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WEAKLY IRREDUCIBLE IDEALS

M. SAMIEI ∗ AND H. FAZAELI MOGHIMI

Abstract. Let R be a commutative ring. The purpose of this
article is to introduce a new class of ideals of R called weakly
irreducible ideals. This class could be a generalization of the fam-
ilies quasi-primary ideals and strongly irreducible ideals. The re-
lationships between the notions primary, quasi-primary, weakly ir-
reducible, strongly irreducible and irreducible ideals, in different
rings, has been given. Also the relations between weakly irre-
ducible ideals of R and weakly irreducible ideals of localizations
of the ring R are also studied.

1. Introduction

Throughout this article, R denotes a commutative ring with identity.
About a quarter of a century before, in [3] the notion of quasi-primary
ideals as a generalization of the notion primary ideals was introduced.
Indeed, a proper ideal q of R is called quasi-primary if rs ∈ q, for
r, s ∈ R, implies that either r ∈ √q or s ∈ √q. Equivalently, q is
quasi-primary if and only if

√
q is prime [3, Definition 2, p. 176].

In [5], a proper ideal I of a ring R is called strongly irreducible if
for ideals A and B of R, the inclusion A ∩ B ⊆ I implies that either
A ⊆ I or B ⊆ I. Strongly irreducible ideals over commutative rings
have been extensively studied in [2] and [5]. It is easy to see that every
prime ideal is strongly irreducible. Also every strongly irreducible ideal
is irreducible and hence strongly irreducible ideals over a Noetherian
ring are primary [5, Lemma 2.2(1),(2)]. Over a commutative ring, it is
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therefore natural to pursue the analogues of this property. This leads
us to the following definition as a generalization of the notion strongly
irreducible ideals.

Definition 1.1. We say that a proper ideal I of R is weakly irreducible
provided that for each pair of ideals A and B of R, A ∩B ⊆ I implies
that either A ⊆

√
I or B ⊆

√
I.

Clearly every quasi-primary ideal of R is weakly irreducible. But
the converse is not true in general. For example, let R be a Noetherian
local ring with maximal ideal m having more than one minimal prime.
Let E = E(R/m) denote the injective envelope of the residue field
R/m of R as an R-module. In [5, Example 2.4], it has been shown
that the zero ideal of the idealization A = R+E [6, page 2] is strongly
irreducible, and hence weakly irreducible. But the zero ideal in A is
not quasi-primary.

We begin with a few well-known results about strongly irreducible
ideals. Recall that a ring R is called arithmetical provided that for all
ideals I, J and K of R, I + (J ∩K) = (I + J) ∩ (I +K) (See [4]).

Proposition 1.2. Let I be an ideal in a ring R. Then:

(1) If R is an arithmetical ring, I is irreducible if and only if I is
strongly irreducible [5, Lemma 2.2(3)]

(2) Let R be an arithmetical ring. If I is a primary ideal of R, then
I is an irreducible ideal of R [4, Theorem 6].

(3) If R is a Laskerian ring(i.e. every proper ideal of R has a
primary decomposition) or R is a unique factorization domain
(UFD), then every strongly irreducible ideal of R is a primary
ideal [2, Theorem 2.1(iii)] and [2, Theorem 2.2(iv)].

(4) If R is an absolutely flat ring or R is a Zerlegung Primideale
ring (ZPI-ring; i.e. every proper ideal of R can be written as
a product of prime ideals of R), I is strongly irreducible if and
only if I is primary [2, Theorem 2.1(iv)] and [2, Theorem 3.7].

In this paper, we characterize the notion weakly irreducible ideals
over different rings. Moreover, the relationships between the notions
primary, quasi-primary, weakly irreducible, strongly irreducible and
irreducible ideals, in different rings, has been given. The relations
between weakly irreducible ideals of a ring and weakly irreducible ideals
of localizations of the ring also studied. In the following, some of these
results has been mentioned.

