Journal of Algebra and Related Topics

Vol. 5, No 1, (2017), pp 35-54

A NEW BRANCH OF THE LOGICAL ALGEBRA: UP-ALGEBRAS

A. IAMPAN

Abstract

In this paper, we introduce a new algebraic structure, called a UP-algebra (UP means the University of Phayao) and a concept of UP-ideals, UP-subalgebras, congruences and UPhomomorphisms in UP-algebras, and investigated some related properties of them. We also describe connections between UPideals, UP-subalgebras, congruences and UP-homomorphisms, and show that the notion of UP-algebras is a generalization of KUalgebras.

1. Introduction and Preliminaries

Among many algebraic structures, algebras of logic form important class of algebras. Examples of these are BCK-algebras [5], BCI-algebras [6], BCH-algebras [4], KU-algebras [12], SU-algebras [7] and others. They are strongly connected with logic. For example, BCI-algebras introduced by Iséki [6] in 1966 have connections with BCI-logic being the BCI-system in combinatory logic which has application in the language of functional programming. BCK and BCI-algebras are two classes of logical algebras. They were introduced by Imai and Iséki [5, 6] in 1966 and have been extensively investigated by many researchers. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras.

[^0]In 2009, the notion of a KU-algebra was first introduced by Prabpayak and Leerawat [12] as follows:

Definition 1.1. [12] An algebra $A=(A ; \cdot, 0)$ of type $(2,0)$ is called a $K U$-algebra if it satisfies the following axioms: for any $x, y, z \in A$,
$(\mathbf{K U} \mathbf{- 1}):(y \cdot x) \cdot((x \cdot z) \cdot(y \cdot z))=0$,
(KU-2): $0 \cdot x=x$,
(KU-3): $x \cdot 0=0$, and
(KU-4): $x \cdot y=y \cdot x=0$ implies $x=y$.
They gave the concept of homomorphisms of KU-algebras and investigated some related properties.

Lemma 1.2. [11] In a $K U$-algebra A, we have

$$
z \cdot(y \cdot x)=y \cdot(z \cdot x) \text { for all } x, y, z \in A
$$

Several researches were conducted to investigate the characterizations of KU-algebras such as: In 2011, Mostafa, Abdel Naby and Elgendy [10] introduced the notion of intuitionistic fuzzy KU-ideals in KU-algebras and fuzzy intuitionistic image (preimage) of KU-ideals in KU-algebras. They also introduced the Cartesian product of two intuitionistic fuzzy KU-ideals in KU-algebras and investigated some results. In 2011, Mostafa, Abdel Naby and Elgendy [9] introduced the notion of interval-valued fuzzy KU-ideals in KU-algebras and studied some of their properties. In 2011, Mostafa, Abdel Naby and Yousef [11] introduced the notion of fuzzy KU-ideals in KU-algebras and their some properties are investigated. In 2012, Mostafa, Abdel Naby and Yousef [8] introduced the notion of anti-fuzzy KU-ideals in KU-algebras, several appropriate examples are provided and their some properties are investigated. In 2012, Sitharselvam, Priya and Ramachandran [14] introduced the concept of anti Q-fuzzy KU-ideals of KU-algebras, lower level cuts of a fuzzy set and proved that a Q-fuzzy set of a KUalgebra is a KU-ideal if and only if the complement of this Q-fuzzy set is an anti Q-fuzzy KU-ideal. In 2013, Yaqoob, Mostafa and Ansari [15] introduced the notion of cubic KU-ideals of KU-algebras and several results are presented in this regard. The image, preimage, and cartesian product of cubic KU-ideals of KU-algebras are defined. In 2013, Akram, Yaqoob and Gulistan [1] provided some new properties of cubic KU-subalgebras. In 2013, Sithar Selvam, Priya, Nagalakshmi and Ramachandran [13] introduced the concept of anti Q-fuzzy KUsubalgebras of KU-algebras. They discussed few results of KU-ideals of KU-algebras under homomorphisms and anti homomorphisms and some of its properties. In 2014, Gulistan, Shahzad and Ahmed [3]
defined (α, β)-fuzzy KU-ideals of KU -algebras and then some useful characterizations have provided. Also, they introduced the concept of (α, β)-fuzzy KU-relations. In 2014, Akram, Yaqoob and Kavikumar [2] introduced the notion of interval-valued $(\widetilde{\theta}, \widetilde{\delta})$-fuzzy KU-ideals of KU-algebras and some related properties are investigated.

In this paper, we introduce a new algebraic structure, called a UPalgebra and a concept of UP-ideals, congruences and UP-homomorphisms in UP-algebras, and investigated some related properties of them. We also describe connections between UP-ideals, congruences and UPhomomorphisms, and present some connections between UP-algebras and KU-algebras.

Before we begin our study, we will introduce to the definition of a UP-algebra.

Definition 1.3. An algebra $A=(A ; \cdot, 0)$ of type $(2,0)$ is called a $U P$ algebra if it satisfies the following axioms: for any $x, y, z \in A$,
(UP-1): $(y \cdot z) \cdot((x \cdot y) \cdot(x \cdot z))=0$, (UP-2): $0 \cdot x=x$,
(UP-3): $x \cdot 0=0$, and
(UP-4): $x \cdot y=y \cdot x=0$ implies $x=y$.

Example 1.4. Let X be a universal set. Define a binary operation. on the power set of X by putting $A \cdot B=B \cap A^{\prime}=A^{\prime} \cap B=B-A$ for all $A, B \in \mathcal{P}(X)$. Then $(\mathcal{P}(X) ; \cdot, \emptyset)$ is a UP-algebra and we shall call it the power UP-algebra of type 1 . In fact, for any $A, B, C \in \mathcal{P}(X)$, we have

$$
\begin{aligned}
(A \cdot B) \cdot(A \cdot C) & =\left(B \cap A^{\prime}\right) \cdot\left(C \cap A^{\prime}\right) \\
& =\left(C \cap A^{\prime}\right) \cap\left(B \cap A^{\prime}\right)^{\prime} \\
& =\left(C \cap A^{\prime}\right) \cap\left(B^{\prime} \cup A\right) \\
& =\left(\left(C \cap A^{\prime}\right) \cap B^{\prime}\right) \cup\left(\left(C \cap A^{\prime}\right) \cap A\right) \\
& =\left(\left(C \cap A^{\prime}\right) \cap B^{\prime}\right) \cup \emptyset \\
& =\left(C \cap A^{\prime}\right) \cap B^{\prime} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
(B \cdot C) \cdot((A \cdot B) \cdot(A \cdot C)) & =(B \cdot C) \cdot\left(\left(C \cap A^{\prime}\right) \cap B^{\prime}\right) \\
& =\left(C \cap B^{\prime}\right) \cdot\left(\left(C \cap A^{\prime}\right) \cap B^{\prime}\right) \\
& =\left(\left(C \cap A^{\prime}\right) \cap B^{\prime}\right) \cap\left(C \cap B^{\prime}\right)^{\prime} \\
& =A^{\prime} \cap\left(C \cap B^{\prime}\right) \cap\left(C \cap B^{\prime}\right)^{\prime} \\
& =A^{\prime} \cap \emptyset \\
& =\emptyset,
\end{aligned}
$$

(UP-1) holding. Also, $\emptyset \cdot A=A \cap \emptyset^{\prime}=A \cap X=A$ and $A \cdot \emptyset=\emptyset \cap A^{\prime}=\emptyset$, (UP-2) and (UP-3) are valid. Moreover, if $A \cdot B=B \cdot A=\emptyset$, then $B \cap A^{\prime}=A \cap B^{\prime}=\emptyset$. Thus $B \subseteq A$ and $A \subseteq B$ and so $A=B$, (UP-4) holding.

