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Abstract. In this paper, a parameter uniform numerical method based
on Shishkin mesh is suggested to solve a system of second order singularly
perturbed differential equations with a turning point exhibiting boundary
layers. It is assumed that both equations have a turning point at the same
point. An appropriate piecewise uniform mesh is considered and a clas-
sical finite difference scheme is applied on this mesh. An error estimate
is derived by using supremum norm which is O(N−1(lnN)2). Numerical
examples are given to validate theoretical results.
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1 Introduction

Singular Perturbation Problems (SPPs) (differential equations with small
positive parameter ε multiplying the highest derivatives) arise in many
branches of applied mathematics like fluid flow problems involving high
Reynolds number, mathematical models of liquid crystal materials and
chemical reactions, control theory, electrical networks etc. [4, 8]. The pres-
ence of small parameter in these problems prevents us from obtaining
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parameter uniform numerical solutions. Therefore we seek a numerical
method, which is uniformly convergent with respect to the parameter. We
refer to [8, 10,18,24,26] for detailed review of SPPs.

Most of the numerical methods are used to find the numerical solu-
tions for singularly perturbed differential equations of second order. Only
few authors have considered higher order and system of equations. Ro-
bust parameter uniform numerical methods for a system of singularly per-
turbed ordinary differential equations have been examined by a few au-
thors [3, 7, 15–17, 20, 28]. In [7], a parameter uniform numerical method
for a system of coupled singularly perturbed convection diffusion equations
is presented. In [15] and [16, 17], a system of reaction-convection-diffusion
type problem is discussed. In [25], the authors proposed a finite differ-
ence method for singularly perturbed linear reaction-diffusion system with
discontinuous source terms and they assumed that the singular perturba-
tion parameters are distinct. In [28], a numerical method for singularly
perturbed weakly coupled system of two second order ordinary differen-
tial equations with discontinuous source term is considered. In [29], the
authors proposed an asymptotic initial value method for a system of singu-
larly perturbed second order ordinary differential equations. Approxima-
tion of derivative in a system of singularly perturbed convection-diffusion
equations is discussed in [20].

Singularly Perturbed Turning Point Problems(SPTPPs) arise in various
fields of applied mathematics like one dimensional version of stationary
convection diffusion problems with a dominant convective term, speed field
that changes its sign in the catch basin, geophysics and modeling thermal
boundary layers in laminar flow [30].

In the past few years, few authors applied numerical methods for sin-
gularly perturbed second order ordinary differential equations with turning
points. For example, Wasow [30], O. Malley [24], Watts [31] and Roos
et.al [26] studied the qualitative aspects of turning point problems. Abra-
hammson [1] derived a priori estimates for the solution and its derivatives
of SPPs with a turning point. Farrell [9] and Berger et al. [5] obtained a
general sufficient condition for a uniformly convergent scheme for a second
order turning point problem. Natesan and Ramanujam suggested a com-
putational method and parameter uniform numerical method for second
order SPTPP using classical and exponentially fitted difference schemes
in [21,23]. Also they applied another technique known as initial value tech-
nique in [22] for the same problem. In [14], Kadalbajoo and Patidar applied
a numerical method based on cubic spline with nonuniform grid for a sec-
ond order SPTPP. In [6], the authors proposed a Richardson extrapolation
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technique for a second order SPTPP. For more detail one may refer [27]
and the references therein.

Existence of solution for third order semi linear differential equation
with turning point is proved in [13]. An asymptotic expansion of solution for
the third order SPTPP was constructed by Jia-qi Mo et al. [19]. Parameter
uniform numerical method for a third order SPTPPs is given in [11]. In [30,
Page 5], Wasow have discussed a modified form of Orr-Summerfeld equation
which is a fourth order singularly perturbed turning point problem.

System of singularly perturbed turning point problems arise in spher-
ical shells and shallow cap dimpling [2]. In [12], the author suggested
an asymptotic numerical method for solving a perturbed nonlinear system
with turning points that consists of replacing the continuous problem with
a sequence of constant coefficient problems on abutting intervals.

