and using Proposition 1.7 (1), we
have x · (b · b) = x · 0 = 0 ∈ B. Since B is a UP-ideal of A and b ∈ B,
we have x · b ∈ B. If b ∈ B, then from the previous result, x · b ∈ B for
all x ∈ X. Thus X · b ⊆ B.
(3) Let x ∈ A and a, b ∈ B. By Proposition 1.7 (1), we have (a · x) ·
(a · x) = 0 ∈ B. Since B is a UP-ideal of A and a ∈ B, we have
(a · x) · x ∈ B. By (UP-1), we have

((a · x) · x) · ((b · (a · x)) · (b · x)) = 0 ∈ B.
It follows from (1) that (b · (a · x)) · (b · x) ∈ B. Since b ∈ B, it follows
from the definition of a UP-ideal that (b · (a · x)) · x ∈ B. �

Corollary 2.4. Let A be a UP-algebra and B a UP-ideal of A. Then
for any x ∈ A and b ∈ B, b ≤ x implies x ∈ B.

Proof. If b ≤ x, then b · x = 0 ∈ B. Since b ∈ B, it follows from
Theorem 2.3 (1) that x ∈ B. �

Corollary 2.5. Let A be a UP-algebra and B a UP-ideal of A. Then
for any x ∈ A and a, b ∈ B, b ≤ a · x implies x ∈ B.

Proof. If b ≤ a · x, then b · (a · x) = 0 ∈ B. Since b ∈ B, it follows
from Theorem 2.3 (1) that a · x ∈ B. Using Theorem 2.3 (1) again,
x ∈ B. �

Theorem 2.6. Let A be a UP-algebra and {Bi}i∈I a family of UP-
ideals of A. Then

⋂
i∈I Bi is a UP-ideal of A.

Proof. Clearly, 0 ∈ Bi for all i ∈ I. Thus 0 ∈
⋂
i∈I Bi. Let x, y, z ∈ A

be such that x · (y · z) ∈
⋂
i∈I Bi and y ∈

⋂
i∈I Bi. Then x · (y · z) ∈ Bi

and y ∈ Bi for all i ∈ I. Since Bi is a UP-ideal of A, we have x · z ∈ Bi

for all i ∈ I. Thus x · z ∈
⋂
i∈I Bi. Hence,

⋂
i∈I Bi is a UP-ideal of

A. �
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From Theorem 2.6, the intersection of all UP-ideals of a UP-algebra
A containing a subset X of A is the UP-ideal of A generated by X. For
X = {a}, let I(a) denote the UP-ideal of A generated by {a}. We see
that the UP-ideal of A generated by ∅ and {0} is {0}, and the UP-ideal
of A generated by A is A.

Applying Theorem 2.3 and Proposition 1.8 (6), we can then easily
prove the following Proposition.

Proposition 2.7. Let A be a UP-algebra and B a UP-ideal of A. Then
the following statements hold: for any x, y ∈ A,

(1) if x ∈ B and x ≤ y, then y ∈ B,
(2) if x ≤ y, then I(y) ⊆ I(x),
(3) I(y · x) ⊆ I(x), and
(4) if y ∈ I(y · x), then I(y · x) = I(x).

Definition 2.8. Let A = (A; ·, 0) be a UP-algebra. A subset S of A is
called a UP-subalgebra of A if the constant 0 of A is in S, and (S; ·, 0)
itself forms a UP-algebra. Clearly, A and {0} are UP-subalgebras of
A.

Applying Proposition 1.7 (1), we can then easily prove the following
Proposition.

Proposition 2.9. A nonempty subset S of a UP-algebra A = (A; ·, 0)
is a UP-subalgebra of A if and only if S is closed under the · multipli-
cation on A.

Theorem 2.10. Let A be a UP-algebra and {Bi}i∈I a family of UP-
subalgebras of A. Then

⋂
i∈I Bi is a UP-subalgebra of A.

Proof. Since 0 ∈ Bi for all i ∈ I, we have 0 ∈
⋂
i∈I Bi 6= ∅. Let

x, y ∈
⋂
i∈I Bi. Then x, y ∈ Bi for all i ∈ I, it follows from Proposition

2.9 that x · y ∈
⋂
i∈I Bi. Using Proposition 2.9 once again,

⋂
i∈I Bi is a

UP-subalgebra of A. �

Theorem 2.11. Let A be a UP-algebra and B a UP-ideal of A. Then
A ·B ⊆ B. In particular, B is a UP-subalgebra of A.