Example 1.5. Let X be a universal set. Define a binary operation * on the power set of X by putting $A * B=B \cup A^{\prime}=A^{\prime} \cup B$ for all $A, B \in \mathcal{P}(X)$. Then $(\mathcal{P}(X) ; *, X)$ is a UP-algebra and we shall call it the power UP-algebra of type 2. In fact, for any $A, B, C \in \mathcal{P}(X)$, we have

$$
\begin{aligned}
(A * B) *(A * C) & =\left(B \cup A^{\prime}\right) *\left(C \cup A^{\prime}\right) \\
& =\left(C \cup A^{\prime}\right) \cup\left(B \cup A^{\prime}\right)^{\prime} \\
& =\left(C \cup A^{\prime}\right) \cup\left(B^{\prime} \cap A\right) \\
& =\left(\left(C \cup A^{\prime}\right) \cup B^{\prime}\right) \cap\left(\left(C \cup A^{\prime}\right) \cup A\right) \\
& =\left(\left(C \cup A^{\prime}\right) \cup B^{\prime}\right) \cap X \\
& =\left(C \cup A^{\prime}\right) \cup B^{\prime} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
(B * C) *((A * B) *(A * C)) & =(B * C) *\left(\left(C \cup A^{\prime}\right) \cup B^{\prime}\right) \\
& =\left(C \cup B^{\prime}\right) *\left(\left(C \cup A^{\prime}\right) \cup B^{\prime}\right) \\
& =\left(\left(C \cup A^{\prime}\right) \cup B^{\prime}\right) \cup\left(C \cup B^{\prime}\right)^{\prime} \\
& =A^{\prime} \cup\left(C \cup B^{\prime}\right) \cup\left(C \cup B^{\prime}\right)^{\prime} \\
& =A^{\prime} \cup X \\
& =X,
\end{aligned}
$$

(UP-1) holding. Also, $X * A=A \cup X^{\prime}=A \cup \emptyset=A$ and $A * X=X \cup A^{\prime}=$ X, (UP-2) and (UP-3) are valid. Moreover, if $A * B=B * A=X$, then $B \cup A^{\prime}=A \cup B^{\prime}=X$. Thus $B \subseteq A \cup B^{\prime}$ and $A \subseteq B \cup A^{\prime}$ and so $B \subseteq A$ and $A \subseteq B$. Hence, $A=B$, (UP-4) holding.

We can easily show the following example.

Example 1.6. Let $A=\{0,1,2,3\}$ be a set with a binary operation. defined by the following Cayley table:

\cdot	0	1	2	3
0	0	1	2	3
1	0	0	0	0
2	0	1	0	3
3	0	1	2	0

Then $(A ; \cdot, 0)$ is a UP-algebra.
The following proposition is very important for the study of UPalgebras.

Proposition 1.7. In a UP-algebra A, the following properties hold: for any $x, y, z \in A$,
(1) $x \cdot x=0$,
(2) $x \cdot y=0$ and $y \cdot z=0$ imply $x \cdot z=0$,
(3) $x \cdot y=0$ implies $(z \cdot x) \cdot(z \cdot y)=0$,
(4) $x \cdot y=0$ implies $(y \cdot z) \cdot(x \cdot z)=0$,
(5) $x \cdot(y \cdot x)=0$,
(6) $(y \cdot x) \cdot x=0$ if and only if $x=y \cdot x$, and
(7) $x \cdot(y \cdot y)=0$.

Proof. (1) By the definition of a UP-algebra, we have

$$
\begin{aligned}
0 & =(0 \cdot x) \cdot((0 \cdot 0) \cdot(0 \cdot x)) \\
& =(0 \cdot x) \cdot(0 \cdot x) \\
& =x \cdot x
\end{aligned}
$$

(By (UP-1))
(By (UP-2))
(By (UP-2))
Hence, $x \cdot x=0$.
(2) Assume that $x \cdot y=0$ and $y \cdot z=0$. Then

$$
\begin{align*}
x \cdot z & =0 \cdot(0 \cdot(x \cdot z)) \tag{UP-2}\\
& =(y \cdot z) \cdot((x \cdot y) \cdot(x \cdot z)) \\
& =0
\end{align*}
$$

(By substituting)
(By (UP-1))
Hence, $x \cdot z=0$.
(3) Assume that $x \cdot y=0$. Then

$$
\begin{align*}
(z \cdot x) \cdot(z \cdot y) & =0 \cdot((z \cdot x) \cdot(z \cdot y)) \tag{UP-2}\\
& =(x \cdot y) \cdot((z \cdot x) \cdot(z \cdot y)) \tag{Bysubstituting}\\
& =0
\end{align*}
$$

(By (UP-1))
Hence, $(z \cdot x) \cdot(z \cdot y)=0$.
(4) Assume that $x \cdot y=0$. Then

$$
\begin{align*}
(y \cdot z) \cdot(x \cdot z) & =(y \cdot z) \cdot(0 \cdot(x \cdot z)) & (\text { By }(\mathrm{UP}-2)) \tag{UP-2}\\
& =(y \cdot z) \cdot((x \cdot y) \cdot(x \cdot z)) & \text { (By substituting) } \\
& =0 . & (\text { By }(\mathrm{UP}-1))
\end{align*}
$$

Hence, $(y \cdot z) \cdot(x \cdot z)=0$.
(5) By (UP-1), (UP-2) and (UP-3), we have $x \cdot(y \cdot x)=(0 \cdot x) \cdot((y \cdot$ $0) \cdot(y \cdot x))=0$
(6) If $(y \cdot x) \cdot x=0$, then by $(5), x \cdot(y \cdot x)=0$. By (UP-4), $x=y \cdot x$. By (1), we have the converse.
(7) By (UP-3) and (1), we have $x \cdot(y \cdot y)=x \cdot 0=0$.

On a UP-algebra $A=(A ; \cdot, 0)$, we define a binary relation \leq on A as follows: for all $x, y \in A$,

$$
\begin{equation*}
x \leq y \text { if and only if } x \cdot y=0 \tag{1.2}
\end{equation*}
$$

Proposition 1.8 obviously follows from Proposition 1.7.
Proposition 1.8. In a UP-algebra A, the following properties hold: for any $x, y, z \in A$,
(1) $x \leq x$,
(2) $x \leq y$ and $y \leq x$ imply $x=y$,
(3) $x \leq y$ and $y \leq z$ imply $x \leq z$,
(4) $x \leq y$ implies $z \cdot x \leq z \cdot y$,
(5) $x \leq y$ implies $y \cdot z \leq x \cdot z$,
(6) $x \leq y \cdot x$, and
(7) $x \leq y \cdot y$.

From Proposition 1.8 and (UP-3), we have Proposition 1.9.
Proposition 1.9. Let A be a UP-algebra with a binary relation \leq defined by (1.2). Then (A, \leq) is a partially ordered set with 0 as the greatest element.

We often call the partial ordering \leq defined by (1.2) the UP-ordering on A. From now on, the symbol \leq will be used to denote the UPordering, unless specified otherwise.

This means that a UP-algebra can be considered as a partially ordered set with some additional properties.