In this paper we extend the results of [23] to a weakly coupled system of
SPTPP, having turning points on both equations. Our objective is to pro-
pose a parameter uniform approximation for the solution of weakly coupled
system. In the proposed numerical method, the classical finite difference
scheme on piecewise uniform mesh is used to obtain the desired results.
The rest of the paper is organized as follows. In Section 2, the problem
under study is stated. Method of steps,maximum principle and stability
result are discussed in Section 3. Some analytical results are derived in
Section 4. In Section 5, a mesh selection strategy is explained. Further, an
upwind finite difference scheme is given and the discrete maximum prin-
ciple is proved.The error analysis is carried out in Section 6. Numerical
examples are given in Section 7 to validate our theoretical results.

2 Statement of the problem

Motivated by the works of F. A. Howes [12] and S. Natesan, J. Jayaku-
mar, J. Vigo-Aguiar [23], the following system of second order singularly
perturbed boundary value problem with a turning point at x = 0 is con-
sidered: Find ū = (u1, u2)T ∈ Y = C0(Ω̄) ∩ C2(Ω) such that

L1ū(x) = εu
′′
1 + a1(x)u

′
1 + b11(x)u1(x) + b12(x)u2(x) = f1(x), x ∈ Ω, (1a)

L2ū(x) = εu
′′
2 + a2(x)u

′
2 + b21(x)u1(x) + b22(x)u2(x) = f2(x), x ∈ Ω, (1b)

u1(−1) = l1, u2(−1) = l2, u1(1) = l3, u2(1) = l4, (1c)
b12 ≥ 0, b21 ≥ 0, b11 + b12 ≤ β1 < 0, b22 + b21 ≤ β2 < 0

|ak(x)| ≤ αk > 0, for 0 < |x| ≤ 1, ak(0) = 0, a
′
k(0) < 0,

αk + βk < 0 and |a′k(x)| ≥ |a′k(0)|/2 ∀x ∈ Ω̄, for k = 1, 2,

(2)
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where the functions a1(x), a2(x), b11(x), b12(x), b21(x), b22(x), f1(x) and
f2(x) are sufficiently smooth on Ω̄ and 0 < ε � 1. The above system can
be written in the vector form as

L̄ū(x) =

(
L1ū(x)
L2ū(x)

)
=

(
ε d

2

dx2
0

0 ε d
2

dx2

)
ū(x) +

(
a1(x) d

dx 0

0 a2(x) d
dx

)
ū(x)

+

(
b11 b12

b21 b22

)
ū(x) = f̄(x), x ∈ Ω,

ū(−1) = (l1, l2)T , ū(1) = (l3, l4)T ,

where f̄(x) = (f1(x), f2(x))T .

Throughout the paper C and C1 denote generic positive constants in-
dependent of the singular perturbation parameter ε and the discretization
parameter N of the discrete problem. Let y : D → R. The appropri-
ate norm for studying the convergence of numerical solution to the exact
solution is the maximum norm ||w‖D = supx∈D |w(x)|. In case of vec-
tors w̄ = (w1, w2)T , we define |w̄(x)| = (|w1(x)|, |w2(x)|)T and ||w̄||D =
max{||w1||D, ||w2||D}.

3 Maximum principle and stability result

This section presents the maximum principle and stability result on the
solution for the problem (1)-(2). Further, the derivative estimates are de-
rived.

Theorem 1. (Maximum principle) Let w̄(x) = (w1(x), w2(x))T ∈ Y
be any function satisfying L1w̄ ≤ 0, L2w̄ ≤ 0, w1(−1) ≥ 0, w2(−1) ≥ 0,
w1(1) ≥ 0 and w2(1) ≥ 0. Then w̄(x) ≥ 0̄, ∀x ∈ Ω̄.

Proof. Define s̄(x) = (s1(x), s2(x))T where s1(x) = 2+x and s2(x) = 2+x.
Then s̄(x) > 0̄, for all x ∈ Ω̄ and L̄s̄(x) < 0̄, x ∈ Ω. Further we define

µ = max

{
max
x∈Ω̄

(
−w1(x)

s1(x)

)
,max
x∈Ω̄

(
−w2(x)

s2(x)

)}
.

