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Abstract. In this paper, we introduce a new hyperchaotic complex T-
system. This system has complex nonlinear behavior which we study its
dynamical properties including invariance, equilibria and their stability,
Lyapunov exponents, bifurcation, chaotic behavior and chaotic attractors
as well as necessary conditions for this system to generate chaos. We discuss
the synchronization with certain and uncertain parameters via adaptive
control. For synchronization, we use less controllers than the dimension
of the proposed system. Also, we prove that the error system is asymp-
totically stable by using a Lyapunov function. Numerical simulations are
computed to check the analytical expressions.
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1 Introduction

Chaos, which is an interesting phenomenon in nonlinear dynamical sys-
tems, has been studied over the last four decades [1, 9, 16, 25, 26, 35, 36].
Chaotic and hyperchaotic systems are nonlinear deterministic systems that
displays complex and unpredictable behavior, and the sensitive dependence
on initial conditions and on the systems parameters variation is a prominent
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characteristic of chaotic behavior. The chaotic and hyperchaotic systems
have many important fields in applied nonlinear sciences, e.g., laser physics,
secure communications, nonlinear circuits, synchronization, control, neural
networks, and active wave propagation [2,3,5,7,9,11,22,27,33]. Also, there
are many interesting cases involving complex variables which have not been
actively explored, for example the complex Lorenz equations which are used
to describe and simulate the physics of a detuned laser and thermal convec-
tion of liquid flows [21,23,28]. The electric field amplitude and the atomic
polarization amplitude are both complex, for details see [28] and references
therein. Complex Chen and Lü chaotic systems have also been introduced
and studied recently in [18].

Chaos synchronization of chaotic systems with real variables has re-
ceived a significant attention in the last few years, see the Pecora and Car-
roll results in 1990 [26]. Chaos synchronization, as an important topic
in nonlinear science, has been widely investigated in many fields, such
as physics, chemistry and ecological science [4, 8] and secure communi-
cations [35]. Recently synchronization of chaotic complex systems studied
in [18]. The complete synchronization of two identical chaotic and hyper-
chaotic complex systems with certain and uncertain parameters was studied
in [19]. The antisynchronization and adaptive antisynchronization of two
different chaotic complex systems were investigated in [14, 15]. Phase and
antiphase synchronization of two identical hyperchaotic complex nonlinear
systems are studied in [20]. Projective synchronization and modified projec-
tive synchronization were performed on the chaotic and complex nonlinear
systems in [10,17].

In 2005, Tigan [30] introduced a new real chaotic nonlinear system of
the form:







ẋ = a(y − x),
ẏ = (c− a)x− axz,
ż = xy − bz,

(1)

with a, b and c positive real parameters and called it the T-system. Some
results regarding the T-system were already presented in [13,31,32].

In this paper, we wish to study the dynamical properties and the phe-
nomenon of chaos synchronization of a new chaotic complex T-system ex-
pressed by:







ẋ = a(y − x),
ẏ = (c− a)x− axz,
ż = 1

2(x̄y + xȳ) − bz,
(2)

where x = u1 + iu2 and y = u3 + iu4 are complex variables, i =
√
−1

and z = u5 is a real variable; Dots represent derivatives with respect to



Dynamical behavior and synchronization 17

time and the overbar x̄ and ȳ denotes the complex conjugate of x and y,
respectively.

This paper is organized as follows: In Section 2, the dynamical prop-
erties of system (2) including invariance, dissipativity, equilibria and their
stability will be discussed. The necessary conditions such as chaotic attrac-
tor, Lyapunov exponents and bifurcations for system (2) to generate chaos
are given in section 3. Section 4 contains the study of chaos synchronization
of (2) for some values of a, b and c using the method of adaptive control.
Also, we calculate expressions for the control functions which are used to
achieve chaos synchronization. These expressions are tested numerically
and excellent agreement is found. A Lyapunov function is derived to prove
that the error system is asymptotically stable. Some figures are presented
to show pictorially the effect of chaos synchronization and the rapid decay
of errors in time. Our concluding remarks are presented in Section 5.