Proposition 1.10. An algebra $A=(A ; \cdot, 0)$ of type $(2,0)$ with a binary relation \leq defined by (1.2) is a UP-algebra if and only if it satisfies the following conditions: for all $x, y, z \in A$,
(1) $(y \cdot z) \leq(x \cdot y) \cdot(x \cdot z)$,
(2) $0 \cdot x=x$,
(3) $x \leq 0$, and
(4) $x \leq y$ and $y \leq x$ imply $x=y$.

The following theorem is an important result of KU-algebras for study in the connections between UP-algebras and KU-algebras.

Theorem 1.11. Any $K U$-algebra is a UP-algebra.
Proof. It only needs to show (UP-1). By Lemma 1.2, we have that any KU-algebra satisfies (UP-1).
Example 1.12. Let $A=\{0,1,2,3,4\}$ be a set with a binary operation - defined by the following Cayley table:

\cdot	0	1	2	3	4
0	0	1	2	3	4
1	0	0	0	0	0
2	0	2	0	0	0
3	0	2	2	0	0
4	0	2	2	4	0

By routine calculations it can be seen that $(A ; \cdot, 0)$ is a UP-algebra. Since $(0 \cdot 3) \cdot((3 \cdot 1) \cdot(0 \cdot 1))=3 \cdot(2 \cdot 1)=3 \cdot 2=2$, we have that $(K U-1)$ is not satisfied. Hence, $(A ; \cdot, 0)$ is not a KU-algebra.

We give an example showing that the notion of UP-algebras is a generalization of KU -algebras.

Theorem 1.13. An algebra $A=(A ; \cdot, 0)$ of type $(2,0)$ is a $K U$-algebra if and only if it satisfies the following conditions: for all $x, y, z \in A$,
(1) $(\mathrm{KU}-1):(y \cdot x) \cdot((x \cdot z) \cdot(y \cdot z))=0$,
(2) $y \cdot((y \cdot x) \cdot x)=0$,
(3) $x \cdot x=0$,
(4) $(\mathrm{KU}-3): x \cdot 0=0$, and
(5) (KU-4): $x \cdot y=y \cdot x=0$ implies $x=y$.

Proof. Necessity: It suffices to prove (2) and (3). By (KU-1) and (KU2), we have

$$
y \cdot((y \cdot x) \cdot x)=(0 \cdot y) \cdot((y \cdot x) \cdot(0 \cdot x)=0
$$

and

$$
x \cdot x=0 \cdot(x \cdot x)=(0 \cdot 0) \cdot((0 \cdot x) \cdot(0 \cdot x)=0
$$

(2) and (3) holding.

Sufficiency: It only needs to show (KU-2). Replacing y by 0 in (2), we get

$$
\begin{equation*}
0 \cdot((0 \cdot x) \cdot x)=0 \tag{1.4}
\end{equation*}
$$

Substituting $0 \cdot x$ for y and x for z in (1), it follows

$$
((0 \cdot x) \cdot x) \cdot((x \cdot x) \cdot((0 \cdot x) \cdot x))=0
$$

By (3), we have

$$
\begin{equation*}
((0 \cdot x) \cdot x) \cdot(0 \cdot((0 \cdot x) \cdot x))=0 \tag{1.5}
\end{equation*}
$$

An application of (1.4) to (1.5) gives

$$
\begin{equation*}
((0 \cdot x) \cdot x) \cdot 0=0 . \tag{1.6}
\end{equation*}
$$

Comparing (1.4) with (1.6) and using (5), we obtain

$$
\begin{equation*}
(0 \cdot x) \cdot x=0 \tag{1.7}
\end{equation*}
$$

Also, by (2) and (3), the following holds:

$$
\begin{equation*}
x \cdot(0 \cdot x)=x \cdot((x \cdot x) \cdot x)=0 \tag{1.8}
\end{equation*}
$$

Now, combining (1.7) with (1.8) and using (5) once again, it yields $0 \cdot x=0$, showing (KU-2). Hence, $A=(A ; \cdot, 0)$ is a KU-algebra.

Theorem 1.14. In a UP-algebra A, the following statements are equivalent:
(1) A is a $K U$-algebra,
(2) $x \cdot(y \cdot z)=y \cdot(x \cdot z)$ for all $x, y, z \in A$, and
(3) $x \cdot(y \cdot z)=0$ implies $y \cdot(x \cdot z)=0$ for all $x, y, z \in A$.

Proof. (1) \Rightarrow (2) By Theorem 1.13 (2), we get $x \leq(x \cdot z) \cdot z$, then by Proposition 1.8 (5) implies

$$
((x \cdot z) \cdot z) \cdot(y \cdot z) \leq x \cdot(y \cdot z)
$$

Substituting $x \cdot z$ for x in (KU-1), we have $(y \cdot(x \cdot z)) \cdot(((x \cdot z) \cdot z) \cdot(y \cdot z))=$ 0 . Thus

$$
y \cdot(x \cdot z) \leq((x \cdot z) \cdot z) \cdot(y \cdot z)
$$

The transitivity of \leq gives

$$
\begin{equation*}
y \cdot(x \cdot z) \leq x \cdot(y \cdot z) \text { for all } x, y, z \in A \tag{1.9}
\end{equation*}
$$

Replacing y by x and x by y in (1.9), we obtain

$$
\begin{equation*}
x \cdot(y \cdot z) \leq y \cdot(x \cdot z) \tag{1.10}
\end{equation*}
$$

Hence, the anti-symmetry of \leq implies that $x \cdot(y \cdot z)=y \cdot(x \cdot z)$. $(2) \Rightarrow(3)$ Assume that $x \cdot(y \cdot z)=0$ where $x, y, z \in A$. By (2), we have $y \cdot(x \cdot z)=0$. showing (KU-1).

Theorem 1.15. An algebra $A=(A ; \cdot, 0)$ of type $(2,0)$ is a $U P$-algebra if and only if it satisfies the following conditions: for all $x, y, z \in A$,
(1) $(\mathrm{UP}-1):(y \cdot z) \cdot((x \cdot y) \cdot(x \cdot z))=0$,
(2) $(y \cdot 0) \cdot x=x$, and
(3) (UP-4): $x \cdot y=y \cdot x=0$ implies $x=y$.

Proof. Necessity: It suffices to prove (2). By (UP-2) and (UP-3), we have

$$
(y \cdot 0) \cdot x=0 \cdot x=x
$$

(2) holding.

Sufficiency: It suffices to show (UP-2) and (UP-3). Replacing y and z by 0 in (1) and using (2), we get

$$
\begin{equation*}
0=(0 \cdot 0) \cdot((x \cdot 0) \cdot(x \cdot 0))=(0 \cdot 0) \cdot(x \cdot 0)=x \cdot 0 \tag{1.11}
\end{equation*}
$$

(UP-3) holding. Combining (1.11) with (2), we obtain

$$
0 \cdot x=(x \cdot 0) \cdot x=x
$$

showing (UP-2). Hence, $A=(A ; \cdot, 0)$ is a UP-algebra.

2. UP-Ideals and UP-Subalgebras

Definition 2.1. Let A be a UP-algebra. A subset B of A is called a UP-ideal of A if it satisfies the following properties:
(1) the constant 0 of A is in B, and
(2) for any $x, y, z \in A, x \cdot(y \cdot z) \in B$ and $y \in B$ imply $x \cdot z \in B$.