Assume that the theorem is not true. Then µ > 0 and there exists a point

x0 ∈ Ω, such that either

(
−w1(x0)

s1(x0)

)
= µ or

(
−w2(x0)

s2(x0)

)
= µ or both.

Also (w̄ + µs̄)(x) ≥ 0̄, ∀x ∈ Ω̄.
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Case1: Assume

(
−w1(x0)

s1(x0)

)
= µ, that is (w1 + µs1)(x0) = 0. Therefore

(w1 + µs1) attains its minimum at x = x0. Then,

0 > L1(w̄ + µs̄)(x0)

= ε(w1 + µs1)
′′
(x0) + a1(x0)(w1 + µs1)′(x0)

+b11(x0)(w1 + µs1)(x0) + b12(x0)(w2 + µs2)(x0) ≥ 0.

which is a contradiction.

Case2: Assume

(
−w2(x0)

s2(x0)

)
= µ, that is (w2 + µs2)(x0) = 0. There-

fore (w2 + µs2) attains its minimum at x = x0. Then,

0 > L2(w̄ + µs̄)(x0)

= ε(w2 + µs2)
′′
(x0) + a2(x0)(w2 + µs2)′(x0)

+b21(x0)(w2 + µs2)(x0) + b22(x0)(w1 + µs1)(x0) ≥ 0.

which is a contradiction. Hence w̄(x) ≥ 0̄, ∀x ∈ Ω̄.

Lemma 1. (Stability Result) If u1, u2 ∈ Y , then for i = 1, 2

|ui(x)| ≤ C max{max{|u1(−1)|, |u2(−1)|},max{|u1(1)|, |u2(1)|},
||L1ū||x∈Ω, ||L2ū||x∈Ω}, ∀x ∈ Ω̄.

Proof. Define Ψ̄± = (Ψ±1 ,Ψ
±
2 )

Ψ±1 (x) = C(2 + x)C1 ± u1(x) and Ψ±2 (x) = C(2 + x)C1 ± u2(x),

C1 = max{max{|u1(−1)|, |u2(−1)|},max{|u1(1)|, |u2(1)|}, ||L1ū||x∈Ω, ||L2ū
||x∈Ω}. Note that ψ±1 (−1) ≥ 0 , ψ±2 (−1) ≥ 0, ψ±1 (1) ≥ 0, ψ±2 (1) ≥ 0
for a proper choice of C > 0. It is easy to see that, L1(Ψ̄±(x)) ≤ 0 and
L2(Ψ̄±(x)) ≤ 0, ∀ x ∈ Ω. Then by the maximum principle we get the
desired result.

Note: Since the operators Lj , j = 1, 2 satisfy the above maximum
principle, the solution ū(x) of the BVP (1)-(2) is unique if it exists.

4 Analytical results

In this section, we present some analytical results for the solution ū(x) and
its derivatives. Herein after we shall denote the subdomains of Ω̄ = [−1, 1]
as Ω1 = [−1,−δ], Ω2 = [−δ, δ] and Ω3 = [δ, 1], 0 < δ ≤ 1/2. The choice of
δ = 1/2 can be found in [5]. And |ak(x)| ≥ α > 0 for δ < |x| ≤ 1.

The following lemma gives estimates for ū(x) and its derivatives in the
intervals Ω1 and Ω3 which exclude the turning point x = 0.
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Lemma 2. Let ū(x) = (u1, u2)T be the solution of (1)-(2). Then for j=1,2

||u(k)
j (x)|| ≤

{
Cε−(k) max{||fj ||, ||ū||}, for k = 1, 2,

Cε−(k) max{||fj ||, ||f ′j ||, ||ū||}, for k = 3,
∀x ∈ Ω1 ∪ Ω3,

where C depends on ||a1||, ||a2||, ||b11||, ||b12||, ||b21||, ||b22||, ||a′1|| and ||a′2||.