Theorem 1.3. Let R be a ring.
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(1) If R is a UFD or a Laskerian ring, then an ideal is weakly irre-
ducible ideal if and only if it is a quasi-primary ideal (Theorem
2.1(4) and Theorem 2.3(2)).

(2) For an absolutely flat ring, the notions maximal, prime, pri-
mary, quasi-primary, strongly irreducible and weakly irreducible
ideals are equal (Proposition 1.2(4) and Theorem 2.1(5)).

(3) (Theorem 3.3) If R is a ring and S is a multiplicatively closed
subset of R, then the following are equivalent:
(i) Every weakly irreducible ideal A of R which A = Ic, the

contraction of an ideal I of S−1R is quasi-primary;
(ii) Every weakly irreducible ideal B of S−1R is quasi-primary.

(4) (Corollary 3.4) Let I be an ideal of a ring R and p a prime ideal
of R containing I. The following are equivalent:
(i) If I is a weakly irreducible ideal of R such that I = J c for

some ideal J of Rp, then I is quasi-primary.
(ii) If Ip is a weakly irreducible ideal of Rp, then Ip is quasi-

primary.
(5) (Theorem 3.5) For a ring R, the following are equivalent.

(i) Every proper ideal of R is weakly irreducible;
(ii) The radicals of every two ideals of R are comparable;

(iii) Every proper ideal of R is quasi-primary.
(iv) The prime ideals of R form a chain with respect to inclu-

sion.

Some of the main interrelations of the above mentioned types of
ideals can be summarized in the following chart.
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2. Weakly irreducible ideals

Theorem 2.1. Let R be a ring.

(1) Let I be a proper ideal of R. Then the following are equivalent:
(i) I is a quasi-primary ideal;

(ii)
√
I is a weakly irreducible ideal;

(iii)
√
I is a prime ideal.

(2) Let I be a weakly irreducible ideal of R. Then I is a prime ideal

if and only if I =
√
I.

(3) If R is a Laskerian ring, then every weakly irreducible ideal of
R is a quasi-primary ideal.

(4) For any ideal I of an absolutely flat ring R, the following are
equivalent:
(i) I is a maximal ideal;
(ii) I is a quasi-primary ideal;

(iii) I is a weakly irreducible ideal.
(5) If I is weakly irreducible and if A is an ideal contained in I,

then I/A is weakly irreducible in R/A.

Proof. (1) Suppose I is a proper ideal of R. (i) ⇔ (iii) follows from
[3, Definition 2 p. 176]. (i) ⇒ (ii). Let I be a quasi-primary ideal

of R. Then
√
I is a prime and hence a weakly irreducible ideal of R.

(ii) ⇒ (i). Let ab ∈ I for a, b ∈ R. Then Ra ∩ Rb ⊆
√
Ra ∩Rb =√

Rab ⊆
√
I. Since

√
I is a weakly irreducible ideal, we have either

Ra ⊆
√
I or Rb ⊆

√
I.

(2) If I is a prime ideal of R, then clearly I =
√
I. Conversely, assume

that I is a weakly irreducible ideal of R such that I =
√
I. By (1),

I =
√
I is a prime ideal of R.

(3) Let I =
n
∩
i=1
qi be a minimal primary decomposition of the weakly

irreducible ideal I of R. Then, for some 1 ≤ j ≤ n, qj ⊆
√
I =√

n
∩
i=1
qi ⊆

√
qj and hence pj =

√
qj =

√
I. Thus I is a quasi-primary

ideal of R.
(4) Suppose R is an absolutely flat ring and I an ideal of R. (i) ⇒
(ii) ⇒ (iii) are obvious. (ii) ⇒ (i). Let I be a quasi-primary ideal

of R and x ∈ R\
√
I. Since R is absolutely flat, [1, p. 37 Exersice

27] follows the principal ideal Rx is idempotent and hence there exists
a ∈ R such that x(ax−1) = 0 ∈ I. Thus (ax−1)n ∈ I for some positive