Clearly, A and $\{0\}$ are UP-ideals of A.
We can easily show the following example.
Example 2.2. Let $A=\{0,1,2,3,4\}$ be a set with a binary operation - defined by the following Cayley table:

.	0	1	2	3	4
0	0	1	2	3	4
1	0	0	2	3	4
2	0	0	0	3	4
3	0	0	2	0	4
4	0	0	0	0	0

Then $(A ; \cdot, 0)$ is a UP-algebra and $\{0,1,2\}$ and $\{0,1,3\}$ are UP-ideals of A.

Theorem 2.3. Let A be a UP-algebra and B a UP-ideal of A. Then the following statements hold: for any $x, a, b \in A$,
(1) if $b \cdot x \in B$ and $b \in B$, then $x \in B$. Moreover, if $b \cdot X \subseteq B$ and $b \in B$, then $X \subseteq B$,
(2) if $b \in B$, then $x \cdot b \in B$. Moreover, if $b \in B$, then $X \cdot b \subseteq B$, and
(3) if $a, b \in B$, then $(b \cdot(a \cdot x)) \cdot x \in B$.

Proof. (1) Let $x, b \in A$ be such that $b \cdot x \in B$ and $b \in B$. By (UP-2), we get $0 \cdot(b \cdot x)=b \cdot x \in B$ and $b \in B$. Since B is a UP-ideal of A and (UP-2), we have $x=0 \cdot x \in B$. If $b \cdot X \subseteq B$ and $b \in B$, then $b \cdot x \in B$ for all $x \in X$. From the previous result, $x \in B$ for all $x \in X$. Thus $X \subseteq B$.
(2) Let $x \in A$ and $b \in B$. By (UP-3) and using Proposition 1.7 (1), we have $x \cdot(b \cdot b)=x \cdot 0=0 \in B$. Since B is a UP-ideal of A and $b \in B$, we have $x \cdot b \in B$. If $b \in B$, then from the previous result, $x \cdot b \in B$ for all $x \in X$. Thus $X \cdot b \subseteq B$.
(3) Let $x \in A$ and $a, b \in B$. By Proposition 1.7 (1), we have $(a \cdot x)$. $(a \cdot x)=0 \in B$. Since B is a UP-ideal of A and $a \in B$, we have $(a \cdot x) \cdot x \in B$. By (UP-1), we have

$$
((a \cdot x) \cdot x) \cdot((b \cdot(a \cdot x)) \cdot(b \cdot x))=0 \in B
$$

It follows from (1) that $(b \cdot(a \cdot x)) \cdot(b \cdot x) \in B$. Since $b \in B$, it follows from the definition of a UP-ideal that $(b \cdot(a \cdot x)) \cdot x \in B$.
Corollary 2.4. Let A be a UP-algebra and B a UP-ideal of A. Then for any $x \in A$ and $b \in B, b \leq x$ implies $x \in B$.
Proof. If $b \leq x$, then $b \cdot x=0 \in B$. Since $b \in B$, it follows from Theorem 2.3 (1) that $x \in B$.
Corollary 2.5. Let A be a UP-algebra and B a UP-ideal of A. Then for any $x \in A$ and $a, b \in B, b \leq a \cdot x$ implies $x \in B$.

Proof. If $b \leq a \cdot x$, then $b \cdot(a \cdot x)=0 \in B$. Since $b \in B$, it follows from Theorem 2.3 (1) that $a \cdot x \in B$. Using Theorem 2.3 (1) again, $x \in B$.

Theorem 2.6. Let A be a UP-algebra and $\left\{B_{i}\right\}_{i \in I}$ a family of UPideals of A. Then $\bigcap_{i \in I} B_{i}$ is a UP-ideal of A.
Proof. Clearly, $0 \in B_{i}$ for all $i \in I$. Thus $0 \in \bigcap_{i \in I} B_{i}$. Let $x, y, z \in A$ be such that $x \cdot(y \cdot z) \in \bigcap_{i \in I} B_{i}$ and $y \in \bigcap_{i \in I} B_{i}$. Then $x \cdot(y \cdot z) \in B_{i}$ and $y \in B_{i}$ for all $i \in I$. Since B_{i} is a UP-ideal of A, we have $x \cdot z \in B_{i}$ for all $i \in I$. Thus $x \cdot z \in \bigcap_{i \in I} B_{i}$. Hence, $\bigcap_{i \in I} B_{i}$ is a UP-ideal of A.

From Theorem 2.6, the intersection of all UP-ideals of a UP-algebra A containing a subset X of A is the UP-ideal of A generated by X. For $X=\{a\}$, let $I(a)$ denote the UP-ideal of A generated by $\{a\}$. We see that the UP-ideal of A generated by \emptyset and $\{0\}$ is $\{0\}$, and the UP-ideal of A generated by A is A.

Applying Theorem 2.3 and Proposition 1.8 (6), we can then easily prove the following Proposition.

Proposition 2.7. Let A be a UP-algebra and B a UP-ideal of A. Then the following statements hold: for any $x, y \in A$,
(1) if $x \in B$ and $x \leq y$, then $y \in B$,
(2) if $x \leq y$, then $I(y) \subseteq I(x)$,
(3) $I(y \cdot x) \subseteq I(x)$, and
(4) if $y \in I(y \cdot x)$, then $I(y \cdot x)=I(x)$.

Definition 2.8. Let $A=(A ; \cdot, 0)$ be a UP-algebra. A subset S of A is called a UP-subalgebra of A if the constant 0 of A is in S, and $(S ; \cdot, 0)$ itself forms a UP-algebra. Clearly, A and $\{0\}$ are UP-subalgebras of A.

Applying Proposition 1.7 (1), we can then easily prove the following Proposition.

Proposition 2.9. A nonempty subset S of a $U P$-algebra $A=(A ; \cdot, 0)$ is a UP-subalgebra of A if and only if S is closed under the \cdot multiplication on A.

Theorem 2.10. Let A be a UP-algebra and $\left\{B_{i}\right\}_{i \in I}$ a family of UPsubalgebras of A. Then $\bigcap_{i \in I} B_{i}$ is a UP-subalgebra of A.

Proof. Since $0 \in B_{i}$ for all $i \in I$, we have $0 \in \bigcap_{i \in I} B_{i} \neq \emptyset$. Let $x, y \in \bigcap_{i \in I} B_{i}$. Then $x, y \in B_{i}$ for all $i \in I$, it follows from Proposition 2.9 that $x \cdot y \in \bigcap_{i \in I} B_{i}$. Using Proposition 2.9 once again, $\bigcap_{i \in I} B_{i}$ is a UP-subalgebra of A.

Theorem 2.11. Let A be a UP-algebra and B a UP-ideal of A. Then $A \cdot B \subseteq B$. In particular, B is a UP-subalgebra of A.

Proof. Let $x \in A \cdot B$. Then $x=a \cdot b$ for some $a \in A$ and $b \in B$. By (UP-3) and Proposition 1.7 (1), we have $a \cdot(b \cdot b)=a \cdot 0=0 \in B$. Since B is a UP-ideal of A and $b \in B$, we have $x=a \cdot b \in B$. Hence, $A \cdot B \subseteq B$. Since $B \cdot B \subseteq A \cdot B \subseteq B$, we get B is a UP-subalgebra of A.