Proof. Let x ∈ A · B. Then x = a · b for some a ∈ A and b ∈ B. By
(UP-3) and Proposition 1.7 (1), we have a · (b · b) = a · 0 = 0 ∈ B.
Since B is a UP-ideal of A and b ∈ B, we have x = a · b ∈ B. Hence,
A · B ⊆ B. Since B · B ⊆ A · B ⊆ B, we get B is a UP-subalgebra of
A. �
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Example 2.12. Let A = {0, 1, 2, 3} be a set with a binary operation ·
defined by the following Cayley table:

· 0 1 2 3
0 0 1 2 3
1 0 0 2 2
2 0 1 0 2
3 0 1 0 0

(2.2)

Then (A; ·, 0) is a UP-algebra. Let S = {0, 2}. Then S is a UP-
subalgebra of A. Since 0 · (2 · 3) = 2 ∈ S and 2 ∈ S, but 0 · 3 = 3 /∈ S,
we have S is not a UP-ideal of A.

By Theorem 2.11 and Example 2.12, we have that the notion of
UP-subalgebras is a generalization of UP-ideals.

Theorem 2.13. Let A be a UP-algebra and let B be a UP-subalgebra of
A satisfying the property of the Theorem 1.14 (2), i.e., x·(y·z) = y·(x·z)
for all x, y, z ∈ B. If S is a subset of B that is satisfies the following
properties:

(1) the constant 0 of A is in S, and
(2) for any x, b ∈ B, if b · x ∈ S and b ∈ S, then x ∈ S.

Then S is a UP-ideal of B.

Proof. Let x, y, z ∈ B be such that x · (y · z) ∈ S and y ∈ S. Since
y ∈ S ⊆ B and B satisfies the property of the Theorem 1.14 (2), we
get y · (x · z) = x · (y · z) ∈ S. Using (2), we obtain x · z ∈ S. Hence, S
is a UP-ideal of B. �

Theorem 2.14. Let A be a UP-algebra and B a UP-subalgebra of A.
If S is a subset of B that is satisfies the following properties:

(1) the constant 0 of A is in S, and
(2) for any x, a, b ∈ B, if a, b ∈ S, then (b · (a · x)) · x ∈ S.

Then S is a UP-ideal of B.

Proof. Let x, y, z ∈ B be such that x · (y · z) ∈ S and y ∈ S. Replacing
b by 0, a by y and x by z in (2) and using (UP-2), we get (y · z) · z =
(0 · (y · z)) · z ∈ S. It follows from (UP-1), (UP-2), and (2) that

x · z = 0 · (x · z) = (((y · z) · z) · ((x · (y · z)) · (x · z)) · (x · z) ∈ S.

Hence, S is a UP-ideal of B. �
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3. Congruences

Definition 3.1. Let A be a UP-algebra and B a UP-ideal of A. Define
the binary relation ∼B on A as follows: for all x, y ∈ A,

x ∼B y if and only if x · y ∈ B and y · x ∈ B. (3.1)

We can easily show the following example.

Example 3.2. From Example 2.2, let B = {0, 1, 3} be an UP-ideal of
A. Then

∼B= {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (0, 1), (1, 0), (0, 3), (3, 0),
(1, 3), (3, 1)}.

We can see that ∼B is an equivalence relation on A.

Definition 3.3. Let A be a UP-algebra. An equivalence relation ρ on
A is called a congruence if for any x, y, z ∈ A,

xρy implies x · zρy · z and z · xρz · y.

Lemma 3.4. Let A be a UP-algebra. An equivalence relation ρ on A
is a congruence if and only if for any x, y, u, v ∈ A, xρy and uρv imply
x · uρy · v.

Proof. Assume that ρ is a congruence on A and let x, y, u, v ∈ A be
such that xρy and uρv. Then x ·uρy ·u and y ·uρy · v. The transitivity
of ρ gives x · uρy · v.

