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EXACT ANNIHILATING-IDEAL GRAPH OF
COMMUTATIVE RINGS

P. T. LALCHANDANI

Abstract. The rings considered in this article are commutative
rings with identity 1 6= 0. The aim of this article is to define and
study the exact annihilating-ideal graph of commutative rings. We
discuss the interplay between the ring-theoretic properties of a ring
and graph-theoretic properties of exact annihilating-ideal graph of
the ring.

1. Introduction

The study of graphs associated with algebraic structures was in-
itiated in 1878 when Arthur Cayley introduced Cayley graph of finite
groups in [4]. The annihilating-ideal graph of a commutative ring was
introduced by Behboodi and Rakeei in [2]. Several interesting pro-
perties of annihilating-ideal graph were studied in [2] and [3], which
indicated the interplay between commutative rings and graph theory.
The rings considered in this article are commutative ring with identity
1 6= 0. We recall that an ideal I of a commutative ring R is called
an annihilating-ideal if Ir = (0) for some r ∈ R−{0}. Recall from
[2], that for a commutative ring R with identity, the annihilating-ideal
graph of R denoted by AG(R) is an undirected graph, whose vertex set
is the set of nonzero annihilating-ideals A(R)∗ and two distinct vertices
I and J are adjacent if and only if IJ = (0).
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We say that an ideal I of R is an exact annihilating-ideal if there
exists an ideal J of R such that Ann(I) = J and Ann(J) = I. In this
case we say that (I, J) is a pair of exact annihilating-ideals. Motivated
by the study of exact zero-divisor graph of commutative rings studied
in [5] and [6], we define exact annihilating-ideal graph EAG(R) of a
commutative ring R to be an undirected graph whose vertex set is
the set of nonzero exact annihilating-ideals EA(R)∗ and two distinct
vertices I and J are adjacent if and only if (I, J) is a pair of exact
annihilating-ideals. It is clear that for any commutative ring R, ((0), R)
is a pair of exact annihilating-ideals. Since the vertex set of EAG(R)
is EA(R)∗, in EAG(R) we always have R to be an isolated vertex.
So EAG(R) will always be a disconnected graph. So for the shake
of betterment of results, we restrict the vertex set of EAG(R) to the
set of proper exact annihilating-ideals of R denoted by EA(R)#. So
EA(R)# = EA(R)−{(0), R}. We will try to study some fundamental
results for exact annihilating-ideal graph for a commutative ring R with
identity 1 6= 0 in this article.

We call a graph G is connected if there is a path between any two
distinct vertices. The length of the shortest path between any two
vertices x and y is denoted by d(x, y), and d(x, y) = ∞ if no such
path exists. The diameter of a graph G is denoted and defined as
diam(G) = sup {d(x, y) | x & y are distinct vertices of G}. A cycle
in a graph is a path of length at least 3 through distinct vertices with
same begin and end vertices. The girth of a graph G is denoted by g(G)
and is defined to be the length of the shortest cycle in G. g(G) = ∞
if G contains no cycle. A graph is said to be complete if each vertex
in the graph is adjacent to every other vertex. A complete graph with
n vertices is denoted by Kn. By a null graph, we mean the edgeless
graph, while by an empty graph, we mean a graph with no vertices.

For a subset A ⊂ R, A∗ = A−{0}. Z, Zn, and Fm indicates ring
of integers, ring of integers modulo n and field with m elements, re-
spectively. Z(R) and EZ(R) denotes the set of zero divisors and set of
exact zero divisors of R, respectively. U(R) is the set of units in R. By
A[X], we mean a polynomial ring in one variable X over A. We follow
[1] for other standard notations. To avoid trivialities, we assume that
R is not an integral domain unless otherwise stated.

2. Preliminaries and Examples

In this section, we give some definitions and discuss several examples
of exact annihilating-ideal graphs.
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Definition 2.1. Let R be a commutative ring with identity. An ideal
I of R is said to be an exact annihilating-ideal if there exists an ideal
J of R such that Ann(I) = J and Ann(J) = I.

In this case we say that (I, J) is a pair of exact annihilating-ideals.
The set of all proper exact annihilating-ideals is denoted by EA(R)#.
We note that an ideal I of a commutative ring R is said to be an
annihilating-ideal if Ir = (0), for some r ∈ R−{0}.

Definition 2.2. The exact annihilating-ideal graph EAG(R) of a com-
mutative ring R is a simple graph with the vertex set to be EA(R)#

and two vertices I and J are adjacent if and only if (I, J) is a pair of
exact annihilating-ideals, i.e. Ann(I) = J and Ann(J) = I.

Example 2.3. Let R = Z2[X]/(X3). We say Im(X) = x. The only

nonzero proper ideals of R are (x) and (x2). We can observe that

Ann(x) = (x2) and Ann(x2) = (x). Thus EAG(R) of R is as shown in
figure 1.