Example 2.12. Let $A=\{0,1,2,3\}$ be a set with a binary operation. defined by the following Cayley table:

$$
\begin{array}{c|cccc}
. & 0 & 1 & 2 & 3 \\
\hline 0 & 0 & 1 & 2 & 3 \tag{2.2}\\
1 & 0 & 0 & 2 & 2 \\
2 & 0 & 1 & 0 & 2 \\
3 & 0 & 1 & 0 & 0
\end{array}
$$

Then $(A ; \cdot, 0)$ is a UP-algebra. Let $S=\{0,2\}$. Then S is a UPsubalgebra of A. Since $0 \cdot(2 \cdot 3)=2 \in S$ and $2 \in S$, but $0 \cdot 3=3 \notin S$, we have S is not a UP-ideal of A.

By Theorem 2.11 and Example 2.12, we have that the notion of UP-subalgebras is a generalization of UP-ideals.

Theorem 2.13. Let A be a UP-algebra and let B be a UP-subalgebra of A satisfying the property of the Theorem 1.14 (2), i.e., $x \cdot(y \cdot z)=y \cdot(x \cdot z)$ for all $x, y, z \in B$. If S is a subset of B that is satisfies the following properties:
(1) the constant 0 of A is in S, and
(2) for any $x, b \in B$, if $b \cdot x \in S$ and $b \in S$, then $x \in S$.

Then S is a UP-ideal of B.
Proof. Let $x, y, z \in B$ be such that $x \cdot(y \cdot z) \in S$ and $y \in S$. Since $y \in S \subseteq B$ and B satisfies the property of the Theorem 1.14 (2), we get $y \cdot(x \cdot z)=x \cdot(y \cdot z) \in S$. Using (2), we obtain $x \cdot z \in S$. Hence, S is a UP-ideal of B.

Theorem 2.14. Let A be a UP-algebra and B a UP-subalgebra of A. If S is a subset of B that is satisfies the following properties:
(1) the constant 0 of A is in S, and
(2) for any $x, a, b \in B$, if $a, b \in S$, then $(b \cdot(a \cdot x)) \cdot x \in S$.

Then S is a UP-ideal of B.
Proof. Let $x, y, z \in B$ be such that $x \cdot(y \cdot z) \in S$ and $y \in S$. Replacing b by $0, a$ by y and x by z in (2) and using (UP-2), we get $(y \cdot z) \cdot z=$ $(0 \cdot(y \cdot z)) \cdot z \in S$. It follows from (UP-1), (UP-2), and (2) that

$$
x \cdot z=0 \cdot(x \cdot z)=(((y \cdot z) \cdot z) \cdot((x \cdot(y \cdot z)) \cdot(x \cdot z)) \cdot(x \cdot z) \in S
$$

Hence, S is a UP-ideal of B.

3. Congruences

Definition 3.1. Let A be a UP-algebra and B a UP-ideal of A. Define the binary relation \sim_{B} on A as follows: for all $x, y \in A$,

$$
\begin{equation*}
x \sim_{B} y \text { if and only if } x \cdot y \in B \text { and } y \cdot x \in B \tag{3.1}
\end{equation*}
$$

We can easily show the following example.
Example 3.2. From Example 2.2, let $B=\{0,1,3\}$ be an UP-ideal of A. Then

$$
\begin{gathered}
\sim_{B}=\{(0,0),(1,1),(2,2),(3,3),(4,4),(0,1),(1,0),(0,3),(3,0), \\
(1,3),(3,1)\} .
\end{gathered}
$$

We can see that \sim_{B} is an equivalence relation on A.
Definition 3.3. Let A be a UP-algebra. An equivalence relation ρ on A is called a congruence if for any $x, y, z \in A$,

$$
x \rho y \text { implies } x \cdot z \rho y \cdot z \text { and } z \cdot x \rho z \cdot y \text {. }
$$

Lemma 3.4. Let A be a UP-algebra. An equivalence relation ρ on A is a congruence if and only if for any $x, y, u, v \in A, x \rho y$ and $u \rho v$ imply $x \cdot u \rho y \cdot v$.

Proof. Assume that ρ is a congruence on A and let $x, y, u, v \in A$ be such that $x \rho y$ and $u \rho v$. Then $x \cdot u \rho y \cdot u$ and $y \cdot u \rho y \cdot v$. The transitivity of ρ gives $x \cdot u \rho y \cdot v$.

Conversely, let $x, y, z \in A$ be such that $x \rho y$. Since $z \rho z$, it follows from assumption that $x \cdot z \rho y \cdot z$ and $z \cdot x \rho z \cdot y$. Hence, ρ is a congruence on A.

Proposition 3.5. Let A be a UP-algebra and B a $U P$-ideal of A with a binary relation \sim_{B} defined by (3.1). Then \sim_{B} is a congruence on A.
Proof. Reflexive: For all $x \in A$, it follows from Proposition 1.7 (1) that $x \cdot x=0$. Since B is a UP-ideal of A, we have $x \cdot x=0 \in B$. Thus $x \sim_{B} x$.
Symmetric: Let $x, y \in A$ be such that $x \sim_{B} y$. Then $x \cdot y \in B$ and $y \cdot x \in B$, so $y \cdot x \in B$ and $x \cdot y \in B$. Thus $y \sim_{B} x$.
Transitive: Let x, y, z be such that $x \sim_{B} y$ and $y \sim_{B} z$. Then x. $y, y \cdot x, y \cdot z, z \cdot y \in B$. Since B is a UP-ideal of A and (UP-1), we get $(y \cdot z) \cdot((x \cdot y) \cdot(x \cdot z))=0 \in B$. Since $y \cdot z \in B$, it follows from Theorem 2.3 that $(x \cdot y) \cdot(x \cdot z) \in B$. Since $x \cdot y \in B$, it follows from Theorem 2.3 again that $x \cdot z \in B$. Similarly, since B is a UP-ideal of A and (UP-1), we get $(y \cdot x) \cdot((z \cdot y) \cdot(z \cdot x))=0 \in B$. Since $y \cdot x \in B$, it follows from Theorem 2.3 that $(z \cdot y) \cdot(z \cdot x) \in B$. Since $z \cdot y \in B$, it follows from Theorem 2.3 again that $z \cdot x \in B$. Thus $x \sim_{B} z$.

Therefore, \sim_{B} is an equivalence relation on A. Finally, let $x, y, u, v \in A$ be such that $x \sim_{B} u$ and $y \sim_{B} v$. Then $x \cdot u, u \cdot x, y \cdot v, v \cdot y \in B$. Since B is a UP-ideal of A and (UP-1), we get $(v \cdot y) \cdot((x \cdot v) \cdot(x \cdot y))=0 \in B$. Since $v \cdot y \in B$, it follows from Theorem 2.3 that $(x \cdot v) \cdot(x \cdot y) \in B$. Similarly, since B is a UP-ideal of A and (UP-1), we get $(y \cdot v) \cdot((x \cdot y)$. $(x \cdot v))=0 \in B$. Since $y \cdot v \in B$, it follows from Theorem 2.3 again that $(x \cdot y) \cdot(x \cdot v) \in B$. Thus $x \cdot y \sim_{B} x \cdot v$. On the other hand, since B is a UPideal of A and (UP-1), we get $(u \cdot v) \cdot((x \cdot u) \cdot(x \cdot v))=0 \in B$. Since B is a UP-ideal of A and $x \cdot u \in B$, we have $(u \cdot v) \cdot(x \cdot v) \in B$. Similarly, since B is a UP-ideal of A and (UP-1), we get $(x \cdot v) \cdot((u \cdot x) \cdot(u \cdot v))=0 \in B$. Since B is a UP-ideal of A and $u \cdot x \in B$, we have $(x \cdot v) \cdot(u \cdot v) \in B$. Thus $x \cdot v \sim_{B} u \cdot v$. The transitivity of \sim_{B} gives $x \cdot y \sim_{B} u \cdot v$. Hence, \sim_{B} is a congruence on A.