2 Dynamical behaviors of chaotic complex

T-system

In this section we present the basic dynamical analysis of our new system
(2), which is a five-dimensional chaotic. The real version of (2) is:























u̇1 = a(u3 − u1),
u̇2 = a(u4 − u2),
u̇3 = (c− a)u1 − au1u5,
u̇4 = (c− a)u2 − au2u5,
u̇5 = u1u3 + u2u4 − bu5.

(3)

System (3) has the following properties:

2.1 Symmetry and invariance:

1. Symmetry about the u5−axis, due to invariance of the equations un-
der the transformation symmetry

(u1, u2, u3, u4, u5) → (−u1,−u2,−u3,−u4, u5).

Therefore, if (u1, u2, u3, u4, u5) is a solution of (3), then

(−u1,−u2,−u3,−u4, u5),

is also a solution of the same system.
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2. Symmetry about the u1, u3, u5−axis, since

(u1, u2, u3, u4, u5) → (u1,−u2, u3,−u4, u5),

does not change the equations. Therefore, if (u1, u2, u3, u4, u5) is a
solution of (3), then (u1,−u2, u3,−u4, u5) is also a solution of the
same system.

3. Symmetry about the u2, u4, u5−axis, since

(u1, u2, u3, u4, u5) → (−u1, u2,−u3, u4, u5),

does not change the equations. Therefore, if (u1, u2, u3, u4, u5) is a
solution of (3), then(u1,−u2, u3,−u4, u5) is also a solution of the same
system.

2.2 Dissipation:

The divergence of (3) is:

∇ · F =
5

∑

i=1

∂u̇i
∂ui

= −2a− b.

Therefore, the system (3) is dissipative for the case:

∇ · F = −(2a + b) < 0.

2.3 Equilibria and their stability:

The equilibrium points of system (3) can be found by solving the following
equations:























a(u3 − u1) = 0,
a(u4 − u2) = 0,
(c− a)u1 − au1u5 = 0,
(c− a)u2 − au2u5 = 0,
u1u3 + u2u4 − bu5 = 0.

(4)

Obviously, E0 = (0, 0, 0, 0, 0) is a trivial equilibria point of (3), and from
(4), we have:

u∗1 = u∗3, u
∗
2 = u∗4 ⇒ u∗5 =

c− a

a
.

If b(c − a)/a > 0, then system (4) has a whole circle of equilibrium points
given by the expression:

(u∗1)2 + (u∗2)2 = (u∗3)2 + (u∗4)
2 = b(

c− a

a
) = r2, (5)
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so that

u∗1 = u∗3 = ±k1

√

b(
c− a

a
) = ±k1

√

bu∗5,

u∗2 = u∗4 = ±k2

√

b(
c− a

a
) = ±k2

√

bu∗5,

such that r2 = b(c− a)/a > 0 and

(k1, k2) = (sin(θ), cos(θ)),

or

(k1, k2) = (cos(θ), sin(θ)),

for θ ∈ (0, 2π], and the non-isolated nontrivial equilibrium points are:

Eθ = (±r sin(θ),±r cos(θ),±r sin(θ),±r cos(θ),
c− a

a
),

or

Eθ = (±r cos(θ),±r sin(θ),±r cos(θ),±r sin(θ),
c− a

a
).

The Jacobian matrix of system (3) is:

J =













−a 0 a 0 0
0 −a 0 a 0

c− a− a u5 0 0 0 −a u1
0 c− a− a u5 0 0 −a u2
u3 u4 u1 u2 −b













. (6)

The real part eigenvalues of J at E0 and Eθ for a = 2.1, b = 0.6, and
0 < c < 40 are shown in Figure 1 (let for example θ = 1.2). So, E0 and Eθ

are unstable equilibrium points [6, 12,24].

3 Lyapunov exponents, attractors and bifurcations

In this section, we discuss and calculate the Lyapunov exponents, attractors
and bifurcations of complex T-system described in (3).