Example 2.4. Let R = Z2[X]/(X3 + X). We say Im(X) = x. The

only nonzero proper ideals of R are (x), (x+ 1), (x2 + 1) & (x2 + x).

We can observe that Ann(x) = (x2 + 1) and Ann(x2 + 1) = (x). Also

Ann(x+ 1) = (x2 + x) and Ann(x2 + x) = (x+ 1). Thus EAG(R) of
R is as shown in figure 1.

Example 2.5. Let R = Z2[X]/(X3 + 1). We say Im(X) = x. The

only nonzero proper ideals of R are (x+ 1) and (x2 + x+ 1). Also

Ann(x+ 1) = (x2 + x+ 1) and Ann(x2 + x+ 1) = (x+ 1). Thus
EAG(R) is a complete graph K2 as shown in figure 1.

(x)

(x2)

Z2[X]/(X2)

(x)

(x2 + 1)

(x+ 1)

(x2 + x)

Z2[X]/(X3 + X)

(x+ 1)

(x2 + x+ 1)

Z2[X]/(X3 + 1)

Figure 1
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3. Properties of EAG(R)

Theorem 3.1. For a commutative ring R, if EAG(R) is connected,
then diam(EAG(R)) ≤ 2.

Proof. Let R be a commutative ring such that the exact annihilating-
ideal graph EAG(R) of R is connected. Suppose that the length of the
shortest path between any two vertices is bigger than two. Thus let
us take the length of shortest path between two vertices I and J to be
three, say I − I1 − I2 − J . By the definition of EAG(R), Ann(I) =
I1 and Ann(I1) = I. Similarly, Ann(I1) = I2 and Ann(I2) = I1;
Ann(I2) = J and Ann(J) = I2. But then Ann(I) = I1 = Ann(I2) = J
and Ann(J) = I2 = Ann(I1) = I. Thus Ann(I) = J and Ann(J) = I.
Hence (I, J) is a pair of exact annihilating-ideals and hence I and J
are adjacent in EAG(R). So the shortest length of any path between
any two vertices can not exceed two. Since EAG(R) is connected,
diam(EAG(R)) ≤ 2. �

Theorem 3.2. If EAG(R) contains a cycle, then g(EAG(R)) ≤ 4.

Proof. From above theorem, we observe that if there is a path of length
three between any two vertices I and J , then I−J are adjacent in
EAG(R). Therefore g(EAG(R)) ≤ 4. �

Theorem 3.3. Let R = D1 × D2, where D1 and D2 are integral do-
mains. Then EAG(R) is complete graph K2.

Proof. Let R = D1×D2, where D1 and D2 are integral domains. Thus
the vertex set of EAG(R) is {(u, 0)R, (0, v)R|u ∈ U(D1), v ∈ U(D2)}.
We note that ideals I = (x, 0)R such that x ∈ D1−U(D1) and J =
(0, y)R such that y ∈ D2−U(D2) are not vertices in EAG(R). For
instance, let I = (x, 0)R, x ∈ D1−U(D1), then Ann((x, 0)R) =
(0, v)R, v ∈ U(D2) and Ann((0, v)R) = (u, 0)R, u ∈ U(D1). But
(x, 0)R 6= (u, 0)R. Therefore (x, 0)R is not a vertex in EAG(R). Simi-
larly we can show that (0, y)R is not a vertex in EAG(R). Also (u, 0)R
and (0, v)R are adjacent in EAG(R). Since these are the only vertices
of EAG(R), EAG(R) is connected and a complete graph K2. �

Corollary 3.4. If R = Zpq, where p and q are distinct primes. Then
EAG(R) = K2.

Proof. Let R = Zpq, where p and q are distinct primes, then R '
Zp×Zq. But Zp and Zq are fields. Thus by above theorem, EAG(R) =
K2. �

Remark 3.5. ([2], Theorem 1.4) says that annihilating-ideal graph of
a commutative ring R is finite if and only if R has only finitely many
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ideals. The fact is not true for exact annihilating-ideal graphs. For
instance, letR = Z×Z. Then by above theorem, EAG(R) is a complete
graph K2. But R has an infinite number of proper ideals.

Remark 3.6. ([2], Theorem 1.3) says that if R is an Artinian ring, then
every nonzero proper ideal is a vertex of AG(R). The result fails to
hold for EAG(R). For instance, let R = Z2[X, Y ]/(X, Y )2. Then
Ann(x) = (x, y). But Ann(x, y) = (x, y) 6= (x). Thus (x) is not a
vertex of EAG(R), even if it is a proper ideal of ring R.

Remark 3.7. ([2], Theorem 2.1) shows that AG(R) is always connected
for a commutative ring R. Example 2.2 shows that the fact is not true
for EAG(R).