Let A be a UP-algebra and ρ a congruence on A. If $x \in A$, then the ρ-class of x is the $(x)_{\rho}$ defined as follows:

$$
(x)_{\rho}=\{y \in A \mid y \rho x\} .
$$

Then the set of all ρ-classes is called the quotient set of A by ρ, and is denoted by A / ρ. That is,

$$
A / \rho=\left\{(x)_{\rho} \mid x \in A\right\}
$$

Theorem 3.6. Let A be a UP-algebra and ρ a congruence on A. Then the following statements hold:
(1) the ρ-class $(0)_{\rho}$ is a UP-ideal and a UP-subalgebra of A,
(2) a ρ-class $(x)_{\rho}$ is a UP-ideal of A if and only if $x \rho 0$, and
(3) a ρ-class $(x)_{\rho}$ is a UP-subalgebra of A if and only if $x \rho 0$.

Proof. (1) Since $0 \rho 0,0 \in(0)_{\rho}$. Let $x, y, z \in A$ be such that $x \cdot(y \cdot z) \in$ $(0)_{\rho}$ and $y \in(0)_{\rho}$. Then $y \rho 0$ and

$$
\begin{equation*}
x \cdot(y \cdot z) \rho 0 . \tag{3.2}
\end{equation*}
$$

Since $x \rho x$ and $z \rho z$, it follows from Lemma 3.4 that $x \cdot(y \cdot z) \rho x \cdot(0 \cdot z)$. By (UP-2), we get $x \cdot(y \cdot z) \rho x \cdot z$ and so

$$
\begin{equation*}
x \cdot z \rho x \cdot(y \cdot z) \tag{3.3}
\end{equation*}
$$

The transitivity of ρ gives $x \cdot z \rho 0$, so $x \cdot z \in(0)_{\rho}$. Hence, $(0)_{\rho}$ is a UP-ideal of A. Now, let $x, y \in(0)_{\rho}$. Then $x \rho 0$ and $y \rho 0$. By Lemma 3.4 and (UP-2), we have $x \cdot y \rho 0$. Thus $x \cdot y \in(0)_{\rho}$. Hence, $(0)_{\rho}$ is a UP-subalgebra of A.
(2) Assume that $(x)_{\rho}$ is a UP-ideal of A. Then $0 \in(x)_{\rho}$. Hence, the symmetry of ρ gives $x \rho 0$.

Converse, let $x \rho 0$. Then $(x)_{\rho}=(0)_{\rho}$. It follows from (1) that $(x)_{\rho}$ is a UP-ideal of A.
(3) Assume that $(x)_{\rho}$ is a UP-subalgebra of A. Since $x \in(x)_{\rho}$ and Proposition 1.7 (1), we have $0=x \cdot x \in(x)_{\rho}$. Hence, the symmetry of ρ gives $x \rho 0$.

Converse, let $x \rho 0$. Then $(x)_{\rho}=(0)_{\rho}$. It follows from (1) that $(x)_{\rho}$ is a UP-subalgebra of A.

Theorem 3.7. Let A be a UP-algebra and B a UP-ideal of A. Then the following statements hold:
(1) the \sim_{B}-class $(0)_{\sim_{B}}$ is a UP-ideal and a UP-subalgebra of A contained in B,
(2) $a \sim_{\sim_{B}}$-class $(x)_{\sim_{B}}$ is a UP-ideal of A if and only if $x \in B$,
(3) $a \sim_{B}$-class $(x)_{\sim_{B}}$ is a UP-subalgebra of A if and only if $x \in B$, and
(4) $\left(A / \sim_{B} ; *,(0)_{\sim_{B}}\right)$ is a UP-algebra under the $*$ multiplication defined by $(x)_{\sim_{B}} *(y)_{\sim_{B}}=(x \cdot y)_{\sim_{B}}$ for all $x, y \in A$, called the quotient UP-algebra of A induced by the congruence \sim_{B}.

Proof. (1) From Proposition 3.5 and Theorem 3.6 (1), we have $(0)_{\sim_{B}}$ is a UP-ideal and a UP-subalgebra of A. Now, let $x \in(0)_{\sim_{B}}$. Then $x \sim_{B} 0$, it follows from (UP-2) that $x=0 \cdot x \in B$. Hence, $(0)_{\sim_{B}} \subseteq B$. (2) It now follows directly from Proposition 3.5, Theorem 3.6 (2) and (UP-2).
(3) It now follows directly from Proposition 3.5, Theorem 3.6 (3) and (UP-2).
(4) Let $x, y, u, v \in A$ be such that $(x)_{\sim_{B}}=(y)_{\sim_{B}}$ and $(u)_{\sim_{B}}=(v)_{\sim_{B}}$. Since \sim_{B} is an equivalence relation on A, we get $x \sim_{B} y$ and $u \sim_{B} v$. By Lemma 3.4, we have $x \cdot u \sim_{B} y \cdot v$. Hence, $(x)_{\sim_{B}} *(u)_{\sim_{B}}=(x \cdot u)_{\sim_{B}}=$ $(y \cdot v)_{\sim_{B}}=(y)_{\sim_{B}} *(v)_{\sim_{B}}$, showing $*$ is well defined.
(UP-1): Let $x, y, z \in A$. By (UP-1), we have $\left((y)_{\sim_{B}} *(z)_{\sim_{B}}\right) *\left(\left((x)_{\sim_{B}} *\right.\right.$ $\left.\left.(y)_{\sim_{B}}\right) *\left((x)_{\sim_{B}} *(z)_{\sim_{B}}\right)\right)=((y \cdot z) \cdot((x \cdot y) \cdot(x \cdot z)))_{\sim_{B}}=(0)_{\sim_{B}}$.
(UP-2): Let $x \in A$. By (UP-2), we have (0) ${\sim_{\sim_{B}}} *(x)_{\sim_{B}}=(0 \cdot x)_{\sim_{B}}=$ $(x)_{\sim_{B}}$.
$(U P-3):$ Let $x \in A$. By (UP-3), we have $(x)_{\sim_{B}} *(0)_{\sim_{B}}=(x \cdot 0)_{\sim_{B}}=$ $(0)_{\sim_{B}}$.
(UP-4): Let $x, y \in A$ be such that $(x)_{\sim_{B}} *(y)_{\sim_{B}}=(y)_{\sim_{B}} *(x)_{\sim_{B}}=$ $(0)_{\sim_{B}}$. Then $(x \cdot y)_{\sim_{B}}=(y \cdot x)_{\sim_{B}}=(0)_{\sim_{B}}$, it follows from (1) that $x \cdot y, y \cdot x \in(0)_{\sim_{B}} \subseteq B$. Hence, $x \sim_{B} y$ and so $(x)_{\sim_{B}}=(y)_{\sim_{B}}$.
Hence, $\left(A / \sim_{B} ; *,(0)_{\sim_{B}}\right)$ is a UP-algebra.

