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ON TWO GENERALIZATIONS OF SEMI-PROJECTIVE
MODULES: SGQ-PROJECTIVE AND

π-SEMI-PROJECTIVE

T. AMOUZEGAR

Abstract. Let R be a ring and M a right R-module with S =
EndR(M). A module M is called semi-projective if for any epi-
morphism f : M → N , where N is a submodule of M , and for
any homomorphism g : M → N , there exists h : M → M such
that fh = g. In this paper, we study SGQ-projective andπ-semi-
projective modules as two generalizations of semi-projective mod-
ules. A module M is called an SGQ-projective module if for any
φ ∈ S, there exists a right ideal Xφ of S such that DS(Imφ) =
φS ⊕Xφ as right S-modules. We call M a π-semi-projective mod-
ule if for any 0 6= s ∈ S, there exists a positive integer n such
that sn 6= 0 and any R-homomorphism from M to snM can be
extended to an endomorphism of M . Some properties of this class
of modules are investigated.

1. INTRODUCTION

Throughout this paper R will denote an associative ring with identity,
M a unitary right R-module and S = EndR(M) the ring of all R-
endomorphisms of M . If N is a submodule of M , then we will use
the notation N � M to indicate that N is small in M (i.e. ∀L �
M,L + N 6= M). The notation N ≤⊕ M denotes that N is a direct
summand of M . We also denote rM(I) = {x ∈M | Ix = 0}, for I ⊆ S;
DS(N) = {φ ∈ S | Imφ ⊆ N}, for N ⊆ M . An M -projective module
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M is called self-projective. In fact an R-module M is self-projective
if and only if DS(Imφ) = φS, where S = EndR(M). A module M is
called semi-projective if for any epimorphism f : M → N , where N
is a submodule of M , and for any homomorphism g : M → N , there
exists h : M → M such that fh = g. Obviously, M is semi-projective
if and only if fS = HomR(M, fM) for every f ∈ EndR(M) = S. The
semi-projective modules are studied by different authors (see [3], [5]
and [12]).

In [4], Kalebog̃az, Keskin-Tütüncü and Smith introduced SGQ-proj
ective modules and studied some results about this class of modules.
Let M be a right R-module with S = EndR(M). Then M is called an
SGQ-projective module if for any φ ∈ S, there exists a right ideal Xφ of
S such that DS(Imφ) = φS⊕Xφ as right S-modules. It is clear that the
notion of SGQ-projective modules is a generalization of semi-projective
modules. In Section 2 of this paper we investigate more properties of
SGQ-projective modules.

A right R-module M is called quasi-principally injective if every ho-
momorphism from an M -cyclic submodule of M can be extended to
an endomorphism of M . The quasi principally-injective modules were
first studied by Wisbauer in [13] under the terminology of semi-injective
modules. In [15], Zhu Zhanmin generalized quasi principally-injective
modules to the general quasi-principally injective modules. In Sec-
tion 3 of this note, we introduce the dual notion of such modules and
call them π-semi-projective modules. We call M a π-semi-projective
module if for any 0 6= s ∈ S, there exists a positive integer n such
that sn 6= 0 and any R-homomorphism from M to snM can be ex-
tended to an endomorphism of M . Obviously, every semi-projective
module is π-semi-projective module. Section 3 contains the results on
π-semi-projective modules. First, we give a characterization of π-semi-
projective modules. We prove the following main result:

Let MR be a finitely generated π-semi-projective retractable module
with S = EndR(M). Then the mappings

K → KM and T → DS(T )

are mutually inverse bijections between the set of all minimal right
ideals K of S and the set of all minimal submodules T of M . In
particular, we have:

(1) DS(KM) = K for all minimal right ideal K of S.
(2) DS(T )M = T for all minimal submodule T of M .
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2. SGQ-projective modules

Let M be a right R-module with S = EndR(M). Then M is called
SGQ-projective if for any φ ∈ S, there exists a right ideal Xφ of S such
that DS(Imφ) = φS ⊕Xφ as right S-modules.
Example 2.1. (cf. [4, Example 2.6] ) (1) The Z-module QZ is semi-
projective and hence SGQ-projective, but it is not self-projective.

(2) Let R be any integral domain with quotient field F 6= R. Then
MR = F ⊕ R is semi-projective and so SGQ-projective, but in gen-
eral not self-projective. This can be easily seen from the fact that

EndR(M) =

(
F F
0 R

)
.