integer n; i.e. ax− 1 is a nilpotent element of R/
√
I and therefore ax

is a unit. This implies that x is unit and thus R/
√
I is a field and√

I is maximal. On the other hand, since every principal ideal of R is



WEAKLY IRREDUCIBLE IDEALS 13

idempotent, it follows that
√
I = I and hence I is a maximal ideal of

R. (iii)⇒ (ii). Let ab ∈ I for some a, b ∈ R. Hence the ideals Ra and
Rb are idempotent. Thus there exists t, s ∈ R such that a = ra2 and
b = tb2. Let k ∈ Ra∩Rb, then k = ak1 = bk2 for some k1, k2 ∈ R. Now
k = ak1 = ra2k1 = ak1ra = bk2ra ∈ Rab, then Ra ∩ Rb ⊆ Rab ⊆ I.
Since I is weakly irreducible, Ra ⊆

√
I or Rb ⊆

√
I; i.e. I is a quasi-

primary ideal.
(5). Let J and K be ideals in R such that (J/A) ∩ (K/A) ⊆ I/A.
Then (J + A) ∩ (K + A) ⊆ I + A = I, since A ⊆ I. Since I is weakly

irreducible it follows that either J ⊆
√
I or K ⊆

√
I, hence either

J/A ⊆
√
I/A or K/A ⊆

√
I/A, so I/A is weakly irreducible. �

It is easy to see that every two elements of a unique factorization
domain (UFD) R have a least common multiple. We denote the least
common multiple of every two elements x, y ∈ R by [x, y].

Lemma 2.2. Let R be a UFD and I a proper ideal of R.

(1) I is weakly irreducible if and only if for each x, y ∈ R, [x, y] ∈ I
implies that x ∈

√
I or y ∈

√
I.

(2) I is weakly irreducible if and only if pn1
1 p

n2
2 · · · p

nk
k ∈ I, where pi

are distinct prime elements of R and ni are natural numbers,
implies that pj ∈

√
I, for some j, 1 ≤ j ≤ k.

Proof. (1) Let I be a weakly irreducible ideal and for x, y ∈ R, [x, y] ∈
I. If [x, y] = c, then obviously Rx ∩ Ry = Rc ⊆ I. So Rx ⊆

√
I or

Ry ⊆
√
I.

Conversely, if Rx ∩ Ry ⊆ I for x, y ∈ R, then [x, y] ∈ Rx ∩ Ry ⊆ I,

so by our assumption x ∈
√
I or y ∈

√
I.

(2) If I is weakly irreducible, then the result is clear by part (1). Con-
versely, let [x, y] ∈ I for x, y ∈ R\0, and

x = pn1
1 p

n2
2 p

n3
3 · · · p

nk
k q

m1
1 qm2

2 qm3
3 · · · qms

s ,

y = pt11 p
t2
2 p

t3
3 · · · p

tk
k r

l1
1 r

l2
2 r

l3
3 · · · rluu

be prime decompositions for x and y, respectively. Therefore,

[x, y] = pα1
1 p

α2
2 p

α3
3 · · · p

αk
k q

m1
1 qm2

2 qm3
3 · · · qms

s rl11 r
l2
2 r

l3
3 · · · rluu ,

where αi = max{ni, ti} for each i. Since [x, y] ∈ I, by the assumption,
we have one of following:

(a) for some i, pi ∈
√
I;

(b) for some i, qi ∈
√
I;

(c) for some i, ri ∈
√
I.
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If (a) holds, then clearly x, y ∈
√
I. For the case (b), x ∈

√
I. If c

satisfies, then y ∈
√
I. �

Theorem 2.3. Let R be a UFD and I a proper ideal of R.

(1) If I is a nonzero principal ideal, then I is weakly irreducible if
and only if the generator of I is a power of a prime element of
R.

(2) The two classes weakly irreducible ideals and quasi-primary ideals
are equal.