Proof. Using the technique adopted in [10] the present lemma can be proved
in the subdomain Ω1. Note that∣∣∣∣∣∣

x∫
−1

(f1 − a1u
′
1 − b11u1 − b12u2)(t)dt

∣∣∣∣∣∣ ≤ ||f1||+ C||ū|| (3)

where C depends on ||a1||, ||b11||, ||b12||, ||a′1||. By the Mean Value Theorem,
there exists a point z ∈ (−1,−1 + ε) such that

u′1(z) = (u1(−1 + ε)− u1(−1))/ε,

|εu′1(z)| = |u1(−1 + ε)− u1(−1)| ≤ 2||u1||. (4)

By integrating the differential equation (1a) we get

z∫
−1

u′′1(t)dt = εu
′
1(x)− εu′1(−1)

=

z∫
−1

(f1(t)− a1(t)u′1(t) + b11(t)u1(t) + b12(t)u2(t))dt.

(5)

Using (3) and (4) in (5), we get |εu′1(−1)| ≤ ||f1|| + ||ū||. Using equation
(5) with z = x, we have

|εu′1(x)| ≤ ||f1||+ C||ū|| ∀ x ∈ Ω1,

and hence

|u′1(x)| ≤ Cε−1 max{||f1||, ||ū||}.

Similarly

|u′2(x)| ≤ Cε−1 max{||f2||, ||ū||},

which are the desired results. Consider directly in component form of the
first and second equation of the system as

εu′′1(x) = f1(x)− a1(x)u′1(x)− b11(x)u1(x)− b12(x)u2(x),
εu′′2(x) = f2(x)− a2(x)u′2(x)− b21(x)u1(x)− b22(x)u2(x),
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from which we obtain the required bounds on the second and third deriva-
tives. In a similar way one can prove an analogous result in the subdomain
Ω3.

Let us denote βi = bii(0)/a
′
i(0) for i = 1, 2 . And also note that β1, β2 <

0 always. The following lemma gives estimates for ū(x) and its derivatives
in the interval Ω2 which includes the turning point x = 0.

Lemma 3. Let ū(x) = (u1, u2)T be the solution of (1)-(2). Then for k =
1, 2, 3,

‖u(k)
j (x)‖ ≤ C, for j = 1, 2 and∀x ∈ Ω2

where C depends on ‖a1‖, ‖a2‖, ‖b11‖, ‖b12‖, ‖b21‖, ‖b22‖, ‖a′1‖, ‖a′2‖ and
βk.

Proof. We prove this lemma by adopting the technique as in Berger et.
al. [5].
From the Mean Value Theorem and the assumptions in (2), we have

|ak(x)| = |ak(x)− ak(0)| = |x||a′k(ζ)| ≥ |x||a′k(0)|/2 ≥ |x|
2βk

for k = 1, 2.

Then by the previous lemma the bound for ū(x) and its derivatives at
x = ±1/2 are found where C, depends on ||a1||, ||a2||, ||b11||, ||b12||, ||b21||,
||b22||, ||a′1||, ||a′2|| and βk. If equations (1a) and (1b) are differentiated k
times, one finds that the differential equation satisfied by z̄(x) = (ū)(k)(x)
is

εz
′′
1 (x) + a1(x)z

′
1(x) + [b11(x) + k(a

′
1(x))]z1(x) + b

′
12(x)z2(x) = g1(x) (6)

εz
′′
2 (x) + a2(x)z

′
2(x) + [b22(x) + k(a

′
2(x))]z2(x) + b

′
21(x)z1(x) = g2(x) (7)

where ḡ depends on ū, · · · (ū)(k−1) and on the kth order derivatives of
a1, a2, b11, b12, b21, b22. Applying Lemma 1 with bii is replaced by bii+k(a

′
i)

for i = 1, 2, b12 is replaced by b
′
12 and b21 is replaced by b

′
21 respectively, we

obtain the required result by using an inductive argument.

To obtain the sharper bounds of solution ū(x) and its derivatives we de-
compose the solution ū(x) into regular and singular components as, ū(x) =
v̄(x)+w̄(x), where v̄(x) = (v1(x), v2(x))T and w̄(x) = (w1(x), w2(x))T . The
regular component v̄(x) can be written in the form of v̄ = v̄0 + εv̄1 + ε2v̄2,
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where v̄0 = (v01, v02)T , v̄1 = (v11, v12)T and v̄2 = (v21, v22)T which are
defined respectively to be the solutions of the problems:(

a1
d
dx 0

0 a2
d
dx

)
v̄0 +

(
b11 b12

b21 b22

)
v̄0 = f̄ , v01(−1) = A1, v02(−1) = A2(

a1
d
dx 0

0 a2
d
dx

)
v̄1 +

(
b11 b12

b21 b22

)
v̄1 =

(
d2

dx2
0

0 d2

dx2

)
v̄0, v̄1(−1) = 0̄

and L̄(v̄2) =

(
d2

dx2
0

0 d2

dx2

)
v̄2, v̄2(−1) = 0, v̄2(1) = 0.