Recall that an R-module M is called coretractable if, for any proper
submodule K of M , there exists a nonzero endomorphism f ∈ S with
f(K) = 0, that is, HomR(M/K,M) 6= 0 [1].

It is well known that if M is a self-projective module, then J(S) =
∇(M), where ∇(M) = {s ∈ S | Ims � M} (see [13, 22.2]). In
the following theorem, we prove the similar result for SGQ-projective
modules.

Theorem 2.2. Let M be a right R-module with S = EndR(M). If M
is an SGQ-projective coretractable module, then J(S) = ∇(M) where
∇(M) = {φ ∈ S | Imφ�M}.

Proof. Since SGQ-projective modules are semi-Hopfian, by [2, 4.28],
we have ∇(M) ⊆ J(S). Conversely, let s ∈ J(S). Then we will
show that s ∈ ∇(M). If not, then there exists a proper submod-
ule K of M such that Ims + K = M . Since M is coretractable,
HomR(M/K,M) 6= 0. Thus there exists 0 6= t ∈ S such that K ⊆
Kert. Hence we have Ims + Kert = M . So Imts = Imt and ts 6= 0.
SinceM is SGQ-projective, DS(Imts) = (ts)S⊕Xts as right S-modules.
As t ∈ DS(Imt) = DS(Imts) = (ts)S ⊕Xts, we can write t = tsu + v
for some u ∈ S and v ∈ Xts. Then ts − tsus = vs ∈ Xts ∩ (ts)S = 0,
and so ts(1 − us) = 0. Since 1 − us is right invertible, ts = 0, a
contradiction. �

Recall that a module MR is said to satisfy the D2-condition if when-
ever N is a submodule of M and M/N is isomorphic to a direct sum-
mand of M , then N is a direct summand of M [9]. We mention that
the following results are dual of some results in [14].

Theorem 2.3. If MR is an SGQ-projective module, then it satisfies
the D2-condition.
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Proof. Let N ≤ M and M/N ∼= eM for some e2 = e ∈ S. Then
N = Kerh with h = es for some s ∈ S and Ime = Imes. Since M
is SGQ-projective, e ∈ DS(Ime) = DS(Imh) = hS ⊕ Xh where Xh is
a right S-module. Then e = ht + x with t ∈ S and x ∈ Xh. Hence
h = eh = hth+ xh and thus h− hth = xh ∈ Xh ∩ hS = 0, so h = hth.
Let f = th, then f 2 = f and N = Kerh = (1− f)M . �

Dual Rickart modules are defined by Lee, Rizvi and Roman in [7].
The module M is called dual Rickart if for any f ∈ S, Imf = eM for
some e2 = e ∈ S.

Corollary 2.4. Let M be a module and S = EndR(M). Then S is a
von Neumann regular ring if and only if M is an SGQ-projective and
dual Rickart module.

Proof. It is easy to see by [10, Theorem 4] and [4, Corollary 3.3]. �

Lemma 2.5. Let MR be a module with S = EndR(M). Given a set
{Xs | s ∈ S} of right ideals of S, the following are equivalent:

(1) M is SGQ-projective;
(2) DS(Ker t+ Ims) = (Xts : t)r + sS and (Xts : t)r ∩ sS ⊆ rS(t) for

all s, t ∈ S, where (Xts : t)r = {x ∈ S | tx ∈ Xts}.

Proof. (1)⇒ (2) Let x ∈ DS(Kert + Ims). Then Im(tx) ⊆ Im(ts) and
so tx ∈ DS(Imtx) ⊆ DS(Imts) = (ts)S ⊕ Xts. Write tx = tss1 + y,
where s1 ∈ S and y ∈ Xts, then t(x−ss1) = y ∈ Xts and hence x−ss1 ∈
(Xts : t)r. Thus x ∈ (Xts : t)r + sS. Clearly sS ⊆ DS(Kert + Ims). If
z ∈ (Xts : t)r, then tz ∈ Xts ⊆ DS(Imts). Let y ∈ Imz, then y = z(m)
for some m ∈ M . Hence ty = tz(m) ∈ Imtz ⊆ Imts, thus ty = ts(m′)
for some m′ ∈ M and so t(y − sm′) = 0. Then y − sm′ ∈ Kert. This
implies that Imz ⊆ Ims+ Kert and so z ∈ DS(Ims+ Kert). Therefore
DS(Ims + Kert) = (Xts : t)r + sS. If s′ ∈ (Xts : t)r ∩ sS, then
ts′ ∈ Xts ∩ (ts)S = 0 and hence s′ ∈ rS(t).