Remark 3.8. We can observe that EAG(R) is a subgraph of AG(R).
But EAG(R) is not same as AG(R) which can be observed by example
2.2 as we know that AG(R) is always connected graph while EAG(R)
is not connected graph in example 2.2.

Theorem 3.9. Let R = Zpn, where p is a prime and n ≥ 2 is a positive
integer. Then EAG(R) is disjoint union of [n/2] number of complete
graphs, where [n/2] is integer part of n/2.

Proof. Let R = Zpn , where p is a prime and n ≥ 2 is a natural number.

Thus only proper ideals of R are (p), (p2), · · · , (pn−1). Also Ann(p) =

(pn−1) and Ann(pn−1) = (p). Ann(p2) = (pn−2) and Ann(pn−2) = (p2).
This process (say process *) will continue up to n/2 or (n− 1)/2 steps,
depending upon whether n is even or odd.
Case I: n is even.
If n is an even integer, then the process * stops after n/2 = [n/2] steps,

where [n/2] denotes the integer part of n/2. Also each (pi) is adjacent

with (pn−i) only, which gives a either a complete graph K2 if i 6= n/2 or
a complete graph K1 if i = n/2. Thus in this case EAG(R) is disjoint
union of [n/2] number of complete graphs.
Case II: n is odd integer.
If n is an odd integer, then the process * stops after (n − 1)/2 =

[n/2] steps. Also each (pi) is adjacent with (pn−i) only, which gives
a complete graph K2. Thus in this case EAG(R) is disjoint union of
[n/2] number of complete graphs. �

Corollary 3.10. If R = Zp2, where p is a prime, then EAG(R) is a
complete graph K2.

Proof. This can be seen by taking n = 2 in above theorem. �
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Remark 3.11. From the proof of above theorem, we can observe that for
R = Zpn , where p is a prime and n ≥ 2 is a positive integer, EAG(R) =

K1 ∪
⋃[n/2]−1
i=1 K2, if n is an even integer and EAG(R) =

⋃[n/2]
i=1 K2, if n

is an odd integer.

Theorem 3.12. If EAG(R) is a star graph, then EAG(R) = K2.

Proof. Let EAG(R) be a star graph. Therefore there is a vertex I of
EAG(R) which is adjacent to every vertex of the graph, say (Iα)α∈Λ.
Thus by the definition of EAG(R), Ann(I) = (Iα) and Ann(Iα) = I,
for each α ∈ Λ. Hence Λ = {α}, which gives EAG(R) = K2. �

Remark 3.13. Let R = F1 × F2 × F3, where each F1,F2,F3 are fields.
We will discuss about the the structure of EAG(R). Let α1, α2, α3 be
arbitrary elements from F∗1,F∗2,F∗3, respectively. Then EAG(R) is a
disconnected graph as in figure 2.

(α1,0,0)R (0,α2,0)R (0,0,α3)R

(0,α2,α3)R (α1,0,α3)R (α1,α2,0)R

F1 × F2 × F3

Figure 2

Remark 3.14. From above remark we can observe that if R = F1×F2×
F3, then EAG(R) is disconnected graph. Thus for R = F1×F2×· · ·×
Fn, if EAG(R) is connected, then n = 2.

We generalize the fact of remark 3.13 in next theorem and discuss the
structure of EAG(R) if R = F1 × F2 × · · · × Fn.

Theorem 3.15. Let R = F1×F2×· · ·×Fn, where each Fi, (1 ≤ i ≤ n)
is a field. Then the exact annihilating-ideal graph EAG(R) of R is a
disjoint union of 2n−1 − 1 number of complete graphs, if n is an odd
integer and is a disjoint union of 2n−1− 1 +

(
n
2

)
/2 number of complete

graphs if n is an even integer.

Proof. Let R = F1 × F2 × · · · × Fn, where each Fi, (1 ≤ i ≤ n) is
a field. Then we can observe that for each 1 ≤ i ≤ n, the vertex
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of the form (0, 0, · · · , 0, αi, 0, · · · , 0)R with αi(6= 0) ∈ Fi is adjacent
with (α1, · · · , αi−1, 0, αi+1, · · · , αn)R, which gives

(
n
1

)
number of dis-

joint complete components of EAG(R). Similarly, the vertices with
exactly two nonzero α′is gives

(
n
2

)
number of disjoint complete com-

ponents of EAG(R). If n is odd, the total number of components of

EAG(R) is
∑(n−1)/2

i=1

(
n
i

)
= 2n−1 − 1. Thus EAG(R) is disjoint union

of 2n−1−1 number of complete graphs. Similarly, if n is even, then the

number of components are
∑n

2
i=1

(
n
i

)
= 2n−1 − 1 +

(
n
2

)
/2. Thus in this

case EAG(R) is disjoint union of 2n−1− 1 +
(
n
2

)
/2 number of complete

graphs. �
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