3.1 Lyapunov exponents and bifurcations:

System (3) in vector notation can be written as:

U̇(t) = H(U(t); η), (7)
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(a) (b)

Figure 1: Real part of eigenvalues of J for a = 2.1, b = 0.6 and 0 < c < 40:
(a) at E0, (b) at Eθ for θ = 1.2.

where U(t) = [u1(t), u2(t), u3(t), u4(t), u5(t)]t is the state space vector,
H = [h1, h2, h3, h4, h5], η is a set of parameters and [· · · ]t denotes transpose.
The equations for small deviations δU from the trajectory U(t) are:

δU̇ (t) = Li,j(U(t); η)δU, i, j = 1, 2, 3, 4, 5, (8)

where Li,j = ∂hi

∂uj
= Ji,j is the Jacobian matrix of system (3). The Lyapunov

exponents are defined by [34]:

 Li = lim
t→∞

1

t
log

‖δui(t)‖
‖δui(0)‖ . (9)

To find  Li, we numerically solve Equations (7) and (8) simultaneously by
a simple Runge-Kutta method of order four.

Consider continuous-time system (7) with a parameter η ∈ R. As η
changes, the limit sets of the system also change. Typically, a small change
in η produces small quantitative changes in a limit set. For instance, per-
turbing η could change the position of a limit set slightly and, if the limit
set is not an equilibrium point, its shape or size could also change. There is
also the possibility that a small change in η can cause a limit set to undergo
a qualitative change. Such a qualitative change is called a bifurcation and
the value of η at which a bifurcation occurs is called a bifurcation value.
The behavior of the critical points can be summarized on a bifurcation
diagram.

For the choice a = 2.1, b = 0.6 and 0 < c < 40, and the initial con-
ditions u1(0) = 1, u2(0) = −1, u3(0) = 2, u4(0) = −2, and u5(0) = 0,
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Figure 2: Lyapunov exponents of (3) for a = 2.1, b = 0.6 and 0 < c < 40.

the Lyapunov exponents in Figure 2 show that the system (3) is a chaotic
system. This means that system (3) (or (2)) for the some values of c is a hy-
perchaotic system, since at least two Lyapunov exponents, is positive, and
it is a dissipative system, since sum of its Lyapunov exponents is negative.
The bifurcation diagrams of system 3 are given in Figure 3. These diagrams
such as Lyapunov exponents show that system (3) is hyperchaotic.

3.2 Attractors

The chaotic behavior for this system can also be shown by plotting the
separation of two nearly initial conditions trajectories. Figure 4 shows
two computed time series solutions of (3) with nearly initial conditions.
Sensitivity for initial conditions are evident. Some attractors diagrams in
Figure 5 show chaotic behaviors of system(3).

4 Chaos synchronization of chaotic complex T-

system

In this section, we study chaos synchronization of system (3) for parameter
values a = 2.1, b = 0.6 and c = 30 which generates hyperchaotic behavior.
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Figure 3: Bifurcation diagrams of (3) for a = 2.1, b = 0.6 and 0 < c < 40
with initial conditions t0 = 0, u1(0) = 1, u2(0) = −1, u3(0) = 2 ,u4(0) =
−2, and u5(0) = 0.

We assume that we have two identical complex hyperchaotic T-systems
and the drive system with the subscript d is to control the response sys-
tem with subscript r. We use the idea of adaptive control technique for
synchronization [12,29] and complete synchronization [19] of two identical
complex hyperchaotic T-systems and for stability using Lyapunov stability
method [12,19,29].

Our aim is to design a controller and make the response system fol-
low the drive system, until they ultimately become the same. In spite of
most papers that use n controller for n dimensions systems, we use three
controller for five dimensional. The drive system for (3) is define as:























˙u1d = a(u3d − u1d),
˙u2d = a(u4d − u2d),
˙u3d = (c− a)u1d − au1du5d,
˙u4d = (c− a)u2d − au2du5d,
˙u5d = u1du3d + u2du4d − bu5d.