Thus the regular component v̄(x) is the solution of

L̄(v̄) = f̄ , (8)

v̄(−1) = v̄0(−1) + εv̄1(−1) + ε2v̄2(−1), v̄(1) = v̄0(1) + εv̄1(1) + ε2v̄2(1),

and the singular component w̄(x) is the solution of

L̄(w̄) = 0̄, (9)

w̄(−1) = ū(−1)− v̄(−1), w̄(1) = ū(1)− v̄(1).

The following lemma provides the bound on the derivatives of the regular
and singular components of the solution ū(x).

Lemma 4. The smooth component v̄ and singular component w̄ and their
derivatives satisfy the bounds for k = 0, 1, 2, 3, and j = 1, 2,

||v(k)
j (x)|| ≤ C(1 + ε2−k), ∀ x ∈ Ω1 ∪ Ω3,

and

|w(k)
j (x)| ≤

{
Cε−ke−α(1+x)/ε ∀ x ∈ Ω1,

Cε−ke−α(1−x)/ε ∀ x ∈ Ω3,

where aj(x) > 0 for x ∈ Ω1 and aj(x) < 0 for x ∈ Ω3.

Proof. Using appropriate barrier functions, applying Theorem 1 and adopt-
ing the method of proof used in [ [10], p.44], the present lemma can be
proved.

Theorem 2. The smooth component v̄ and singular component w̄ and their
derivatives satisfy the bounds for k = 0, 1, 2, 3, j = 1, 2

||v(k)
j (x)|| ≤ C(1 + ε2−k), and

|w(k)
j (x)| ≤ Cε−k(e−α(1+x)/ε + e−α(1−x)/ε), ∀x ∈ Ω̄

Proof. Lemma 3 guarantees that the solution of the SPTPP (1)-(2) and its
derivatives are smooth in the domain Ω2. Hence, the proof is an immediate
consequence of the previous estimates on v̄(k)(x) and w̄(k)(x).
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5 Discrete problem

5.1 Mesh selection strategy

In this section, the system (1)-(2) is discretized using classical finite dif-
ference scheme on piecewise uniform meshes (Shishkin mesh). Consider
the classical upwind scheme on a piecewise uniform mesh Ω̄N

ε , N ≥ 4
which is constructed by dividing the domain Ω̄ into three subintervals
ΩL = [−1,−1 + τ ], ΩC = [−1 + τ, 1 − τ ] and ΩR = [1 − τ, 1] such
that Ω̄ = ΩL ∪ ΩC ∪ ΩR. The transition parameter τ is chosen to be

min

{
1

2
,
2εlnN

α

}
.

5.2 Finite difference method for the problem (1a)-(1b)

The domain Ω̄N
ε is obtained by putting a uniform mesh with N/4 mesh

elements in both ΩL and ΩR and a uniform mesh with N/2 elements
in ΩC . The resulting fitted finite difference scheme is to find Ū(xi) =
(U1(xi), U2(xi))

T for i = 0, 1, 2, · · ·N such that for xi ∈ Ω̄N
ε ,

LN1 Ū(xi) := εδ2U1(xi) + a1(xi)D
∗U1(xi) + b11(xi)U1(xi) (10)

+b12(xi)U2(xi) = f1(xi) i = 1(1)N − 1

LN2 Ū(xi) := εδ2U2(xi) + a2(xi)D
∗U2(xi) + b21(xi)U1(xi) (11)

+b22(xi)U2(xi) = f2(xi), i = 1(1)N − 1

U1(x0) = u1(−1), U1(xN ) = u1(1),

U2(x0) = u2(−1), U2(xN ) = u2(1),

where

D+Uj(xi) =
Uj(xi+1)− Uj(xi)

xi+1 − xi
, D−Uj(xi) =

Uj(xi)− Uj(xi−1)

xi − xi−1
,

δ2Uj(xi) =
D+Uj(xi)−D−Uj(xi)

(xi+1 − xi−1)/2
, D∗Uj(xi) =

{
D+Uj(xi) if aj(xi) > 0,
D−Uj(xi) if aj(xi) < 0.

