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Abstract. Ambiguity in the inputs of the models is typical especially in
portfolio selection problem where the true distribution of random variables
is usually unknown. Here we use robust optimization approach to ad-
dress the ambiguity in conditional-value-at-risk minimization model. We
obtain explicit models of the robust conditional-value-at-risk minimization
for polyhedral and correlated polyhedral ambiguity sets of the scenarios.
The models are linear programs in the both cases. Using a portfolio of USA
stock market, we apply the buy-and-hold strategy to evaluate the model’s
performance. We found that the robust models have almost the same out-
of-sample performance, and outperform the nominal model. However, the
robust model with correlated polyhedral results in more conservative solu-
tions.
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robust optimization.
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1 Introduction

The application of robust optimization in finance and especially the port-
folio selection problem is popular. There are three major approaches to
develop the robust counterpart of a model. The first approach was in-
troduced by Soyster where he considered the box ambiguity set for con-
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structing the robust counterpart [23]. The resulting portfolios however, are
extremely conservative in the sense that the objective values of the corre-
sponding portfolios are too expensive. In particular, the optimal portfolio
of the robust model in the case of risk minimization, suggests higher value
of risk. Then Ben-Tal and Nemirovski suggested the intersection of the
ellipsoid and box ambiguity sets by which the robust optimal portfolios are
less conservative, and the robust model accepts computationally tractable
formulation [3, 4]. Further, Bertsimas and Sim proposed the intersection
of polyhedral and box [6]. The resulting optimal portfolios are less conser-
vative and its formulation is as computationally expensive as the nominal
(non-robust) model. These are important merits of polyhedral ambiguity
sets that have been ignored in portfolio selection theory.

There are a few studies that have used the polyhedral ambiguity sets
[5,11] but most of the carried out studies focused on the application of box
and ellipsoidal ambiguity sets [9, 13,16–20,25].

Now the question is: How ellipsoidal ambiguity set and not polyhedral
one becomes standard in the portfolio selection theory? First, ellipsoidal
ambiguity set was introduced much earlier than polyhedral, and by that
time the experts in the area of finance had noticed the effect of estimation
error in mean returns and its consequences on the optimal portfolio selection
[7, 10]. Also, the confidence regions of the statistical estimators such as
mean, turned out to be ellipsoids [22]. Hence, most of the studies focused on
reducing the effect of estimation error in the optimal portfolio by applying
the robust optimization approach where there is an ellipsoidal ambiguity
set on mean returns [2, 8, 12].

However, when the ambiguous parameters are highly correlated, the
proposed polyhedral ambiguity set can not capture this issue and as a re-
sult, some of the realizations might be out of the ambiguity set. Recently
Jalilvand-Nejad et al. introduced the correlated polyhedral ambiguity set
in which they follow the same approach as Bertsimas and Sim, but they
incorporated the correlation coefficients in the formulation of the ambi-
guity set [14]. This could be helpful especially in finance where usually
the correlation matrix can be estimated using huge amount of scenarios
available.

The conditional value-at-risk (CVaR) is a well-known risk metric that
has been embedded in Basel III for more conservative regularization objec-
tive after failing the famous value-at-risk (VaR). The CVaR belongs to the
class of coherent risk measure introduced by Artzner [1], however, it is frag-
ile in the sense that its estimate suffers from the sensitivity to inputs [15].
There are several studies that address this issue using robust optimization
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in portfolio selection problem where CVaR is used as risk measure. For a
comprehensive review of the literature, the readers can refer to [16,18].

El-Ghaouie et al. developed the worst-case VaR minimization under
different ambiguity sets including the polyhedral [11]. Further, Bertsimas
and Pachamanov studied the application of polyhedral ambiguity set in the
multi-periods portfolio optimization where the objective is the final wealth
maximization [5].