4. UP-Homomorphisms

Definition 4.1. Let $(A ; \cdot, 0)$ and $\left(A^{\prime} ; \cdot^{\prime}, 0^{\prime}\right)$ be UP-algebras. A mapping f from A to A^{\prime} is called a $U P$-homomorphism if

$$
f(x \cdot y)=f(x) \cdot^{\prime} f(y) \text { for all } x, y \in A
$$

A UP-homomorphism $f: A \rightarrow A^{\prime}$ is called a
(1) UP-epimorphism if f is surjective,
(2) UP-monomorphism if f is injective,
(3) UP-isomorphism if f is bijective. Moreover, we say A is $U P$ isomorphic to A^{\prime}, symbolically, $A \cong A^{\prime}$, if there is a UPisomorphism from A to A^{\prime}.
Let f be a mapping from A to A^{\prime}, and let B be a nonempty subset of A, and B^{\prime} of A^{\prime}. The set $\{f(x) \mid x \in B\}$ is called the image of B under f, denoted by $f(B)$. In particular, $f(A)$ is called the image of f, denoted by $\operatorname{Im}(f)$. Dually, the set $\left\{x \in A \mid f(x) \in B^{\prime}\right\}$ is said the inverse image of B^{\prime} under f, symbolically, $f^{-1}\left(B^{\prime}\right)$. Especially, we say $f^{-1}\left(\left\{0^{\prime}\right\}\right)$ is the kernel of f, written by $\operatorname{Ker}(f)$. That is,

$$
\operatorname{Im}(f)=\left\{f(x) \in A^{\prime} \mid x \in A\right\}
$$

and

$$
\operatorname{Ker}(f)=\left\{x \in A \mid f(x)=0^{\prime}\right\} .
$$

By using Microsoft Excel, we have the following example.
Example 4.2. Let $A=\{0,1,2,3,4\}$ be a set with a binary operation - defined by the following Cayley table:

\cdot	0	1	2	3	4
0	0	1	2	3	4
1	0	0	2	3	4
2	0	0	0	3	4
3	0	0	2	0	4
4	0	0	0	0	0

and let $A^{\prime}=\left\{0^{\prime}, a, b, c, d\right\}$ be a set with a binary operation.$^{\prime}$ defined by the following Cayley table:

.$^{\prime}$	0^{\prime}	a	b	c	d
0^{\prime}	0^{\prime}	a	b	c	d
a	0^{\prime}	0^{\prime}	0^{\prime}	0^{\prime}	0^{\prime}
b	0^{\prime}	a	0^{\prime}	c	0^{\prime}
c	0^{\prime}	a	0^{\prime}	0^{\prime}	0^{\prime}
d	0^{\prime}	a	b	c	0^{\prime}

Then $(A ; \cdot, 0)$ and $\left(A^{\prime} ; \cdot^{\prime}, 0^{\prime}\right)$ are UP-algebras. We define a mapping $f: A \rightarrow A^{\prime}$ as follows:

$$
f(0)=0^{\prime}, f(1)=0^{\prime}, f(2)=0^{\prime}, f(3)=d, \text { and } f(4)=a .
$$

Then f is a UP-homomorphism with $\operatorname{Im}(f)=\left\{0^{\prime}, a, d\right\}$ and $\operatorname{Ker}(f)=$ $\{0,1,2\}$.

In fact it is easy to show the following theorem.
Theorem 4.3. Let A, B and C be UP-algebras. Then the following statements hold:
(1) the identity mapping $I_{A}: A \rightarrow A$ is a UP-isomorphism,
(2) if $f: A \rightarrow B$ is a UP-isomorphism, then $f^{-1}: B \rightarrow A$ is a UP-isomorphism, and
(3) if $f: A \rightarrow B$ and $g: B \rightarrow C$ are UP-isomorphisms, then $g \circ$ $f: A \rightarrow C$ is a UP-isomorphism.

Theorem 4.4. Let A be a UP-algebra and B a UP-ideal of A. Then the mapping $\pi_{B}: A \rightarrow A / \sim_{B}$ defined by $\pi_{B}(x)=(x)_{\sim_{B}}$ for all $x \in A$ is a UP-epimorphism, called the natural projection from A to A / \sim_{B}.

Proof. Let $x, y \in A$ be such that $x=y$. Then $(x)_{\sim_{B}}=(y)_{\sim_{B}}$, so $\pi_{B}(x)=\pi_{B}(y)$. Thus π_{B} is well defined. Note that by the definition of π_{B}, we have π_{B} is surjective. Let $x, y \in A$. Then

$$
\pi_{B}(x \cdot y)=(x \cdot y)_{\sim_{B}}=(x)_{\sim_{B}} *(y)_{\sim_{B}}=\pi_{B}(x) * \pi_{B}(y) .
$$

Thus π_{B} is a UP-homomorphism. Hence, π_{B} is a UP-epimorphism.
Theorem 4.5. Let $\left(A ; \cdot, 0_{A}\right)$ and $\left(B ; *, 0_{B}\right)$ be UP-algebras and let $f: A \rightarrow B$ be a UP-homomorphism. Then the following statements hold:
(1) $f\left(0_{A}\right)=0_{B}$,
(2) for any $x, y \in A$, if $x \leq y$, then $f(x) \leq f(y)$,
(3) if C is a UP-subalgebra of A, then the image $f(C)$ is a UPsubalgebra of B. In particular, $\operatorname{Im}(f)$ is a UP-subalgebra of B,
(4) if D is a UP-subalgebra of B, then the inverse image $f^{-1}(D)$ is a UP-subalgebra of A. In particular, $\operatorname{Ker}(f)$ is a $U P$-subalgebra of A,
(5) if C is a UP-ideal of A, then the image $f(C)$ is a UP-ideal of $f(A)$,
(6) if D is a UP-ideal of B, then the inverse image $f^{-1}(D)$ is a UP-ideal of A. In particular, $\operatorname{Ker}(f)$ is a UP-ideal of A, and
(7) $\operatorname{Ker}(f)=\left\{0_{A}\right\}$ if and only if f is injective.

Proof. (1) By Proposition 1.7 (1), we have

$$
f\left(0_{A}\right)=f\left(0_{A} \cdot 0_{A}\right)=f\left(0_{A}\right) * f\left(0_{A}\right)=0_{B} .
$$