(2)⇒ (1) Let t = 1. �

A nonzero R-module M is called hollow if every proper submodule
is small in M [9].

Lemma 2.6. Let MR be an SGQ-projective module with S = EndR(M)
and an index set {Xs | s ∈ S} of ideals such that Xst = Xts for all
s, t ∈ S. Define Mu = {s ∈ S | Ims + Keru 6= M}, where 0 6= u ∈ S.
If M/Keru is a hollow factor module of M , then Mu is the unique
maximal right ideal of S which contains

∑
s∈S(Xus : u)r.

Proof. Since M/Keru is a hollow factor of M , Mu is a right ideal of
S. Let t ∈ (Xus : u)r, then ut ∈ Xus and so sut ∈ Xus ∩ (su)S =
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Xsu ∩ (su)S since Xsu = Xus is an ideal. Hence sut = 0 and so t ∈Mu

if su 6= 0. If su = 0, then DS(Im(su)) = 0, and hence Xus = Xsu = 0.
This implies that ut = 0 and so t ∈ Mu. Therefore (Xus : u)r ⊆ Mu

for all s ∈ S. Now if s 6∈ Mu, then Ims + Keru = M , and hence
S = (Xus : u)r + sS by Lemma 2.5, so S = Mu + sS, this shows that
Mu is a maximal right ideal. Finally, let I be a right ideal of S such
that

∑
s∈S(Xus : u)r ⊆ I 6= Mu. Then, as above, S = (Xus : u)r + sS

for any s ∈ I −Mu. Consequently, I = S. �

Proposition 2.7. Let MR be an SGQ-projective module with S =
EndR(M) and an index set {Xs | s ∈ S} of ideals such that Xst = Xts

for all s, t ∈ S. Assume that W = Keru1 ⊕ Keru2 ⊕ · · · ⊕ Kerun is a
direct sum of submodules of M where 0 6= ui ∈ S and M/Kerui is a
nonzero hollow factor module of M . If T ⊆ S is a maximal right ideal
not of the form Mu, for any u ∈ S, for which M/Keru is hollow, then

there exists t ∈ T such that Im(1−t)+W
W

� M
W

.

Proof. Since T 6= Mu1 , there exists a ∈ T such that Ima + Keru1 =
M . Then Imu1 ⊆ Imu1a and hence u1 ∈ DS(Imu1) ⊆ DS(Imu1a) =
(u1a)S ⊕ Xu1a. Thus there exists s ∈ S such that u1(1 − as) ∈ Xu1a

and so 1−as ∈ (Xu1a : u1)r ⊆Mu1 . Set a1 = as. If 1−a1 ∈Mui for all
i, the proof is complete since M/Kerui is hollow. If, say, 1− a1 6∈Mu2 ,
then M

Keru2(1−a1)
is hollow since M

Keru2(1−a1)
∼= M

Keru2
. Hence, as above,

(1 − a′) ∈ Mu2(1−a1) for some a′ ∈ T . Let a2 = a1 + a′ − a′a1, then
1 − a2 ∈ Mu1 ∩Mu2 , continue in this way to obtain t ∈ S, such that

Im(1− t) + Kerui 6= M for each i. Therefore Im(1−t)+W
W

� M
W

. �

An R-module M is said to have finite hollow dimension if there exists
a small epimorphism from M to a finite direct sum of n hollow factor
modules [8].

Theorem 2.8. Let MR be a coretractable module with finite hollow
dimension. If M is SGQ-projective with an index set {Xs | s ∈ S} of
right ideals of S such that Xst = Xts for all s, t ∈ S, then

(1) If T is a maximal right ideal of S, then T = Mu, for some u ∈ S,
and for which M/Keru is a nonzero hollow factor module of M .

(2) J(S) = Mu1 ∩ · · · ∩Mun for some n ∈ N and u1, · · · , un ∈ S,
where M/Kerui is a nonzero hollow factor module of M .