Recently, the robust counterpart of CVaR optimization problem when
the ambiguity set for scenarios are interval and ellipsoid types, is investi-
gated in [13] and [16]. To the best of our knowledge, there is no other study
of robust CVaR (RCVaR) portfolio selection problem with polyhedral am-
biguity set proposed in [6] and this is where we place our contribution. We
show that the RCVaR minimization with correlated polyhedral ambiguity
set is a linear program (LP) and evaluate its performance against the RC-
VaR minimization with polyhedral ambiguity set suggested in [6]. We use
buy-and-hold strategy and test the models with real market data.

The rest of the paper is organized as follows. First, in Section 2 we
formulate the RCVaR minimization model under polyhedral and correlated
polyhedral ambiguity sets. Then in Section 3 we illustrate the performance
of all methods on a portfolio from USA stock market by using the buy-and-
hold strategy. Finally, Section 4 will conclude the paper.

2 Robust CVaR portfolio selection

The mean of α-tail distribution of portfolio loss X, CVaRα(X), and its
minimization formula were developed in [21]. According to Theorem 1 of
this paper, the CVaR of the loss function is the solution of

CVaRα(x) = min
γ∈R

Fα(x, γ), (1)

where

Fα(x, γ) = γ +
1

1− α
E{[f(x, ξ)− γ]+}

in which f(x, ξ) is the loss function associated with portfolio x in X, the
set of all feasible portfolios. To simplify our discussion, we let x be in X
denoted by the set {x ∈ Rn|x ≥ 0,

∑n
i=1 xi = 1}. Then the CVaR portfolio

minimization becomes:
min

γ∈R,x∈X
Fα(x, γ). (2)

We use α = 0.95 whenever we do numerical experiments throughout the paper.
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Consider an investor operating in a market with n risky assets and no
short-selling. The n risky assets have rates of return denoted by random
vector ξ. The loss function associated with decision variable x ∈ Rn of
proportionate allocations to the risky assets is given by f(x, ξ) = −x>ξ.
Let a collection of S historical observations {R(1), . . . , R(S)} are available
and all of them are equally probabilistic, then the empirical distribution
is used to estimate the portfolio optimization problems (2). The CVaR
minimization model can be posed as follows [21]:

min
x∈X, u∈RS , γ∈R

γ +
1

S(1− α)
π>u (3)

s.t. −Rx− u− γe ≤ 0,

u ≥ 0.

Note that the sample space of random vector ξ in problem (2) may be given
by a set of scenarios. We define the ambiguity in the scenarios as follows:

Definition 1. The ambiguity in the scenarios of the discretized random
variable ξ is defined as follows:

I. Polyhedral ambiguity set

PR = {R ∈ RS×n|Rij = Rij + ξijR̂ij ,
N∑
j=1

|ξij | ≤ Γi, |ξij | ≤ 1,

i = 1, . . . , S, j = 1, . . . , N}. (4)

II. Correlated polyhedral ambiguity set

CPR = {R ∈ RS×n|Rij = Rij + ξijR̂ij ,

|ξij |+
N∑
k=1
k 6=j

[
1− N − Γi

N − 1
|ρijk|

]
|ξik| ≤ Γi, |ξij | ≤ 1,

i = 1, . . . , S, j = 1, . . . , N},

where ρijk shows the correlation between coefficients Rij and Rik, Γi, i =

1, . . . , S are the ambiguity set’s parameters, and R̂ij ≥ 0, i = 1, . . . , S, j =
1, . . . , N .

Interval, ellipsoidal and polyhedral ambiguity sets are the most often
used ambiguity sets in the robust optimization framework [11,12,24]. With
interval and polyhedral ambiguity sets, the robust counterpart of CVaR

R(i) denotes the ith rows of the matrix R called observation matrix.
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minimization problems is an LP while with ellipsoidal ambiguity set, the
associated optimization problem, belongs to much harder class of optimiza-
tion problems. The RCVaR minimization (optimization ) problem, when
the ambiguity sets for scenarios are interval or ellipsoid types, is already
investigated in [13] and [16]. Here we extend their work to the case where
there is a polyhedral ambiguity set on the scenarios.

