Journal of Algebra and Related Topics Vol. 4, No 2, (2016), pp 9-17

WEAKLY IRREDUCIBLE IDEALS

M. SAMIEI * AND H. FAZAELI MOGHIMI

ABSTRACT. Let R be a commutative ring. The purpose of this article is to introduce a new class of ideals of R called weakly irreducible ideals. This class could be a generalization of the families quasi-primary ideals and strongly irreducible ideals. The relationships between the notions primary, quasi-primary, weakly irreducible, strongly irreducible and irreducible ideals, in different rings, has been given. Also the relations between weakly irreducible ideals of R and weakly irreducible ideals of localizations of the ring R are also studied.

1. INTRODUCTION

Throughout this article, R denotes a commutative ring with identity. About a quarter of a century before, in [3] the notion of quasi-primary ideals as a generalization of the notion primary ideals was introduced. Indeed, a proper ideal q of R is called quasi-primary if $rs \in q$, for $r, s \in R$, implies that either $r \in \sqrt{q}$ or $s \in \sqrt{q}$. Equivalently, q is quasi-primary if and only if \sqrt{q} is prime [3, Definition 2, p. 176].

In [5], a proper ideal I of a ring R is called strongly irreducible if for ideals A and B of R, the inclusion $A \cap B \subseteq I$ implies that either $A \subseteq I$ or $B \subseteq I$. Strongly irreducible ideals over commutative rings have been extensively studied in [2] and [5]. It is easy to see that every prime ideal is strongly irreducible. Also every strongly irreducible ideal is irreducible and hence strongly irreducible ideals over a Noetherian ring are primary [5, Lemma 2.2(1),(2)]. Over a commutative ring, it is

MSC(2010): Primary: 13A99; Secondary: 13C05, 13E05, 13F99, 11Y50

Keywords: weakly irreducible ideal, quasi-primary ideal.

Received: 13 July 2016, Accepted: 13 September 2016.

^{*}Corresponding author .

therefore natural to pursue the analogues of this property. This leads us to the following definition as a generalization of the notion strongly irreducible ideals.

Definition 1.1. We say that a proper ideal I of R is weakly irreducible provided that for each pair of ideals A and B of R, $A \cap B \subseteq I$ implies that either $A \subseteq \sqrt{I}$ or $B \subseteq \sqrt{I}$.

Clearly every quasi-primary ideal of R is weakly irreducible. But the converse is not true in general. For example, let R be a Noetherian local ring with maximal ideal m having more than one minimal prime. Let E = E(R/m) denote the injective envelope of the residue field R/m of R as an R-module. In [5, Example 2.4], it has been shown that the zero ideal of the idealization A = R + E [6, page 2] is strongly irreducible, and hence weakly irreducible. But the zero ideal in A is not quasi-primary.

We begin with a few well-known results about strongly irreducible ideals. Recall that a ring R is called arithmetical provided that for all ideals I, J and K of $R, I + (J \cap K) = (I + J) \cap (I + K)$ (See [4]).

Proposition 1.2. Let I be an ideal in a ring R. Then:

- (1) If R is an arithmetical ring, I is irreducible if and only if I is strongly irreducible [5, Lemma 2.2(3)]
- (2) Let R be an arithmetical ring. If I is a primary ideal of R, then I is an irreducible ideal of R [4, Theorem 6].
- (3) If R is a Laskerian ring(i.e. every proper ideal of R has a primary decomposition) or R is a unique factorization domain (UFD), then every strongly irreducible ideal of R is a primary ideal [2, Theorem 2.1(iii)] and [2, Theorem 2.2(iv)].
- (4) If R is an absolutely flat ring or R is a Zerlegung Primideale ring (ZPI-ring; i.e. every proper ideal of R can be written as a product of prime ideals of R), I is strongly irreducible if and only if I is primary [2, Theorem 2.1(iv)] and [2, Theorem 3.7].

In this paper, we characterize the notion weakly irreducible ideals over different rings. Moreover, the relationships between the notions primary, quasi-primary, weakly irreducible, strongly irreducible and irreducible ideals, in different rings, has been given. The relations between weakly irreducible ideals of a ring and weakly irreducible ideals of localizations of the ring also studied. In the following, some of these results has been mentioned.