Conversely, let x, y, z ∈ A be such that xρy. Since zρz, it follows
from assumption that x ·zρy ·z and z ·xρz ·y. Hence, ρ is a congruence
on A. �

Proposition 3.5. Let A be a UP-algebra and B a UP-ideal of A with
a binary relation ∼B defined by (3.1). Then ∼B is a congruence on A.

Proof. Reflexive: For all x ∈ A, it follows from Proposition 1.7 (1) that
x · x = 0. Since B is a UP-ideal of A, we have x · x = 0 ∈ B. Thus
x ∼B x.
Symmetric: Let x, y ∈ A be such that x ∼B y. Then x · y ∈ B and
y · x ∈ B, so y · x ∈ B and x · y ∈ B. Thus y ∼B x.
Transitive: Let x, y, z be such that x ∼B y and y ∼B z. Then x ·
y, y · x, y · z, z · y ∈ B. Since B is a UP-ideal of A and (UP-1), we get
(y ·z) · ((x ·y) · (x ·z)) = 0 ∈ B. Since y ·z ∈ B, it follows from Theorem
2.3 that (x ·y) · (x ·z) ∈ B. Since x ·y ∈ B, it follows from Theorem 2.3
again that x · z ∈ B. Similarly, since B is a UP-ideal of A and (UP-1),
we get (y · x) · ((z · y) · (z · x)) = 0 ∈ B. Since y · x ∈ B, it follows from
Theorem 2.3 that (z · y) · (z · x) ∈ B. Since z · y ∈ B, it follows from
Theorem 2.3 again that z · x ∈ B. Thus x ∼B z.
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Therefore, ∼B is an equivalence relation on A. Finally, let x, y, u, v ∈ A
be such that x ∼B u and y ∼B v. Then x · u, u · x, y · v, v · y ∈ B. Since
B is a UP-ideal of A and (UP-1), we get (v ·y) ·((x ·v) ·(x ·y)) = 0 ∈ B.
Since v · y ∈ B, it follows from Theorem 2.3 that (x · v) · (x · y) ∈ B.
Similarly, since B is a UP-ideal of A and (UP-1), we get (y ·v) · ((x ·y) ·
(x ·v)) = 0 ∈ B. Since y ·v ∈ B, it follows from Theorem 2.3 again that
(x·y)·(x·v) ∈ B. Thus x·y ∼B x·v. On the other hand, since B is a UP-
ideal of A and (UP-1), we get (u ·v) ·((x ·u) ·(x ·v)) = 0 ∈ B. Since B is
a UP-ideal of A and x·u ∈ B, we have (u·v)·(x·v) ∈ B. Similarly, since
B is a UP-ideal of A and (UP-1), we get (x ·v) ·((u ·x) ·(u ·v)) = 0 ∈ B.
Since B is a UP-ideal of A and u · x ∈ B, we have (x · v) · (u · v) ∈ B.
Thus x · v ∼B u · v. The transitivity of ∼B gives x · y ∼B u · v. Hence,
∼B is a congruence on A. �

Let A be a UP-algebra and ρ a congruence on A. If x ∈ A, then the
ρ-class of x is the (x)ρ defined as follows:

(x)ρ = {y ∈ A | yρx}.
Then the set of all ρ-classes is called the quotient set of A by ρ, and is
denoted by A/ρ. That is,

A/ρ = {(x)ρ | x ∈ A}.

Theorem 3.6. Let A be a UP-algebra and ρ a congruence on A. Then
the following statements hold:

(1) the ρ-class (0)ρ is a UP-ideal and a UP-subalgebra of A,
(2) a ρ-class (x)ρ is a UP-ideal of A if and only if xρ0, and
(3) a ρ-class (x)ρ is a UP-subalgebra of A if and only if xρ0.

Proof. (1) Since 0ρ0, 0 ∈ (0)ρ. Let x, y, z ∈ A be such that x · (y · z) ∈
(0)ρ and y ∈ (0)ρ. Then yρ0 and

x · (y · z)ρ0. (3.2)

Since xρx and zρz, it follows from Lemma 3.4 that x · (y · z)ρx · (0 · z).
By (UP-2), we get x · (y · z)ρx · z and so

x · zρx · (y · z). (3.3)

The transitivity of ρ gives x · zρ0, so x · z ∈ (0)ρ. Hence, (0)ρ is a
UP-ideal of A. Now, let x, y ∈ (0)ρ. Then xρ0 and yρ0. By Lemma
3.4 and (UP-2), we have x · yρ0. Thus x · y ∈ (0)ρ. Hence, (0)ρ is a
UP-subalgebra of A.
(2) Assume that (x)ρ is a UP-ideal of A. Then 0 ∈ (x)ρ. Hence, the
symmetry of ρ gives xρ0.