(10)

Now we discuss the synchronization with adaptive control in two cases:
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Figure 4: Sensitivity for initial condition of (3) for a = 2.1, b = 0.6 and
c = 30 with initial conditions (u1(0) = 1, u2(0) = −1, u3(0) = 2, u4(0) =
−2, u5(0) = 0)(dashed line ) and (u1(0) = 1.01, u2(0) = −0.99, u3(0) =
1.98, u4(0) = −2, u5(0) = 0) (solid line).
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Figure 5: Attractors of (3) for a = 2.1, b = 0.6 and c = 30 with initial
conditions: u1(0) = 1, u2(0) = −1, u3(0) = 2, u4(0) = −2, u5(0) = 0.
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Case 1. Parameters of response system is certain: The response system
with known parameters system for (3) is define as:























u̇1r = a(u3r − u1r),
˙u2r = a(u4r − u2r),
˙u3r = (c− a)u1r − au1ru5r + v1,
˙u4r = (c− a)u2r − au2ru5r + v2,
˙u5r = u1ru3r + u2ru4r − bu5r + v3.

(11)

The dynamical error system of (10) and (11) in real form is:























ėu1
= a(eu3

− eu1
),

ėu2
= a(eu4

− eu2
),

ėu3
= (c− a)eu1

− a(u1ru5r − u1du5d) + v1,
ėu4

= (c− a)eu2
− a(u2ru5r − u2du5d) + v2,

ėu5
= u1ru3r + u2ru4r − u1du3d − u2du4d − beu5

+ v3.

(12)

The systems (11) and (10) can be effectively synchronized in the situation
of uncertain parameters for controller functions. The drive system (10) and
the response system (11) can be synchronized globally and asymptotically
for any different initial condition with following adaptive controller laws:







v1 = −ĉeu1
+ â(u1ru5r − u1du5d) − eu3

,
v2 = −ĉeu2

+ â(u2ru5r − u2du5d) − eu3
,

v3 = −u1ru3r − u2ru4r + u1du3d + u2du4d + b̂eu5
− eu5

,

(13)

where â, b̂ and ĉ are the estimates of a, b and c respectively, and the
adaptive parameter update laws are chosen as:











˙̃a = ˙̂a = −e2u1
− e2u2

− eu3
[u1ru5r − u1du5d] − eu4

[u2ru5r − u2du5d] − ã,
˙̃b =

˙̂
b = −e2u5

− b̃,
˙̃c = ˙̂c = eu3

eu1
+ eu4

eu2
− c̃,

(14)
where ã = â− a, b̃ = b̂− b and c̃ = ĉ− c. Define the Lyapunov as below:

V (t) = 1
2

5
∑

i=1

e2ui
+

1

2
(ã2 + b̃2 + c̃2). (15)

Note that â − ã = a > 0, then with the above mentioned conditions we
have:

˙V (t) = −
[

(â− ã)(e2u1
+ e2u2

) + e2u3
+ e2u4

+ e2u5
+ ã2 + b̃2 + c̃2

]

< 0.
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Figure 6: Synchronization of (10) and (11) for u1d(0) = 1, u2d(0) = −0.5,
u3d(0) = 1, u4d(0) = 1, u5d(0) = −0.5, u1r(0) = −2, u2r(0) = 2, u3r(0) =
−0.4, u4r(0) = −2, u5r(0) = −2.