Theorem 1.3. Let R be a ring.

10

- (1) If R is a UFD or a Laskerian ring, then an ideal is weakly irreducible ideal if and only if it is a quasi-primary ideal (Theorem 2.1(4) and Theorem 2.3(2)).
- (2) For an absolutely flat ring, the notions maximal, prime, primary, quasi-primary, strongly irreducible and weakly irreducible ideals are equal (Proposition 1.2(4) and Theorem 2.1(5)).
- (3) (Theorem 3.3) If R is a ring and S is a multiplicatively closed subset of R, then the following are equivalent:
 - (i) Every weakly irreducible ideal A of R which $A = I^c$, the contraction of an ideal I of $S^{-1}R$ is quasi-primary; (ii) Every weakly irreducible ideal B of $S^{-1}R$ is quasi-primary.
- (4) (Corollary 3.4) Let I be an ideal of a ring R and p a prime ideal of R containing I. The following are equivalent:
 - (i) If I is a weakly irreducible ideal of R such that $I = J^c$ for some ideal J of R_p , then I is quasi-primary.
 - (ii) If I_p is a weakly irreducible ideal of R_p , then I_p is quasiprimary.
- (5) (Theorem 3.5) For a ring R, the following are equivalent.
 - (i) Every proper ideal of R is weakly irreducible;
 - (ii) The radicals of every two ideals of R are comparable;
 - (iii) Every proper ideal of R is quasi-primary.
 - (iv) The prime ideals of R form a chain with respect to inclusion.

Some of the main interrelations of the above mentioned types of ideals can be summarized in the following chart.

2. Weakly irreducible ideals

Theorem 2.1. Let R be a ring.

- (1) Let I be a proper ideal of R. Then the following are equivalent:
 - (i) I is a quasi-primary ideal;
 - (ii) \sqrt{I} is a weakly irreducible ideal;
 - (iii) \sqrt{I} is a prime ideal.
- (2) Let I be a weakly irreducible ideal of R. Then I is a prime ideal if and only if $I = \sqrt{I}$.
- (3) If R is a Laskerian ring, then every weakly irreducible ideal of R is a quasi-primary ideal.
- (4) For any ideal I of an absolutely flat ring R, the following are equivalent:
 - (i) I is a maximal ideal;
 - (ii) I is a quasi-primary ideal;
 - (iii) I is a weakly irreducible ideal.
- (5) If I is weakly irreducible and if A is an ideal contained in I, then I/A is weakly irreducible in R/A.

Proof. (1) Suppose I is a proper ideal of R. $(i) \Leftrightarrow (iii)$ follows from [3, Definition 2 p. 176]. $(i) \Rightarrow (ii)$. Let I be a quasi-primary ideal of R. Then \sqrt{I} is a prime and hence a weakly irreducible ideal of R. $(ii) \Rightarrow (i)$. Let $ab \in I$ for $a, b \in R$. Then $Ra \cap Rb \subseteq \sqrt{Ra \cap Rb} = \sqrt{Rab} \subseteq \sqrt{I}$. Since \sqrt{I} is a weakly irreducible ideal, we have either $Ra \subseteq \sqrt{I}$ or $Rb \subseteq \sqrt{I}$.

(2) If I is a prime ideal of R, then clearly $I = \sqrt{I}$. Conversely, assume that I is a weakly irreducible ideal of R such that $I = \sqrt{I}$. By (1), $I = \sqrt{I}$ is a prime ideal of R.

(3) Let $I = \bigcap_{i=1}^{n} q_i$ be a minimal primary decomposition of the weakly irreducible ideal I of R. Then, for some $1 \leq j \leq n$, $q_j \subseteq \sqrt{I} = \sqrt{\bigcap_{i=1}^{n} q_i} \subseteq \sqrt{q_j}$ and hence $p_j = \sqrt{q_j} = \sqrt{I}$. Thus I is a quasi-primary ideal of R.