6 Numerical solution estimates

Analogous to the results stated in Theorem 1 and Lemma 1 we prove the
following results.

Theorem 3. Let Ψ̄(xi) = (Ψ1(xi),Ψ2(xi))
T be any mesh function sat-

isfying Ψ̄(x0) ≥ 0̄, Ψ̄(xN ) ≥ 0̄, LN1 (Ψ̄(xi)) ≤ 0, ∀i = 1(1)N − 1 and
LN2 (Ψ̄(xi)) ≤ 0 ∀i = 1(1)N − 1. Then Ψ̄(xi) ≥ 0̄, ∀xi ∈ Ω̄N

ε .
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Proof. Define s̄(xi) = (s1(xi), s2(xi))
T as s1(xi) = 2 + xi and s2(xi) =

2 + xi. Then, s̄(xi) > 0̄, for all xi ∈ Ω̄N
ε . Further we define

ξ = max

{
max
xi∈Ω̄N

ε

(
−Ψ1

s1

)
(xi), max

xi∈Ω̄N
ε

(
−Ψ2

s2

)
(xi)

}
.

Assume that the theorem is not true. Then ξ > 0 and we have (ψ̄+ξs̄)(xi) ≥
0̄ for xi ∈ Ω̄N

ε . For some i = k, we may have either (Ψ1 + ξs1)(xk) =
0 (or) (Ψ2 + ξs2)(xk) = 0 or both.
Case (i):(Ψ1 + ξs1)(xk) = 0. Then

0 ≥ LN1 (Ψ̄ + ξs̄)(xk)

=


εδ2(Ψ1 + ξs1)(xk) + a1(xk)D

+(Ψ1 + ξs1)(xk)
+b11(xk)(Ψ1 + ξs1)(xk) + b12(xk)(Ψ2 + ξs2)(xk) if a1(xk) > 0
εδ2(Ψ1 + ξs1)(xk) + a1(xk)D

−(Ψ1 + ξs1)(xk)
+b11(xk)(Ψ1 + ξs1)(xk) + b12(xk)(Ψ2 + ξs2)(xk) if a1(xk) < 0

> 0,

which is a contradiction.
Case (ii): (Ψ2+ξs2)(xk) = 0. Similar to Case (i) it leads to a contradiction.
Hence Ψ̄(xi) ≥ 0̄ ∀xi ∈ Ω̄N

ε .

Lemma 5. Consider the scheme (10)-(11). If z̄(xi) = (z1(xi), z2(xi))
T is

any mesh function, then for all xi ∈ Ω̄N
ε ,

|zj(xi)| ≤ C max{max{|z1(x0)|, |z1(xN )|},max{|z2(x0)|, |z2(xN )|},
max

1≤i≤N−1
|LN1 z̄(xi)|, max

1≤i≤N−1
|LN2 z̄(xi)|}, j = 1, 2.

Proof. Let

C1 = C max {max{|z1(x0)|, |z1(xN )|},max {|z2(x0)|, |z2(xN )|} ,

max
1≤i≤N−1

|LN1 z̄(xi)|, max
1≤i≤N−1

|LN2 z̄(xi)|
}
.

Define the mesh functions ψ̄±(xi) as

ψ̄±(xi) =

(
C1(2 + xi)
C1(2 + xi)

)
± z̄(xi).