Theorem 1. The robust counterpart of (3) for ambiguity set (4) is as
follows:

min
x∈X, u,p∈RS ,q∈RS×N , γ∈R

γ +
1

S(1− α)

S∑
i=1

ui (5)

s.t. −
N∑
j=1

Rijxj + piΓi +

N∑
j=1

qij − ui − γ ≤ 0,

−R̂ijxj + pi + qij ≥ 0,

N∑
j=1

xj = 1, xj ≥ 0, ui ≥ 0, pi ≥ 0, qij ≥ 0,

j = 1, . . . , N, i = 1, . . . , S.

Proof. The robust counterpart of (3) under polyhedral ambiguity set is as
follows:

min
x∈X, u∈RS , γ∈R

γ +
1

S(1− α)

S∑
i=1

ui (6)

s.t. −
N∑
j=1

Rijxj +

 max
ξ(i)∈EPi

N∑
j=1

−R̂ijξijxj

− ui − γ ≤ 0,

N∑
j=1

xj = 1, xj ≥ 0, ui ≥ 0,

j = 1, . . . , N, i = 1, . . . , S,

where EPi = {ξij |
∑N

j=1 |ξij | ≤ Γi, |ξij | ≤ 1, j = 1, . . . , N}, i = 1, . . . , S.
To find the explicit formulation of (6), we need to replace the inner max-
imizations in the constraints with their optimal values. Using the set of
variable transformations ξij = δij − µij , |ξij | = δij + µij , δij , µij ≥ 0, one

By CVaR optimization we mean that there is a minimum return target constraint
while CVaR minimization refer to the case where there is not any.
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can easily check that the inner maximization is equivalent to the following
optimization problem:

max
λ(i)∈RN

N∑
j=1

R̂ijλijxj (7)

s.t.
N∑
j=1

λij ≤ Γi,

0 ≤ λij ≤ 1,

j = 1, . . . , N,

and thus the dual of it can be written as follows:

min
pi∈R,q(i)∈RN

piΓi +
N∑
j=1

qij (8)

s.t. pi + qij ≥ R̂ijxj , j = 1, . . . , N,

pij ≥ 0, qij ≥ 0,

j = 1, . . . , N.

Considering that the primal and dual are both feasible, we can replace the
maximization problem with the corresponding dual’s objective function and
add its constraints to the original problem’s constraints. Then we get the
required formulation.

Theorem 2. The robust counterpart of (3) for ambiguity set (5) is as
follows:

min
x∈X, u∈RS ,p,q∈RS×N , γ∈R

γ +
1

S(1− α)

S∑
i=1

ui (9)

s.t. −
N∑
j=1

Rijxj +

N∑
j=1

pijΓi +

N∑
j=1

qij − ui − γ ≤ 0,

−R̂ijxj + pij +
N∑
k=1
k 6=j

(1− N − Γi
N − 1

|ρijk|)pik + qij ≥ 0,

N∑
j=1

xj = 1, xj ≥ 0, ui ≥ 0, pij ≥ 0, qij ≥ 0,

j = 1, . . . , N, i = 1, . . . , S.



Robust portfolio selection with polyhedral ambiguous inputs 21

Proof. The robust counterpart of (3) under correlated polyhedral ambiguity
set is as follows:

min
x∈X, u∈RS , γ∈R

γ +
1

S(1− α)

S∑
i=1

ui (10)

s.t. −
N∑
j=1

Rijxj +

 max
ξ(i)∈ECi

N∑
j=1

−R̂ijξijxj

− ui − γ ≤ 0,

N∑
j=1

xj = 1, xj ≥ 0, ui ≥ 0,

j = 1, . . . , N, i = 1, . . . , S,

where ECi = {ξij | |ξij |+
∑N

k=1,k 6=j

[
1− N−Γi

N−1 |ρijk|
]
|ξik| ≤ Γi, |ξij | ≤ 1, j =

1, . . . , N}, i = 1, . . . , S. Following an argument similar to the proof of
Theorem 1, the inner maximization in optimization problem (10) can be
equivalently written as:

max
λ(i)∈RN

N∑
j=1

R̂ijλijxj (11)

s.t. λij +
N∑

k=1,k 6=j

[
1− N − Γi

N − 1
|ρijk|

]
λik ≤ Γi,

0 ≤ λij ≤ 1,

j = 1, . . . , N.