(4) Suppose R is an absolutely flat ring and I an ideal of R. $(i) \Rightarrow (ii) \Rightarrow (iii)$ are obvious. $(ii) \Rightarrow (i)$. Let I be a quasi-primary ideal of R and $x \in R \setminus \sqrt{I}$. Since R is absolutely flat, [1, p. 37 Exersice 27] follows the principal ideal Rx is idempotent and hence there exists $a \in R$ such that $x(ax-1) = 0 \in I$. Thus $(ax-1)^n \in I$ for some positive integer n; i.e. $\overline{ax-1}$ is a nilpotent element of R/\sqrt{I} and therefore \overline{ax} is a unit. This implies that \overline{x} is unit and thus R/\sqrt{I} is a field and \sqrt{I} is maximal. On the other hand, since every principal ideal of R is

idempotent, it follows that $\sqrt{I} = I$ and hence I is a maximal ideal of R. $(iii) \Rightarrow (ii)$. Let $ab \in I$ for some $a, b \in R$. Hence the ideals Ra and Rb are idempotent. Thus there exists $t, s \in R$ such that $a = ra^2$ and $b = tb^2$. Let $k \in Ra \cap Rb$, then $k = ak_1 = bk_2$ for some $k_1, k_2 \in R$. Now $k = ak_1 = ra^2k_1 = ak_1ra = bk_2ra \in Rab$, then $Ra \cap Rb \subseteq Rab \subseteq I$. Since I is weakly irreducible, $Ra \subseteq \sqrt{I}$ or $Rb \subseteq \sqrt{I}$; i.e. I is a quasiprimary ideal.

(5). Let J and K be ideals in R such that $(J/A) \cap (K/A) \subseteq I/A$. Then $(J+A) \cap (K+A) \subseteq I + A = I$, since $A \subseteq I$. Since I is weakly irreducible it follows that either $J \subseteq \sqrt{I}$ or $K \subseteq \sqrt{I}$, hence either $J/A \subseteq \sqrt{I/A}$ or $K/A \subseteq \sqrt{I/A}$, so I/A is weakly irreducible. \Box

It is easy to see that every two elements of a unique factorization domain (UFD) R have a least common multiple. We denote the least common multiple of every two elements $x, y \in R$ by [x, y].

Lemma 2.2. Let R be a UFD and I a proper ideal of R.

- (1) I is weakly irreducible if and only if for each $x, y \in R$, $[x, y] \in I$ implies that $x \in \sqrt{I}$ or $y \in \sqrt{I}$.
- (2) I is weakly irreducible if and only if $p_1^{n_1}p_2^{n_2}\cdots p_k^{n_k} \in I$, where p_i are distinct prime elements of R and n_i are natural numbers, implies that $p_i \in \sqrt{I}$, for some $j, 1 \leq j \leq k$.

Proof. (1) Let I be a weakly irreducible ideal and for $x, y \in R$, $[x, y] \in I$. If [x, y] = c, then obviously $Rx \cap Ry = Rc \subseteq I$. So $Rx \subseteq \sqrt{I}$ or $Ry \subseteq \sqrt{I}$.

Conversely, if $Rx \cap Ry \subseteq I$ for $x, y \in R$, then $[x, y] \in Rx \cap Ry \subseteq I$, so by our assumption $x \in \sqrt{I}$ or $y \in \sqrt{I}$.

(2) If I is weakly irreducible, then the result is clear by part (1). Conversely, let $[x, y] \in I$ for $x, y \in R \setminus 0$, and

$$\begin{aligned} x &= p_1^{n_1} p_2^{n_2} p_3^{n_3} \cdots p_k^{n_k} q_1^{m_1} q_2^{m_2} q_3^{m_3} \cdots q_s^{m_s}, \\ y &= p_1^{t_1} p_2^{t_2} p_3^{t_3} \cdots p_k^{t_k} r_1^{l_1} r_2^{l_2} r_3^{l_3} \cdots r_u^{l_u} \end{aligned}$$

be prime decompositions for x and y, respectively. Therefore,

$$[x,y] = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \cdots p_k^{\alpha_k} q_1^{m_1} q_2^{m_2} q_3^{m_3} \cdots q_s^{m_s} r_1^{l_1} r_2^{l_2} r_3^{l_3} \cdots r_u^{l_u}$$

where $\alpha_i = max\{n_i, t_i\}$ for each *i*. Since $[x, y] \in I$, by the assumption, we have one of following:

- (a) for some $i, p_i \in \sqrt{I}$;
- (b) for some $i, q_i \in \sqrt{I}$;
- (c) for some $i, r_i \in \sqrt{I}$.