Then we have ψ̄±1 (x0) ≥ 0̄, ψ̄±2 (xN ) ≥ 0 and L̄N ψ̄±(xi) ≤ 0̄. By Theorem
3 we get the required result.
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The discrete solution Ū(xi) can be decomposed into the sum as Ū(xi) =
V̄ (xi)+W̄ (xi) where V̄ (xi) and W̄ (xi) are regular and singular components
respectively defined as

L̄N V̄ (xi) = f̄ , i = 1, 2, . . . , N − 1, V̄ (−1) = v̄(−1), V̄ (1) = v̄(1), (12)

L̄NW̄ (xi) = 0̄, i = 1, 2, . . . , N − 1, W̄ (−1) = w̄(−1), W̄ (1) = w̄(1). (13)

The error in the numerical solution can be written in the form

(Ū − ū)(xi) = (V̄ − v̄)(xi) + (W̄ − w̄)(xi).

Lemma 6. At each mesh point xi ∈ Ω̄N
ε , the error of the regular component

satisfies the estimate

|(V̄ − v̄)(xi)| ≤
(
CN−1

CN−1

)
,

Proof. This is obtained by using the following standard stability and con-
sistency argument. We consider the local truncation error,

L̄(V̄ − v̄) = (L̄− L̄N )v̄ =

{
ε( d2

dx2
− δ2)v1 + a1(xi)(

d
dx −D

∗)v1,

ε( d2

dx2
− δ2)v2 + a2(xi)(

d
dx −D

∗)v2.
(14)

Then by local truncation error estimates and Theorem 2, we obtain

|L̄N (V̄ − v̄)(xi)|

≤



{
ε
3(xi+1 − xi−1)|v(3)

1 |+
a1(xi)

2 (xi+1 − xi)|v(2)
1 | if a1(xi) > 0

ε
3(xi+1 − xi−1)|v(3)

1 |+
a1(xi)

2 (xi − xi−1)|v(2)
1 | if a1(xi) < 0{

ε
3(xi+1 − xi−1)|v(3)

2 |+
a2(xi)

2 (xi+1 − xi)|v(2)
2 | if a2(xi) > 0

ε
3(xi+1 − xi−1)|v(3)

2 |+
a2(xi)

2 (xi − xi−1)|v(2)
2 | if a2(xi) < 0


≤
(

CN−1

CN−1.

)
Now applying Lemma 5 to the mesh functions (V̄ − v̄)(xi), we can easily
obtain

|(V̄ − v̄)(xi)| ≤
(
CN−1

CN−1

)
.
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Lemma 7. At each mesh point xi ∈ Ω̄N
ε the error of the singular component

satisfies the estimate

|(W̄ − w̄)(xi)| ≤
(
CN−1(ln N)2

CN−1(ln N)2

)
.

Proof. We consider first the case τ = 1/2 and so ε−1 ≤ ClnN and h = N−1.
By classical argument and using Theorem 2, we obtain

|L̄N (W̄ − w̄)(xi)| ≤

{
Cε−2N−1(e−α(1+xi)/ε + e−α(1−xi)/ε),

Cε−2N−1(e−α(1+xi)/ε + e−α(1−xi)/ε),
(15)

and using ε−1 ≤ ClnN in the above inequality, we get

|L̄N (W̄ − w̄)(xi)| ≤

{(
CN−1(lnN)2

CN−1(lnN)2

)
. (16)

Applying Lemma 5 to the mesh function (W̄ − w̄)(xi), we have

|(W̄ − w̄)(xi)| ≤
(
CN−1(lnN)2

CN−1(lnN)2

)
. (17)

We now consider the case τ =
2ε

α
lnN .

In this case the mesh is piecewise uniform with the mesh spacing 4τ/N
in the subintervals ΩL,ΩR and 2τ/N in the subinterval ΩC . We give sepa-
rate proofs for coarse and fine mesh subintervals.

The subinterval ΩC has no boundary layer, both W and w are small,
and by the triangular inequality we have

|(W̄ − w̄)(xi)| ≤ |W̄ (xi)|+ |w̄(xi)|. (18)

It suffices to bound W̄ (xi) and w̄(xi) separately. Now we consider the
subinterval [−1 + τ, 0] for our discussion since one can obtain a similar
proof for the subinterval [0, 1− τ ].
Using Lemma 4 we have

|w̄(xi)| ≤

{
CN−1,

CN−1.
(19)

To obtain a similar bound for W̄ (xi), we introduce the mesh functions
Ȳ = (Y1, Y2)T , where Y1(xi) is the solution of the problem (13), a1(x) is



Numerical method for a system of second order singularly perturbed . . . 223

Table 1: Values of DN
1 , p

N
1 for the solution component U1 for Example 1.