Proof. (1) Let I = Ra be a nonzero weakly irreducible ideal of R,
and a = pα1

1 p
α2
2 p

α3
3 · · · p

αk
k be a prime decomposition for a. By Lemma

2.2(2), for some i, pi ∈
√
I. Hence

pi ∈
√
R(pα1

1 p
α2
2 p

α3
3 · · · p

αk
k ) =

√
Rpα1

1 ∩Rpα2
2 ∩Rpα3

3 ∩ · · · ∩Rp
αk
k =√

Rpα1
1 ∩

√
Rpα2

2 ∩
√
Rpα3

3 ∩· · ·∩
√
Rpαk

k = Rp1∩Rp2∩Rp3∩· · ·∩Rpk.
Thus pj | pi for 1 ≤ j ≤ k and hence pi = pj for every 1 ≤ j ≤ k. It
means that I = Rpαi

i .
Conversely, let I = Rpn for a prime element p of R. Suppose

that pα1
1 p

α2
2 p

α3
3 · · · p

αk
k ∈ I = Rpn for some distinct prime elements

p1, p2, · · · , pk of R and natural numbers α1, α2, · · · , αk. Then pn |
pα1
1 p

α2
2 p

α3
3 · · · p

αk
k . So, for some j, 1 ≤ j ≤ k, we have p = pj and

n ≤ nj. Therefore, p
nj

j ∈
√
I. Thus, by Lemma 2.2(2), I is a weakly

irreducible ideal.
(2) Let I be a weakly irreducible ideal and xy ∈ I, where x, y ∈ R\0,

and let

x = pn1
1 p

n2
2 p

n3
3 · · · p

nk
k q

m1
1 qm2

2 qm3
3 · · · qms

s ,

y = pt11 p
t2
2 p

t3
3 · · · p

tk
k r

l1
1 r

l2
2 r

l3
3 · · · rluu

be prime decomposition for x and y, respectively. Since xy ∈ I, by
part (2), we have one of the following:

(a) for some i, pi ∈
√
I;

(b) for some i, qi ∈
√
I;

(c) for some i, ri ∈
√
I.

If (a) holds, then clearly x, y ∈
√
I. For the case (b), x ∈

√
I. If c

satisfies, then y ∈
√
I. Thus I is a quasi-primary ideal of R. �

3. localization and weakly irreducible ideals

Let R be a ring and let S be a multiplicatively closed subset of R.
For each ideal I of the ring S−1R, we consider

Ic = {x ∈ R | x/1 ∈ I} = I ∩R, and C = {Ic | I is an ideal of S−1R}.
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Theorem 3.1. Let R be a ring and S be a multiplicatively closed subset
of R. Then there is a one-to-one correspondence between the weakly
irreducible ideals of S−1R and weakly irreducible ideals of R contained
in C.

Proof. Let I be a weakly irreducible ideal of S−1R. Obviously, Ic 6= R,
Ic ∈ C and Ic ∩ S = ∅. Let A ∩ B ⊆ Ic, where A and B are ideals of
R. Then we have S−1A ∩ S−1B = S−1(A ∩ B) ⊆ S−1(Ic) = I. Hence,

S−1(A) ⊆
√
I or S−1(B) ⊆

√
I, and so A ⊆ (S−1(A))c ⊆ (

√
I)c =

√
Ic

or B ⊆ (S−1(B))c ⊆ (
√
I)c =

√
Ic. Thus Ic is a weakly irreducible

ideal of R.
Conversely, let I be a weakly irreducible ideal of R, I ∩ S = ∅ and

I ∈ C. Since I ∩ S = ∅, S−1I 6= S−1R. Let A ∩ B ⊆ S−1I, where
A and B are ideals of S−1R. Then Ac ∩ Bc = (A ∩ B)c ⊆ (S−1I)c.
Now since I ∈ C, (S−1I)c = I. So Ac ∩ Bc ⊆ I. Consequently,

Ac ⊆
√
I or Bc ⊆

√
I. Thus A = S−1Ac ⊆ S−1(

√
I) ⊆

√
S−1(I) or

B = S−1Bc ⊆ S−1(
√
I) ⊆

√
S−1(I). Therefore, S−1(I) is a weakly

irreducible ideal of S−1R. �

Lemma 3.2. Let S be a multiplicatively closed subset of a ring R and
p a prime ideal of R such that p ∩ S = ∅. Then

(1) If q is a p-quasi-primary ideal of R, then S−1q is a S−1p-quasi-
primary ideal of S−1R.