Proof. (1) Since M has finite hollow dimension, there exists a small
epimorphism f : M →

⊕n
i=1M/Ai, where n ∈ N and M/Ai is a

nonzero hollow factor module of M for each 1 ≤ i ≤ n. Note that
HomR(M/Ai,M) 6= 0, for each 1 ≤ i ≤ n, since M is coretractable.
Thus there exists 0 6= si ∈ S such that Ai ⊆ Kersi. If T is not
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of the form Mu for some u ∈ S such that M/Keru is hollow, then,
by the proof of Proposition 2.7, there exists some t ∈ T such that
Im(1 − t) + Kersi 6= M , thus Im(1 − t) + Ai 6= M . By [11, 3.5],
Im(1− t)�M . By Theorem 2.2, 1− t ∈ J(S) ⊆ T , a contradiction.

(2) Let s ∈Mu1∩· · ·∩Mun , then Ims+Kerui 6= M for each 1 ≤ i ≤ n.
Similar to the proof of (1), Ims�M . Hence s ∈ J(S), this shows that
Mu1 ∩ · · · ∩ Mun ⊆ J(S). The reverse inclusion is obvious. Thus
J(S) = Mu1 ∩ · · · ∩Mun . �

3. π-Semi-projective modules

Definition 3.1. Let M be a right R-module with S = EndR(M). We
call M a π-semi-projective module if for any 0 6= s ∈ S, there exists a
positive integer n such that sn 6= 0 and any R-homomorphism from M
to snM can be extended to an endomorphism of M .

It is clear that every self-projective module is π-semi-projective. Note
that there is the π-semi-projective module which is not self-projective
(see Example 2.1).

The following theorem is a characterization of π-semi-projective mod-
ules.

Theorem 3.2. Let M be a right R-module. Then the following condi-
tions are equivalent:

(1) M is π-semi-projective.
(2) For any 0 6= s ∈ S there exists a positive integer n such that

sn 6= 0 and DS(Imsn) = snS.
(3) For any s, t ∈ S with ts 6= 0, there exists a positive integer n

such that (ts)n 6= 0 and DS(Ims(ts)n−1 + Ker t) = s(ts)n−1S + rS(t).

Proof. (1) ⇒ (3) For any s, t ∈ S with ts 6= 0, since M is π-semi-
projective, there exists a positive integer n such that (ts)n 6= 0 and
any R-homomorphism from M to (ts)nM extends to an endomorphism
of M . Let a ∈ DS[Ims(ts)n−1 + Kert]. Now we define f : M →
(ts)nM by x 7→ ta(x). It is easy to see that f is an R-homomorphism.
Hence f extends to an endomorphism of M , i.e., there exists b ∈ S
such that ta = (ts)nb. This shows that a − s(ts)n−1b ∈ rS(t) and
so a ∈ s(ts)n−1S + rS(t). Consequently, DS[Ims(ts)n−1 + Kert] ⊆
s(ts)n−1S + rS(t). The reverse inclusion is obvious.

(3)⇒ (2) By taking t = 1, then (2) follows from (3).
(2)⇒ (1) Let 0 6= s ∈ S. Then, by (2), there exists a positive integer

n such that sn 6= 0 and DS(Imsn) = snS. If f : M → snM is any R-
homomorphism, by taking u = snf , then we have u ∈ DS(Imsn) = snS.
Thus u = sng for some g ∈ S, and so g extends f . �
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We again recall that if M is a self-projective module, then J(S) =
∇(M), where ∇(M) = {s ∈ S | Ims�M}. In the following theorem,
we prove the similar result for π-semi-projective modules.

Theorem 3.3. Let M be a right R-module and S = EndR(M). If M
is a coretractable π-semi-projective module, then J(S) = ∇(M).

Proof. Let s ∈ J(S). Then we will show that s ∈ ∇(M). If it is not,
then there exists a proper submodule K of M such that Ims+K = M .
Since M is coretractable, HomR(M/K,M) 6= 0. Then there exists
0 6= t ∈ S such that K ⊆ Kert. Hence Ims + Kert = M . Clearly,
Imts = Imt and so ts 6= 0. Since M is π-semi-projective, there exists a
positive integer n such that (ts)n 6= 0 and DS(Im(ts)n) = (ts)nS. Let
a = (ts)n and b = (ts)n−1t. If y ∈ Imb, then y = b(x) = (ts)n−1t(x) for
some x ∈M . Note that t(x) ∈ Imt = Imts, thus t(x) = ts(x′) for some
x′ ∈ M . Hence y = (ts)n−1t(x) = (ts)n−1ts(x′) ∈ Ima. This follows
that Ima = Imb. Now since b ∈ DS(Imb) = DS(Ima) = aS, there exists
an u ∈ S such that b = au. Thus, 0 = b − au = (ts)n−1t − (ts)nu =
(ts)n−1t(1− su) = b(1− su). Since s ∈ J(S), 1− su is invertible, and
hence b = 0. Thus a = bs = 0, a contradiction.