To demonstrate and verify the validity of the proposed scheme, we
discuss and illustrate the numerical simulations results for chaotic com-
plex T-system (3). Systems (10), (11) and (14) with controllers (13) are
solved numerically for a = 2.1, b = 0.6 and c = 30, where chaotic attrac-
tor exists (see Section 2) and with different initial conditions u1d(0) = 1,
u2d(0) = −0.5, u3d(0) = 1, u4d(0) = 1, u5d(0) = −0.5, u1r(0) = −2,
u2r(0) = 2, u3r(0) = −0.4, u4r(0) = −2, u5r(0) = −2 and the initial values
of the parameters estimation laws are â(0) = 0.2, b̂(0) = −1 and ĉ(0) = 20.
The results of chaotic synchronization of two identical chaotic complex T-
systems via adaptive control is shown in Figure 6 and we plotted uid(t)
and uir(t) versus t and i = 1, 2, 3, 4, 5, respectively. Figure 6 shows the
synchronization of (10) and (11) is achieved after small time interval and
suitable for our scheme. The errors due of synchronization are plotted in
Figure 7 which are the solutions of system (12). As expected from the
above analytical considerations the synchronization errors eui converge to
zero as t −→ ∞. Figure 8, shows the estimates â(t), b̂(t), ĉ(t) of the un-
known parameters of control functions, converge to a = 2.1, b = 0.6 and
c = 30, respectively, as t −→ ∞.

Case 2. Parameters of response system are uncertain: In this case our
main purpose is to investigate complete synchronization [19] hyperchaotic
complex T-system with uncertain parameters. Let the response system
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Figure 7: The errors due of synchronization (10) and (11) for a = 2.1,
b = 0.6 and c = 30 with initial conditions u1d(0) = 1, u2d(0) = −0.5,
u3d(0) = 1, u4d(0) = 1, u5d(0) = −0.5, u1r(0) = −2, u2r(0) = 2, u3r(0) =
−0.4, u4r(0) = −2, u5r(0) = −2.

Figure 8: Estimation of parameter for adaptive control synchronization
of (10) and (11) for a = 2.1, b = 0.6 and c = 30 with initial conditions
â(0) = 0.2, b̂(0) = −1 and ĉ(0) = 20.

rewritten as the form:






















u̇1r = â(u3r − u1r),
˙u2r = â(u4r − u2r),
˙u3r = (ĉ− â)u1r − âu1ru5r + v1,
˙u4r = (ĉ− â)u2r − âu2ru5r + v2,

˙u5r = u1ru3r + u2ru4r − b̂u5r + v3,

(16)

where â, b̂ and ĉ are uncertain parameters, which need to be estimated
in the response system. In order to obtain the complex error dynamical
system, we subtracting (10) from (16), then the dynamical error is:
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ėu1
= â[eu3 − eu1] + ã[u3d − u1d],

ėu2
= â[eu4 − eu2] + ã[u4d − u2d],

ėu3
= (ĉ− â)eu1

− â(u1ru5r − u1du5d) + (c̃− ã)u1d − ãu1du5d + v1,
ėu4

= (ĉ− â)eu2
− â(u2ru5r − u2du5d) + (c̃− ã)u2d − ãu2du5d + v2,

ėu5
= u1ru3r + u2ru4r − u1du3d − u2du4d − b̂eu5

− b̃u5d + v3,
(17)

where ã = â− a, b̃ = b̂ − b and c̃ = ĉ− c. We define a Lyapunov function
as (15). The derivative of V (t) along the solution of system (17) is:

˙V (t) =
∑5

1 eui
˙eui

+ ã ˙̃a + b̃
˙̃
b + c̃ ˙̃c,

= eu1[âeu3 − âeu1 + ã(u3d − u1d)] + eu2[âeu4 − âeu2 + ã(u4d − u2d)]
+ eu3[(ĉ− â)eu1

− â(u1ru5r − u1du5d) + (c̃− ã)u1d − ãu1du5d + v1]
+ eu4[(ĉ− â)eu2

− â(u2ru5r − u2du5d) + (c̃− ã)u2d − ãu2du5d + v2]

+ eu5[u1ru3r + u2ru4r − u1du3d − u2du4d − b̂eu5
− b̃u5d + v3]

+ ã ˙̃a + b̃ ˙̃b + c̃ ˙̃c.
(18)