Converse, let xρ0. Then (x)ρ = (0)ρ. It follows from (1) that (x)ρ is
a UP-ideal of A.
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(3) Assume that (x)ρ is a UP-subalgebra of A. Since x ∈ (x)ρ and
Proposition 1.7 (1), we have 0 = x · x ∈ (x)ρ. Hence, the symmetry of
ρ gives xρ0.

Converse, let xρ0. Then (x)ρ = (0)ρ. It follows from (1) that (x)ρ is
a UP-subalgebra of A. �

Theorem 3.7. Let A be a UP-algebra and B a UP-ideal of A. Then
the following statements hold:

(1) the ∼B-class (0)∼B
is a UP-ideal and a UP-subalgebra of A

contained in B,
(2) a ∼B-class (x)∼B

is a UP-ideal of A if and only if x ∈ B,
(3) a ∼B-class (x)∼B

is a UP-subalgebra of A if and only if x ∈ B,
and

(4) (A/ ∼B; ∗, (0)∼B
) is a UP-algebra under the ∗ multiplication

defined by (x)∼B
∗ (y)∼B

= (x · y)∼B
for all x, y ∈ A, called the

quotient UP-algebra of A induced by the congruence ∼B.

Proof. (1) From Proposition 3.5 and Theorem 3.6 (1), we have (0)∼B

is a UP-ideal and a UP-subalgebra of A. Now, let x ∈ (0)∼B
. Then

x ∼B 0, it follows from (UP-2) that x = 0 · x ∈ B. Hence, (0)∼B
⊆ B.

(2) It now follows directly from Proposition 3.5, Theorem 3.6 (2) and
(UP-2).
(3) It now follows directly from Proposition 3.5, Theorem 3.6 (3) and
(UP-2).
(4) Let x, y, u, v ∈ A be such that (x)∼B

= (y)∼B
and (u)∼B

= (v)∼B
.

Since ∼B is an equivalence relation on A, we get x ∼B y and u ∼B v.
By Lemma 3.4, we have x·u ∼B y ·v. Hence, (x)∼B

∗(u)∼B
= (x·u)∼B

=
(y · v)∼B

= (y)∼B
∗ (v)∼B

, showing ∗ is well defined.
(UP-1): Let x, y, z ∈ A. By (UP-1), we have ((y)∼B

∗(z)∼B
)∗(((x)∼B

∗
(y)∼B

) ∗ ((x)∼B
∗ (z)∼B

)) = ((y · z) · ((x · y) · (x · z)))∼B
= (0)∼B

.
(UP-2): Let x ∈ A. By (UP-2), we have (0)∼B

∗ (x)∼B
= (0 · x)∼B

=
(x)∼B

.
(UP-3): Let x ∈ A. By (UP-3), we have (x)∼B

∗ (0)∼B
= (x · 0)∼B

=
(0)∼B

.
(UP-4): Let x, y ∈ A be such that (x)∼B

∗ (y)∼B
= (y)∼B

∗ (x)∼B
=

(0)∼B
. Then (x · y)∼B

= (y · x)∼B
= (0)∼B

, it follows from (1) that
x · y, y · x ∈ (0)∼B

⊆ B. Hence, x ∼B y and so (x)∼B
= (y)∼B

.
Hence, (A/ ∼B; ∗, (0)∼B

) is a UP-algebra. �
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4. UP-Homomorphisms

Definition 4.1. Let (A; ·, 0) and (A′; ·′, 0′) be UP-algebras. A mapping
f from A to A′ is called a UP-homomorphism if

f(x · y) = f(x) ·′ f(y) for all x, y ∈ A.

A UP-homomorphism f : A→ A′ is called a

(1) UP-epimorphism if f is surjective,
(2) UP-monomorphism if f is injective,
(3) UP-isomorphism if f is bijective. Moreover, we say A is UP-

isomorphic to A′, symbolically, A ∼= A′, if there is a UP-
isomorphism from A to A′.