The dual of (11) can be written as follows:

min
p(i),q(i)∈RN

N∑
j=1

pijΓi +

N∑
j=1

qij

s.t. pij +

N∑
k=1,k 6=j

(1− N − Γi
N − 1

|ρijk|)pik + qij ≥ R̂ijxj ,

pij ≥ 0, qij ≥ 0,

j = 1, . . . , N.

Since both primal and dual are feasible, then the duality gap is equal to
zero, hence we can replace the objective of the dual and add its constraint
to the original problem’s constraints to obtain the robust model (9).
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3 Empirical tests

Here we test the nominal and robust models under different ambiguity sets.
The thirteen stocks for investment are selected from USA stock market, all
having moderate to high correlation coefficients. The daily prices of these
stocks are obtained from 3 January 2006 to 28 December 2011. To assess
the out-of-sample performance of the solutions of the proposed correlated
polyhedral against the polyhedral proposed in [6], we apply the buy-and-
hold strategy as described in [17].

We develop nominal and robust models based on the scenarios observed
between 3 January 2006 and 28 December 2007, the pre-crisis period. Then
we obtain the associated asset allocations, calculate the risk value and
record it (in-sample). As the new information is observed and the market
moves into 2008 crisis period and later, the recorded allocations is used
to compute out-of-sample portfolio performance. That is we compute the
CVaR value with the new time window for which we dropped the oldest
observation so that CVaR is computed on a constant size window of recent
data. This procedure is repeated until the time window meets the last
observation.

We consider correlation between the assets singly and calculate the
correlation matrix based on the observations used for in-sample calculation.
Further, R̂ is assumed to be a matrix of all ones. All Γi’s, i = 1, . . . , S are
assumed to be equal and are denoted by Γ in the sequel. The results are
shown for different values of Γ in Figures 1, panels (a) and (b). We use solid
and dotted lines to illustrate the in-sample and out-of-sample risk values,
respectively.

We observe that out-of-sample risk measure for the nominal portfolios
is worse than the in-sample value, but this is not the case for the the robust
portfolios. Also, Γ = N results in the most conservative solutions as it can
be observed in the gap between in-sample and out-of-sample in both robust
models. This is the case when all ambiguity sets reduce to the interval one.
One interesting observation however, is that the application of correlated
polyhedral results in more conservative portfolios compared to the polyhe-
dral proposed by Bertsimas and Sim [6]. Further, the resulting portfolios
are as efficient as the polyhedral ambiguity set suggested by Bertsimas and
Sim in terms of out-of-sample.

We consider pure perturbation.
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Figure 1: Out-of-sample performance of buy-and-hold (PRCVaR and CPRCVaR
denote the RCVaR with polyhedral and correlated polyhedral ambiguity set, re-
spectively).

4 Conclusions

This paper develops equivalent models for robust CVaR under polyhedral
and correlated polyhedral ambiguity sets when there is ambiguity in the sce-
narios. RCVaR minimization models for both type of polyhedral ambiguity
sets are as computationally complex as the CVaR minimization model. Us-
ing a portfolio of stocks chosen from USA market, the models were tested
over the highly volatile period that covered the 2008 crisis and later. The



24 S. Lotfi, M. Salahi and F. Mehrdoust

results of buy-and-hold strategy show that the robust models outperform
the nominal model in terms of out-of-sample, however, the robust model
with correlated polyhedral ambiguity set results in more conservative solu-
tions.
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