(2) If S−1q is a quasi-primary ideal of S−1R such that
√
S−1q =

S−1p and q is contained in C, then q is a p-quasi-primary ideal
of R.

Proof. (1) Let q be a quasi-primary ideal of R with
√
q = p. Since

p ∩ S = ∅, S−1p is a prime ideal of S−1R and so that
√
S−1q =

S−1(
√
q) = S−1p implies that S−1q is a S−1p-quasi-primary ideal of R.

(2) Let S−1q be a quasi-primary ideal of S−1R such that
√
S−1q = S−1p

and q ∈ C. It is clear that (S−1q)c = q, since q ∈ C. It follows that√
q =

√
(S−1q)c = (

√
S−1q)c = (S−1p)c = p and hence q is a p-quasi-

primary ideal of R.
�

Theorem 3.3. If R is a ring and S is a multiplicatively closed subset
of R, then the following are equivalent:

(1) Every weakly irreducible ideal A of R which A ∈ C is quasi-
primary;

(2) Every weakly irreducible ideal of S−1R is quasi-primary;
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Proof. (1) ⇒ (2) Let B be a weakly irreducible ideal of S−1R. Then
by the proof of Theorem 3.1, Bc is a weakly irreducible ideal of R and,
by our assumption, Bc is a quasi-primary ideal of R. Now, by Lemma
3.2(1), B = S−1(Bc) is a quasi-primary ideal of S−1R.

(2)⇒ (1) Let A be a weakly irreducible ideal of R such that A ∈ C.
By Theorem 3.1, S−1A is a weakly irreducible ideal of R. Since A ∈ C,
we have

√
(S−1A)c = (S−1

√
A)c =

√
A. Thus

√
(S−1A)c ∩ S = ∅.

Now, by our assumption, S−1A is a quasi-primary ideal of S−1R and
so A is a quasi-primary ideal of R by Lemma 3.2(2). �

Corollary 3.4. Let I be an ideal of a ring R and p a prime ideal of R
containing I. The following are equivalent:

(1) If I is a weakly irreducible ideal of R such that I = J c for some
ideal J of Rp, then I is quasi-primary.

(2) If Ip is a weakly irreducible ideal of Rp, then Ip is quasi-primary.

Theorem 3.5. For a ring R, the following are equivalent.

(1) Every proper ideal of R is weakly irreducible;
(2) The radicals of every two ideals of R are comparable;
(3) Every proper ideal of R is quasi-primary.
(4) The prime ideals of R form a chain with respect to inclusion.

Proof. (1) ⇒ (2) By our assumption, I ∩ J is a weakly irreducible
ideal of R where I and J are two ideals of R. Thus I ∩ J ⊆ I ∩ J
implies that I ⊆

√
I ∩ J =

√
IJ or J ⊆

√
I ∩ J =

√
IJ . On the other

hand,
√
IJ ⊆

√
I and

√
IJ ⊆

√
J and so

√
I ∩
√
J =

√
IJ =

√
I or√

I ∩
√
J =
√
IJ =

√
J . It means that

√
I ⊆
√
J or

√
J ⊆
√
I.

(2)⇒ (3) Let I be a proper ideal of R and ab ∈ I for a, b ∈ R. By our

assumption,
√
Ra ⊆

√
Rb or

√
Rb ⊆

√
Ra. Therefore

√
Ra ∩

√
Rb =√

Rab ⊆
√
I and hence Ra ⊆

√
Ra ⊆

√
I or Rb ⊆

√
Rb ⊆

√
I; i.e. I is

a quasi-primary ideal of R.
(3)⇒ (1) is clear.
(4)⇒ (3) is trivial, since by (4) radical of every ideal is prime.
(2)⇒ (4) is clear. �
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