Conversely, let s ∈ ∇(M), then for any t ∈ S, st ∈ ∇(M). Clearly,
Im(st) + Im(1 − st) = M and so Im(1 − st) = M . Note that for any
positive integer k, we have (1 − st)k = 1 − hk for some hk ∈ ∇(M),
hence Im(1 − st)k = M . Since M is π-semi-projective, there exists
a positive integer n such that (1 − st)nS = DS(Im(1 − st)n). Hence
(1− st)nS = DS(M) = S. and so 1− st is right invertible. Therefore
s ∈ J(S). �

Lemma 3.4. Let M be a π-semi-projective right R-module with S =
EndR(M). Then for any 0 6= u ∈ S such that M/Keru is hollow, the
set Mu = {s ∈ S | Ims + Keru 6= M} is a maximal right ideal of S
containing DS(Keru).

Proof. Clearly, 0 ∈ Mu. Since M/Keru is hollow, Mu is a right ideal.
It is easy to see that DS(Keru) ⊆ Mu 6= S. Now we show that
Mu is a maximal right ideal. In fact, for any s ∈ S\Mu, we have
Ims + Keru = M , this means that Imus = Imu and us 6= 0. As M
is a π-semi-projective module, there exists a positive integer n such
that (us)n 6= 0 and DS(Im(us)n) = (us)nS. If y ∈ Im(us)n−1u, then
y = (us)n−1u(x) for some x ∈ M . Note that u(x) ∈ Imu = Imus,
thus u(x) = us(x′) for some x′ ∈ M . Hence y = (us)n−1u(x) =
(us)n−1us(x′) ∈ Im(us)n. This follows that Im(us)n = Im(us)n−1u.
Thus (us)n−1u ∈ DS(Im(us)n−1u) = DS(Im(us)n) = (us)nS. Suppose
that (us)n−1u = (us)nt for some t ∈ S. Hence (us)n−1u(1−st) = 0 and
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so 1− st ∈ rS((us)n−1u). This shows that S = sS + rS((us)n−1u) and
so S = sS + Mu since rS((us)n−1u) ⊆ Mu. Therefore Mu is maximal
in S. �

Corollary 3.5. If M is a coretractable π-semi-projective and hollow
module, then S is local.

Proof. By hypothesis and Theorem 3.3, J(S) = ∇(M) = {s ∈ S | Ims�
M} = {s ∈ S | Ims 6= M} = M1 and so S is local. �

Lemma 3.6. Let M be a right π-semi-projective module with S =
EndR(M) and let W = ⊕ni=1Kerui be a direct sum of submodules of M
where 0 6= ui ∈ S and M/Kerui is a nonzero hollow factor module for
all 1 ≤ i ≤ n. If I ⊆ S is a maximal right ideal not of the form Mu for
some u ∈ S such that M/Keru is hollow, then there exists φ ∈ I such

that Im(1−φ)+W
W

� M
W

.

Proof. Let a ∈ I\Mu1 . Then Ima + Keru1 = M . By the argument
in Lemma 3.4, there exist a positive integer n and an element t ∈ S
such that (u1a)n−1u1 6= 0 and 1 − at ∈ rS((u1a)n−1u1). Set φ1 = at.
Then φ1 ∈ I and Im(1− φ1) + Keru1 ⊆ Im(1− φ1) + Ker(u1a)n−1u1 =
Ker(u1a)n−1u1 6= M . If Im(1 − φ1) + Kerui 6= M for all i ≥ 2, then
we are done since M/Kerui is hollow for all 1 ≤ i ≤ n. If, say, Im(1−
φ1)+Keru2 = M , then M

Keru2(1−φ1)
is hollow since M

Keru2(1−φ1)
∼= M

Keru2
.