If (a) holds, then clearly $x, y \in \sqrt{I}$. For the case (b), $x \in \sqrt{I}$. If c satisfies, then $y \in \sqrt{I}$.

Theorem 2.3. Let R be a UFD and I a proper ideal of R.

- (1) If I is a nonzero principal ideal, then I is weakly irreducible if and only if the generator of I is a power of a prime element of R.
- (2) The two classes weakly irreducible ideals and quasi-primary ideals are equal.

Proof. (1) Let I = Ra be a nonzero weakly irreducible ideal of R, and $a = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \cdots p_k^{\alpha_k}$ be a prime decomposition for a. By Lemma 2.2(2), for some $i, p_i \in \sqrt{I}$. Hence

$$p_i \in \sqrt{R(p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \cdots p_k^{\alpha_k})} = \sqrt{Rp_1^{\alpha_1} \cap Rp_2^{\alpha_2} \cap Rp_3^{\alpha_3} \cap \cdots \cap Rp_k^{\alpha_k}} = \sqrt{Rp_1^{\alpha_1} \cap \sqrt{Rp_2^{\alpha_2}} \cap \sqrt{Rp_3^{\alpha_3}} \cap \cdots \cap \sqrt{Rp_k^{\alpha_k}}} = Rp_1 \cap Rp_2 \cap Rp_3 \cap \cdots \cap Rp_k$$

Thus $p_j \mid p_i$ for $1 \leq j \leq k$ and hence $p_i = p_j$ for every $1 \leq j \leq k$. It means that $I = Rp_i^{\alpha_i}$.

Conversely, let $I = Rp^n$ for a prime element p of R. Suppose that $p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \cdots p_k^{\alpha_k} \in I = Rp^n$ for some distinct prime elements p_1, p_2, \cdots, p_k of R and natural numbers $\alpha_1, \alpha_2, \cdots, \alpha_k$. Then $p^n \mid p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \cdots p_k^{\alpha_k}$. So, for some $j, 1 \leq j \leq k$, we have $p = p_j$ and $n \leq n_j$. Therefore, $p_j^{n_j} \in \sqrt{I}$. Thus, by Lemma 2.2(2), I is a weakly irreducible ideal.

(2) Let I be a weakly irreducible ideal and $xy \in I$, where $x, y \in R \setminus 0$, and let

$$\begin{aligned} x &= p_1^{n_1} p_2^{n_2} p_3^{n_3} \cdots p_k^{n_k} q_1^{m_1} q_2^{m_2} q_3^{m_3} \cdots q_s^{m_s}, \\ y &= p_1^{t_1} p_2^{t_2} p_3^{t_3} \cdots p_k^{t_k} r_1^{l_1} r_2^{l_2} r_3^{l_3} \cdots r_u^{l_u} \end{aligned}$$

be prime decomposition for x and y, respectively. Since $xy \in I$, by part (2), we have one of the following:

- (a) for some $i, p_i \in \sqrt{I}$;
- (b) for some $i, q_i \in \sqrt{I}$;
- (c) for some $i, r_i \in \sqrt{I}$.

If (a) holds, then clearly $x, y \in \sqrt{I}$. For the case (b), $x \in \sqrt{I}$. If c satisfies, then $y \in \sqrt{I}$. Thus I is a quasi-primary ideal of R.

3. LOCALIZATION AND WEAKLY IRREDUCIBLE IDEALS

Let R be a ring and let S be a multiplicatively closed subset of R. For each ideal I of the ring $S^{-1}R$, we consider

 $I^{c} = \{x \in R \mid x/1 \in I\} = I \cap R$, and $C = \{I^{c} \mid I \text{ is an ideal of } S^{-1}R\}.$

Theorem 3.1. Let R be a ring and S be a multiplicatively closed subset of R. Then there is a one-to-one correspondence between the weakly irreducible ideals of $S^{-1}R$ and weakly irreducible ideals of R contained in C.