Let f be a mapping from A to A′, and let B be a nonempty subset
of A, and B′ of A′. The set {f(x) | x ∈ B} is called the image of B
under f , denoted by f(B). In particular, f(A) is called the image of
f , denoted by Im(f). Dually, the set {x ∈ A | f(x) ∈ B′} is said the
inverse image of B′ under f , symbolically, f−1(B′). Especially, we say
f−1({0′}) is the kernel of f , written by Ker(f). That is,

Im(f) = {f(x) ∈ A′ | x ∈ A}

and

Ker(f) = {x ∈ A | f(x) = 0′}.

By using Microsoft Excel, we have the following example.

Example 4.2. Let A = {0, 1, 2, 3, 4} be a set with a binary operation
· defined by the following Cayley table:

· 0 1 2 3 4
0 0 1 2 3 4
1 0 0 2 3 4
2 0 0 0 3 4
3 0 0 2 0 4
4 0 0 0 0 0

(4.1)

and let A′ = {0′, a, b, c, d} be a set with a binary operation ·′ defined
by the following Cayley table:

·′ 0′ a b c d
0′ 0′ a b c d
a 0′ 0′ 0′ 0′ 0′

b 0′ a 0′ c 0′

c 0′ a 0′ 0′ 0′

d 0′ a b c 0′

(4.2)
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Then (A; ·, 0) and (A′; ·′, 0′) are UP-algebras. We define a mapping
f : A→ A′ as follows:

f(0) = 0′, f(1) = 0′, f(2) = 0′, f(3) = d, and f(4) = a.

Then f is a UP-homomorphism with Im(f) = {0′, a, d} and Ker(f) =
{0, 1, 2}.

In fact it is easy to show the following theorem.

Theorem 4.3. Let A,B and C be UP-algebras. Then the following
statements hold:

(1) the identity mapping IA : A→ A is a UP-isomorphism,
(2) if f : A → B is a UP-isomorphism, then f−1 : B → A is a

UP-isomorphism, and
(3) if f : A → B and g : B → C are UP-isomorphisms, then g ◦

f : A→ C is a UP-isomorphism.

Theorem 4.4. Let A be a UP-algebra and B a UP-ideal of A. Then
the mapping πB : A → A/ ∼B defined by πB(x) = (x)∼B

for all x ∈ A
is a UP-epimorphism, called the natural projection from A to A/ ∼B.

Proof. Let x, y ∈ A be such that x = y. Then (x)∼B
= (y)∼B

, so
πB(x) = πB(y). Thus πB is well defined. Note that by the definition
of πB, we have πB is surjective. Let x, y ∈ A. Then

πB(x · y) = (x · y)∼B
= (x)∼B

∗ (y)∼B
= πB(x) ∗ πB(y).

Thus πB is a UP-homomorphism. Hence, πB is a UP-epimorphism. �

Theorem 4.5. Let (A; ·, 0A) and (B; ∗, 0B) be UP-algebras and let
f : A → B be a UP-homomorphism. Then the following statements
hold:

(1) f(0A) = 0B,
(2) for any x, y ∈ A, if x ≤ y, then f(x) ≤ f(y),
(3) if C is a UP-subalgebra of A, then the image f(C) is a UP-

subalgebra of B. In particular, Im(f) is a UP-subalgebra of B,
(4) if D is a UP-subalgebra of B, then the inverse image f−1(D) is

a UP-subalgebra of A. In particular, Ker(f) is a UP-subalgebra
of A,

(5) if C is a UP-ideal of A, then the image f(C) is a UP-ideal of
f(A),

(6) if D is a UP-ideal of B, then the inverse image f−1(D) is a
UP-ideal of A. In particular, Ker(f) is a UP-ideal of A, and

(7) Ker(f) = {0A} if and only if f is injective.
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Proof. (1) By Proposition 1.7 (1), we have

f(0A) = f(0A · 0A) = f(0A) ∗ f(0A) = 0B.