Thus, as above, (1 − φ2) ∈ Mu2(1−φ1) for some φ2 ∈ I. Let φ3 = φ1 +
φ2−φ2φ1, then φ3 ∈ I and Im(1−φ3)+Kerui 6= M , i = 1, 2. Continue
in this way, we obtain that φ ∈ I such that Im(1−φ) + Kerui 6= M for

each i. Therefore Im(1−φ)+W
W

� M
W

. �

Theorem 3.7. Let MR be a coretractable π-semi-projective module
which has finite hollow dimension. Then the following statements hold:

(1) If I is a maximal right ideal of S, then I = Mu, for some u ∈ S,
for which M/Keru is a nonzero hollow factor module of M .

(2) J(S) = Mu1 ∩ · · · ∩ Mun, for some u1, · · · , un ∈ S, for which
M/Kerui is a nonzero hollow factor module of M .

Proof. It can be proved by using the Theorem 3.3 and Lemmas 3.4 and
3.6 with an argument similar to the proof of Theorem 2.8. �

We recall that a subset X of a ring R is right t-nilpotent if, for
every sequence x1, x2, · · · of elements in X, there is a k ∈ N with
x1x2 · · ·xk = 0. Similarly left t-nilpotent is defined [13]. We also recall
that factor modules of M are called M-cyclic modules.

Lemma 3.8. Let M be a right R-module. If Rad(M) satisfies DCC
on M-cyclic submodules, then ∇(M) is right t-nilpotent.
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Proof. For any subset I of∇(M), let I = {s ∈ Hom R(M,Rad(M)) | s =
is, s ∈ I}, where i : Rad(M) → M is the inclusion map. For any
s1, s2, · · · ∈ ∇(M), since Ims1 ⊇ Ims1s2 ⊇ Ims1s2s3 ⊇ · · · and by using
the hypothesis, there exists a positive integerm such that Im(s1s2 · · · sm)
= Im(s1s2 · · · sm · · · sk) for all k ≥ m. Thus Im(s1s2 · · · sm+1) = Im(s1s2
· · · sm+2). This shows that Imsm+2 + Ker(s1s2 · · · sm+1) = M . Since
Imsm+2 � M , Ker(s1s2 · · · sm+1) = M . Therefore ∇(M) is right t-
nilpotent. �

Corollary 3.9. Let MR be a coretractable π-semi-projective R-module.
If Rad(M) satisfies DCC on M-cyclic submodules, then J(S) is right
t-nilpotent.

Proof. By Theorem 3.3 and Lemma 3.8. �

A module MR is called retractable if HomR(M,N) 6= 0 for all nonzero
R-submodules N of M [6].

Theorem 3.10. Let MR be a finitely generated π-semi-projective re-
tractable module with S = EndR(M). Then the mappings

K → KM and T → DS(T )

are mutually inverse bijections between the set of all minimal right
ideals K of S and the set of all minimal submodules T of M . In
particular, we have:

(1) DS(KM) = K for all minimal right ideal K of S.
(2) DS(T )M = T for all minimal submodule T of M .

Proof. We first prove (1). Let K be any minimal right ideal of S. Then
K = sS for some 0 6= s ∈ S. Since M is π-semi-projective, there exists
a positive integer n such that sn 6= 0 and snS = DS(Imsn) by Theorem
3.2. Note that K is minimal, hence K = snS. Thus DS(KM) = K.

To prove (2), we know thatDS(T )M ⊆ T always holds andDS(T )M 6=
0 since M is retractable. Therefore DS(T )M = T as T is minimal. The
proof is completed by establishing the following claims:

Claim 1: KM is minimal for all minimal right ideals K of S.

Proof. Let T ⊆ KM , where T is a nonzero submodule of MR. Then
DS(T ) ⊆ DS(KM) = K by (1), thus DS(T ) = K since MR is re-
tractable. Hence KM = DS(T )M = T by (2). �

Claim 2: DS(T ) is minimal for all minimal submodule T of MR.

Proof. Since MR is retractable, DS(T ) 6= 0. For any 0 6= s ∈ DS(T ),
there exists a positive integer n such that sn 6= 0 and snS = DS(snM)
by general semi-projectivity of MR. Then 0 6= Imsn ⊆ DS(T )M = T
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and hence Imsn = T . Thus DS(T ) = DS(snM) = snS. Clearly,
snS ⊆ sS ⊆ DS(T ) = snS, hence DS(T ) = sS. It follows that DS(T )
is a minimal right ideal. �

�
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