Following conditions guarantees that ˙V (t) < 0,







v1 = −ĉeu1 + â(u1ru5r − u1du5d) − η1eu3,
v2 = −ĉeu2 + â(u2ru5r − u2du5d) − η2eu4,

v3 = −u1ru3r − u2ru4r + u1du3d + u2du4d + b̂eu5 − η3eu5,

(19)

and


















˙̂a = ˙̃a = (e2u1 + e2u2) + eu1(u1d − u3d) + eu2(u2d − u4d)
+(eu3u1d + eu4u2d)(1 + u5d),

˙̂
b = ˙̃b = eu5u5d,
˙̂c = ˙̃c = −eu3u1d − eu4u2d,

(20)

where ηi, (i = 1, 2, 3) are positive constants. Then

˙V (t) = −a(e2u1 + e2u2) − (η1e
2
u3 + η2e

2
u4 + η3e

2
u5) < 0.

Therefore, Lyapunovs direct method implies that the equilibrium points of
systems (17) and (20) are asymptotically stable.

To demonstrate and verify the validity of the proposed scheme, we dis-
cuss and illustrate the numerical simulations results for chaotic complex
T-system (3). Systems (10), (16) and (20) with controllers (19) were solved
numerically for a = 2.1, b = 0.6 and c = 30 with different initial condi-
tions, u1d(0) = 1, u2d(0) = −1, u3d(0) = 2, u4d(0) = −2, u5d(0) = 0) and
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Figure 9: Complete synchronization of (10) and (16) for a = 2.1, b = 0.6
and c = 30 with initial conditions u1d(0) = 1, u2d(0) = −1, u3d(0) = 2,
u4d(0) = −2, u5d(0) = 0), u1r(0) = 0.1, u2r(0) = 0.2, u3r(0) = 0.3, u4r(0) =
0 and u5r(0) = 0.5.

u1r(0) = 0.1, u2r(0) = 0.2, u3r(0) = 0.3, u4r(0) = 0 and u5r(0) = 0.5.
We choose η1 = 12, η2 = 13, η3 = 9 and the initial values of the param-
eters estimation laws are â(0) = 0.2, b̂(0) = −1, ĉ(0) = 20. The results
of chaotic synchronization of two identical chaotic complex T-systems via
adaptive control is shown in Figure 9 and we plotted uid(t) and uir(t)
(i = 1, 2, 3, 4, 5) versus t respectively. Figure 9 shows that the complete
synchronization of (10) and (16) is achieved after small time interval and
suitable for our scheme. The synchronization errors are plotted in Figure
10 which are the solutions of system (17). As expected from the above
analytical considerations the synchronization errors eui converge to zero as
t −→ ∞. Figure 11 show the estimates â(t), b̂(t), ĉ(t) of the unknown
parameters of control functions, converge to a = 2.1, b = 0.6 and c = 30
respectively, as t −→ ∞.
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Figure 10: The errors due of synchronization (10) and (16) for a = 2.1,
b = 0.6 and c = 30 with initial conditions u1d(0) = 1, u2d(0) = −1,
u3d(0) = 2, u4d(0) = −2, u5d(0) = 0), u1r(0) = 0.1, u2r(0) = 0.2, u3r(0) =
0.3, u4r(0) = 0 and u5r(0) = 0.5.

Figure 11: Estimation of parameter for adaptive control complete synchro-
nization of (10) and (16) for a = 2.1, b = 0.6 and c = 30 with the initial
conditions â(0) = 0.2, b̂(0) = −1 and ĉ(0) = 20.

5 conclusion

In this paper, we have studied the dynamics of a new hyperchaotic com-
plex nonlinear system. This system has been introduced and studied with
real variables in the recent literature. Our complexified version can be
applied in engineering, for example, in secure communications. The basic
properties of proposed system including invariance, dissipativity, equilibria
and their stability, Lyapunov exponents, chaotic behavior and chaotic at-
tractors were investigated and necessary conditions for proposed system to
generate chaos was discussed. For synchronization, we used less controllers
than the dimension of the dynamic system. The results of chaos synchro-
nization and the exponential decay of errors were shown pictorially to agree
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very well with analytical predictions. A Lyapunov function were derived to
prove that the associated error systems and parameter estimation rule are
asymptotically stable.
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