(2) If x ≤ y, then x · y = 0A. By (1), we have f(x) ∗ f(y) = f(x · y) =
f(0A) = 0B. Hence, f(x) ≤ f(y).
(3) Assume that C is a UP-subalgebra of A. Since 0A ∈ C, we have
f(0A) ∈ f(C) 6= ∅. Let a, b ∈ f(C). Then f(x) = a and f(y) = b for
some x, y ∈ C. Since C is closed under the · multiplication on A, we get
a ∗ b = f(x) ∗ f(y) = f(x · y) ∈ f(C). By Proposition 2.9, we get f(C)
is a UP-subalgebra of B. In particular, since A is a UP-subalgebra of
A, we obtain Im(f) = f(A) is a UP-subalgebra of B.
(4) Assume that D is a UP-subalgebra of B. Since 0B ∈ D, it follows
from (1) that 0A ∈ f−1(D) 6= ∅. Let x, y ∈ f−1(D). Then f(x), f(y) ∈
D. Since D is closed under the ∗ multiplication on B, we get f(x ·y) =
f(x) ∗ f(y) ∈ D. Thus x · y ∈ f−1(D), it follows from Proposition 2.9
that f−1(D) is a UP-subalgebra of A. In particular, since {0B} is a
UP-subalgebra of B, we obtain Ker(f) = f−1({0B}) is a UP-subalgebra
of A.
(5) Assume that C is a UP-ideal of A. Since 0A ∈ C and (1), we have
0B = f(0A) ∈ f(C). Let a, b, c ∈ f(A) be such that a ∗ (b ∗ c) ∈ f(C)
and b ∈ f(C). Then f(u) = a ∗ (b ∗ c) and f(y) = b for some u, y ∈ C,
and f(x) = a and f(z) = c for some x, z ∈ A. By Proposition 1.7 (1),
we have

0B = (a∗(b∗c))∗(a∗(b∗c)) = f(u)∗(f(x)∗(f(y)∗f(z))) = f(u·(x·(y·z))).

Put v = (u · (x · (y · z))) · y. Since y ∈ C, it follows from Theorem 2.3
(2) that v ∈ C. Thus f(v) ∈ f(C). By (UP-2), we have

b = 0B ∗ b = f(u · (x · (y · z))) ∗ f(y) = f((u · (x · (y · z))) · y) = f(v).

Therefore, b = f(v) ∈ f(C), proving f(C) is a UP-ideal of f(A).
(6) Assume that D is a UP-ideal of B. Since 0B ∈ D and (1), we have
f(0A) = 0B ∈ D. Thus 0A ∈ f−1(D). Let x, y, z ∈ A be such that
x · (y · z) ∈ f−1(D) and y ∈ f−1(D). Then f(x · (y · z)) ∈ D and
f(y) ∈ D. Since f is a UP-homomorphism, we have

f(x) ∗ (f(y) ∗ f(z)) = f(x · (y · z)) ∈ D.

Since D is a UP-ideal of B and f(y) ∈ D, we have f(x · z) = f(x) ∗
f(z) ∈ D. Thus x · z ∈ f−1(D). Hence, f−1(D) is a UP-ideal of
A. In particular, since {0B} is a UP-ideal of B, we obtain Ker(f) =
f−1({0B}) is a UP-ideal of A.
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(7) Assume that Ker(f) = {0A}. Let x, y ∈ A be such that f(x) =
f(y). By Proposition 1.7 (1), we have

f(x · y) = f(x) ∗ f(y) = f(y) ∗ f(y) = 0B

and

f(y · x) = f(y) ∗ f(x) = f(y) ∗ f(y) = 0B.

Thus x · y, y · x ∈ Ker(f) = {0A}, so x · y = y · x = 0A. By (UP-4), we
have x = y. Hence, f is injective.

Conversely, assume that f is injective. By (1), we obtain {0A} ⊆
Ker(f). Let x ∈ Ker(f). Then f(x) = 0B = f(0A), so x = 0A because
f is injective. Hence, Ker(f) = {0A}. �

5. Conclusions

In the present paper, we have introduced a new algebraic struc-
ture, called a UP-algebra and a concept of UP-ideals, UP-subalgebras,
congruences and UP-homomorphisms in UP-algebras and investigated
some of its essential properties. We present some connections between
UP-algebras and KU-algebras and show that the notion of UP-algebras
is a generalization of KU-algebras. We think this work would enhance
the scope for further study in a new concept of UP-algebras and rela-
ted algebraic systems. It is our hope that this work would serve as a
foundation for the further study in a new concept of UP-algebras.
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