Proof. Let I be a weakly irreducible ideal of $S^{-1}R$. Obviously, $I^c \neq R$, $I^c \in C$ and $I^c \cap S = \emptyset$. Let $A \cap B \subseteq I^c$, where A and B are ideals of R. Then we have $S^{-1}A \cap S^{-1}B = S^{-1}(A \cap B) \subseteq S^{-1}(I^c) = I$. Hence, $S^{-1}(A) \subseteq \sqrt{I}$ or $S^{-1}(B) \subseteq \sqrt{I}$, and so $A \subseteq (S^{-1}(A))^c \subseteq (\sqrt{I})^c = \sqrt{I^c}$ or $B \subseteq (S^{-1}(B))^c \subseteq (\sqrt{I})^c = \sqrt{I^c}$. Thus I^c is a weakly irreducible ideal of R.

Conversely, let I be a weakly irreducible ideal of R, $I \cap S = \emptyset$ and $I \in C$. Since $I \cap S = \emptyset$, $S^{-1}I \neq S^{-1}R$. Let $A \cap B \subseteq S^{-1}I$, where A and B are ideals of $S^{-1}R$. Then $A^c \cap B^c = (A \cap B)^c \subseteq (S^{-1}I)^c$. Now since $I \in C$, $(S^{-1}I)^c = I$. So $A^c \cap B^c \subseteq I$. Consequently, $A^c \subseteq \sqrt{I}$ or $B^c \subseteq \sqrt{I}$. Thus $A = S^{-1}A^c \subseteq S^{-1}(\sqrt{I}) \subseteq \sqrt{S^{-1}(I)}$ or $B = S^{-1}B^c \subseteq S^{-1}(\sqrt{I}) \subseteq \sqrt{S^{-1}(I)}$. Therefore, $S^{-1}(I)$ is a weakly irreducible ideal of $S^{-1}R$.

Lemma 3.2. Let S be a multiplicatively closed subset of a ring R and p a prime ideal of R such that $p \cap S = \emptyset$. Then

- (1) If q is a p-quasi-primary ideal of R, then $S^{-1}q$ is a $S^{-1}p$ -quasi-primary ideal of $S^{-1}R$.
- (2) If $S^{-1}q$ is a quasi-primary ideal of $S^{-1}R$ such that $\sqrt{S^{-1}q} = S^{-1}p$ and q is contained in C, then q is a p-quasi-primary ideal of R.

Proof. (1) Let q be a quasi-primary ideal of R with $\sqrt{q} = p$. Since $p \cap S = \emptyset$, $S^{-1}p$ is a prime ideal of $S^{-1}R$ and so that $\sqrt{S^{-1}q} = S^{-1}(\sqrt{q}) = S^{-1}p$ implies that $S^{-1}q$ is a $S^{-1}p$ -quasi-primary ideal of R. (2) Let $S^{-1}q$ be a quasi-primary ideal of $S^{-1}R$ such that $\sqrt{S^{-1}q} = S^{-1}p$ and $q \in C$. It is clear that $(S^{-1}q)^c = q$, since $q \in C$. It follows that $\sqrt{q} = \sqrt{(S^{-1}q)^c} = (\sqrt{S^{-1}q})^c = (S^{-1}p)^c = p$ and hence q is a p-quasi-primary ideal of R.

Theorem 3.3. If R is a ring and S is a multiplicatively closed subset of R, then the following are equivalent:

- (1) Every weakly irreducible ideal A of R which $A \in C$ is quasiprimary;
- (2) Every weakly irreducible ideal of $S^{-1}R$ is quasi-primary;

Proof. (1) \Rightarrow (2) Let *B* be a weakly irreducible ideal of $S^{-1}R$. Then by the proof of Theorem 3.1, B^c is a weakly irreducible ideal of *R* and, by our assumption, B^c is a quasi-primary ideal of *R*. Now, by Lemma 3.2(1), $B = S^{-1}(B^c)$ is a quasi-primary ideal of $S^{-1}R$.