(2) If $x \leq y$, then $x \cdot y=0_{A}$. By (1), we have $f(x) * f(y)=f(x \cdot y)=$ $f\left(0_{A}\right)=0_{B}$. Hence, $f(x) \leq f(y)$.
(3) Assume that C is a UP-subalgebra of A. Since $0_{A} \in C$, we have $f\left(0_{A}\right) \in f(C) \neq \emptyset$. Let $a, b \in f(C)$. Then $f(x)=a$ and $f(y)=b$ for some $x, y \in C$. Since C is closed under the \cdot multiplication on A, we get $a * b=f(x) * f(y)=f(x \cdot y) \in f(C)$. By Proposition 2.9, we get $f(C)$ is a UP-subalgebra of B. In particular, since A is a UP-subalgebra of A, we obtain $\operatorname{Im}(f)=f(A)$ is a UP-subalgebra of B.
(4) Assume that D is a UP-subalgebra of B. Since $0_{B} \in D$, it follows from (1) that $0_{A} \in f^{-1}(D) \neq \emptyset$. Let $x, y \in f^{-1}(D)$. Then $f(x), f(y) \in$ D. Since D is closed under the $*$ multiplication on B, we get $f(x \cdot y)=$ $f(x) * f(y) \in D$. Thus $x \cdot y \in f^{-1}(D)$, it follows from Proposition 2.9 that $f^{-1}(D)$ is a UP-subalgebra of A. In particular, since $\left\{0_{B}\right\}$ is a UP-subalgebra of B, we obtain $\operatorname{Ker}(f)=f^{-1}\left(\left\{0_{B}\right\}\right)$ is a UP-subalgebra of A.
(5) Assume that C is a UP-ideal of A. Since $0_{A} \in C$ and (1), we have $0_{B}=f\left(0_{A}\right) \in f(C)$. Let $a, b, c \in f(A)$ be such that $a *(b * c) \in f(C)$ and $b \in f(C)$. Then $f(u)=a *(b * c)$ and $f(y)=b$ for some $u, y \in C$, and $f(x)=a$ and $f(z)=c$ for some $x, z \in A$. By Proposition 1.7 (1), we have
$0_{B}=(a *(b * c)) *(a *(b * c))=f(u) *(f(x) *(f(y) * f(z)))=f(u \cdot(x \cdot(y \cdot z)))$.
Put $v=(u \cdot(x \cdot(y \cdot z))) \cdot y$. Since $y \in C$, it follows from Theorem 2.3 (2) that $v \in C$. Thus $f(v) \in f(C)$. By (UP-2), we have
$b=0_{B} * b=f(u \cdot(x \cdot(y \cdot z))) * f(y)=f((u \cdot(x \cdot(y \cdot z))) \cdot y)=f(v)$.
Therefore, $b=f(v) \in f(C)$, proving $f(C)$ is a UP-ideal of $f(A)$.
(6) Assume that D is a UP-ideal of B. Since $0_{B} \in D$ and (1), we have $f\left(0_{A}\right)=0_{B} \in D$. Thus $0_{A} \in f^{-1}(D)$. Let $x, y, z \in A$ be such that $x \cdot(y \cdot z) \in f^{-1}(D)$ and $y \in f^{-1}(D)$. Then $f(x \cdot(y \cdot z)) \in D$ and $f(y) \in D$. Since f is a UP-homomorphism, we have

$$
f(x) *(f(y) * f(z))=f(x \cdot(y \cdot z)) \in D
$$

Since D is a UP-ideal of B and $f(y) \in D$, we have $f(x \cdot z)=f(x) *$ $f(z) \in D$. Thus $x \cdot z \in f^{-1}(D)$. Hence, $f^{-1}(D)$ is a UP-ideal of A. In particular, since $\left\{0_{B}\right\}$ is a UP-ideal of B, we obtain $\operatorname{Ker}(f)=$ $f^{-1}\left(\left\{0_{B}\right\}\right)$ is a UP-ideal of A.
(7) Assume that $\operatorname{Ker}(f)=\left\{0_{A}\right\}$. Let $x, y \in A$ be such that $f(x)=$ $f(y)$. By Proposition 1.7 (1), we have

$$
f(x \cdot y)=f(x) * f(y)=f(y) * f(y)=0_{B}
$$

and

$$
f(y \cdot x)=f(y) * f(x)=f(y) * f(y)=0_{B} .
$$

Thus $x \cdot y, y \cdot x \in \operatorname{Ker}(f)=\left\{0_{A}\right\}$, so $x \cdot y=y \cdot x=0_{A}$. By (UP-4), we have $x=y$. Hence, f is injective.

Conversely, assume that f is injective. By (1), we obtain $\left\{0_{A}\right\} \subseteq$ $\operatorname{Ker}(f)$. Let $x \in \operatorname{Ker}(f)$. Then $f(x)=0_{B}=f\left(0_{A}\right)$, so $x=0_{A}$ because f is injective. Hence, $\operatorname{Ker}(f)=\left\{0_{A}\right\}$.

5. Conclusions

In the present paper, we have introduced a new algebraic structure, called a UP-algebra and a concept of UP-ideals, UP-subalgebras, congruences and UP-homomorphisms in UP-algebras and investigated some of its essential properties. We present some connections between UP-algebras and KU-algebras and show that the notion of UP-algebras is a generalization of KU-algebras. We think this work would enhance the scope for further study in a new concept of UP-algebras and related algebraic systems. It is our hope that this work would serve as a foundation for the further study in a new concept of UP-algebras.

Acknowledgments

The author wish to express their sincere thanks to the referees for the valuable suggestions which lead to an improvement of this paper.

References

1. M. Akram, N. Yaqoob, and M. Gulistan, Cubic KU-subalgebras, Int. J. Pure Appl. Math., (5) 89 (2013), 659-665.
2. M. Akram, N. Yaqoob, and J. Kavikumar, Interval-valued $(\widetilde{\theta}, \widetilde{\delta})$-fuzzy KU-ideals of KU-algebras, Int. J. Pure Appl. Math., (3) 92 (2014), 335-349.
3. M. Gulistan, M. Shahzad, and S. Ahmed, On (α, β)-fuzzy KU-ideals of $K U$ algebras, Afr. Mat., (3) 26 (2015), 651-661.
4. Q. P. Hu and X. Li, On BCH-algebras, Math. Semin. Notes, Kobe Univ., 11 (1983), 313-320.
5. Y. Imai and K. Iséki, On axiom system of propositional calculi, XIV, Proc. Japan Acad., (1) 42 (1966), 19-22.
6. K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad., (1) 42 (1966), 26-29.
7. S. Keawrahun and U. Leerawat, On isomorphisms of SU-algebras, Sci. Magna, (2) 7 (2011), 39-44.
8. S. M. Mostafa, M. A. Abdel Naby, and M. M. M. Yousef, Anti-fuzzy KU-ideals of KU-algebras, Int. J. Algebra Stat., (1) 1 (2012), 92-99.
9. S. M. Mostafa, M. A. A. Naby, and O. R. Elgendy, Interval-valued fuzzy KUideals in KU-algebras, Int. Math. Forum, (64) 6 (2011), 3151-3159.
10. S. M. Mostafa, M. A. A. Naby, and O. R. Elgendy, Intuitionistic fuzzy KU-ideals in KU-algebras, Int. J. Math. Sci. Appl., (3) 1 (2011), 1379-1384.
11. S. M. Mostafa, M. A. A. Naby, and M. M. M. Yousef, Fuzzy ideals of $K U$ algebras, Int. Math. Forum, (63) 6 (2011), 3139-3149.
12. C. Prabpayak and U. Leerawat, On ideals and congruences in KU-algebras, Sci. Magna, (1) 5 (2009), 54-57.
13. P. M. Sithar Selvam, T. Priya, K. T. Nagalakshmi, and T. Ramachandran, A note on anti Q-fuzzy $K U$-subalgebras and homomorphism of $K U$-algebras, Bull. Math. Stat. Res., (1) 1 (2013), 42-49.
14. P. M. Sithar Selvam, T. Priya, and T. Ramachandran, Anti Q-fuzzy KU-ideals in KU-algebras and its lower level cuts, Int. J. Eng. Res. Appl., (4) 2 (2012), 1286-1289.
15. N. Yaqoob, S. M. Mostafa, and M. A. Ansari, On cubic $K U$-ideals of $K U$ algebras, ISRN Algebra, 2013 (2013), 10 pages.

A. Iampan

Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand.
Email: aiyared.ia@up.ac.th

[^0]: MSC(2010): Primary: 03G25; Secondary: 13N15
 Keywords: UP-algebra, UP-ideal, congruence, UP-homomorphism.
 This work was financially supported by the National Research Council of Thailand (NRCT) and the University of Phayao (UP), Project Number: R020057216001.
 Received: 14 March 2017, Accepted: 4 July 2017.