 $(2) \Rightarrow (1)$ Let A be a weakly irreducible ideal of R such that $A \in C$. By Theorem 3.1, $S^{-1}A$ is a weakly irreducible ideal of R. Since $A \in C$, we have $\sqrt{(S^{-1}A)^c} = (S^{-1}\sqrt{A})^c = \sqrt{A}$. Thus $\sqrt{(S^{-1}A)^c} \cap S = \emptyset$. Now, by our assumption, $S^{-1}A$ is a quasi-primary ideal of $S^{-1}R$ and so A is a quasi-primary ideal of R by Lemma 3.2(2).

Corollary 3.4. Let I be an ideal of a ring R and p a prime ideal of R containing I. The following are equivalent:

- (1) If I is a weakly irreducible ideal of R such that $I = J^c$ for some ideal J of R_p , then I is quasi-primary.
- (2) If I_p is a weakly irreducible ideal of R_p , then I_p is quasi-primary.

Theorem 3.5. For a ring R, the following are equivalent.

- (1) Every proper ideal of R is weakly irreducible;
- (2) The radicals of every two ideals of R are comparable;
- (3) Every proper ideal of R is quasi-primary.
- (4) The prime ideals of R form a chain with respect to inclusion.

Proof. (1) \Rightarrow (2) By our assumption, $I \cap J$ is a weakly irreducible ideal of R where I and J are two ideals of R. Thus $I \cap J \subseteq I \cap J$ implies that $I \subseteq \sqrt{I \cap J} = \sqrt{IJ}$ or $J \subseteq \sqrt{I \cap J} = \sqrt{IJ}$. On the other hand, $\sqrt{IJ} \subseteq \sqrt{I}$ and $\sqrt{IJ} \subseteq \sqrt{J}$ and so $\sqrt{I} \cap \sqrt{J} = \sqrt{IJ} = \sqrt{I}$ or $\sqrt{I} \cap \sqrt{J} = \sqrt{IJ} = \sqrt{J}$. It means that $\sqrt{I} \subseteq \sqrt{J}$ or $\sqrt{J} \subseteq \sqrt{I}$.

 $(2) \Rightarrow (3)$ Let I be a proper ideal of R and $ab \in I$ for $a, b \in R$. By our assumption, $\sqrt{Ra} \subseteq \sqrt{Rb}$ or $\sqrt{Rb} \subseteq \sqrt{Ra}$. Therefore $\sqrt{Ra} \cap \sqrt{Rb} = \sqrt{Rab} \subseteq \sqrt{I}$ and hence $Ra \subseteq \sqrt{Ra} \subseteq \sqrt{I}$ or $Rb \subseteq \sqrt{Rb} \subseteq \sqrt{I}$; i.e. I is a quasi-primary ideal of R.

- $(3) \Rightarrow (1)$ is clear.
- $(4) \Rightarrow (3)$ is trivial, since by (4) radical of every ideal is prime.

 $(2) \Rightarrow (4)$ is clear.

Acknowledgments

The author thanks the referee for helpful and valuable suggestions and comments.

16

WEAKLY IRREDUCIBLE IDEALS

References

- M.F. Atiyah, I.G. McDonald, Introduction to commutative algebra, Addison Weisley Publishing Company, Inc., 1969.
- 2. A. Azizi, Strongly irreducible ideals, J. Aust. Math. Soc. 84 (2008), 145-154.
- 3. L. Fuchs, On quasi-primary ideals, Acta Sci. Math. (Szeged), 11 (1947), 174-183.
- C. Jensen, Arithmetical rings, Acta Math. Sci. Acad. Sci. Hunger. 17 (1966), 115-123.
- 5. W.J. Heinzer, L.J. Ratliff Jr. and D.E. Rush, *Strongly irreducible ideals of a commutative ring*, J. Pure Appl. Algebra, **166** (2002), 267-275.
- M. Nagata, *Local Rings*, Interscience Tracts in Pure and Applied Math., No. 13, Interscience, New York, NY, 1962.

Mahdi Samiei

Department of Mathematics, Velayat University, Iranshahr, Iran. Email: m.samiei@velayat.ac.ir

Hosein Fazaeli Moghimi

Department of Mathematics, University of Birjand, P.O. Box 61597175, Birjand, Iran.

Email: hfazaeli@birjand.ac.ir