Number of mesh points N

ε 64 128 256 512 1024

2−1 5.4178e-3 2.7828e-3 1.4121e-3 7.1157e-4 3.5721e-4
2−2 1.7492e-2 8.9578e-3 4.5245e-3 2.2730e-3 1.1391e-3
2−3 1.6283e-2 8.4688e-3 4.3592e-3 2.2171e-3 1.1188e-3
2−4 1.7884e-2 1.1958e-2 7.7704e-3 4.8450e-3 2.4762e-3
2−5 1.9992e-2 1.2900e-2 8.0884e-3 4.7619e-3 2.7232e-3
2−6 2.1360e-2 1.3515e-2 8.4430e-3 4.9400e-3 2.8178e-3
2−7 2.2234e-2 1.3972e-2 8.6691e-3 5.0464e-3 2.8731e-3
2−8 2.2781e-2 1.4245e-2 8.8138e-3 5.1139e-3 2.9058e-3
2−9 2.3062e-2 1.4393e-2 8.8993e-3 5.1573e-3 2.9272e-3
2−10 2.3207e-2 1.4469e-2 8.9450e-3 5.1829e-3 2.9412e-3
2−11 2.3279e-2 1.4506e-2 8.9680e-3 5.1965e-3 2.9496e-3
2−12 2.3315e-2 1.4525e-2 8.9792e-3 5.2033e-3 2.9540e-3
2−13 2.3333e-2 1.4534e-2 8.9848e-3 5.2066e-3 2.9562e-3
2−14 2.3342e-2 1.4539e-2 8.9876e-3 5.2082e-3 2.9573e-3
2−15 2.3346e-2 1.4541e-2 8.9890e-3 5.2090e-3 2.9578e-3
2−16 2.3348e-2 1.4543e-2 8.9900e-3 5.2096e-3 2.9581e-3
2−17 2.3350e-2 1.4543e-2 8.9902e-3 5.2097e-3 2.9582e-3
2−18 2.3350e-2 1.4544e-2 8.9902e-3 5.2098e-3 2.9582e-3
2−19 2.3351e-2 1.4544e-2 8.9904e-3 5.2097e-3 2.9596e-3
2−20 2.3351e-2 1.4544e-2 8.9904e-3 5.2097e-3 2.9596e-3

DN
1 2.3351e-2 1.4544e-2 8.9904e-3 5.2098e-3 2.9596e-3

pN1 6.8307e-1 6.9394e-1 7.8715e-1 8.1584e-1 -

replaced by α under boundary conditions that are the same as those used
for W1, and Y2(xi) = Y1(xi). From Lemma 7.5 of [18],

|W̄ (xi)| ≤ |Ȳ (xi)|, 0 ≤ i ≤ N (20)

and applying Lemma 7.3 of [18],

|Ȳ (xi)| ≤
(
CN−1

CN−1

)
. (21)

Substituting (21) in the inequality (20) gives

|W̄ (xi)| ≤
(
CN−1

CN−1

)
. (22)
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Table 2: Values of DN
2 , p

N
2 for the solution component U2 for Example 1.

Number of mesh points N

ε 64 128 256 512 1024

2−1 2.5727e-2 1.3337e-2 6.7963e-3 3.4316e-3 1.7243e-3
2−2 8.0236e-2 4.1792e-2 2.1304e-2 1.0753e-2 5.4020e-3
2−3 4.9948e-2 2.6596e-2 1.3924e-2 7.1492e-3 3.6251e-3
2−4 3.6226e-2 2.6808e-2 1.8529e-2 1.1884e-2 6.1696e-3
2−5 3.4341e-2 2.5371e-2 1.6817e-2 1.0183e-2 5.9781e-3
2−6 3.3183e-2 2.4606e-2 1.6335e-2 9.8902e-3 5.8084e-3
2−7 3.2654e-2 2.4253e-2 1.6108e-2 9.7520e-3 5.7281e-3
2−8 3.2405e-2 2.4085e-2 1.6000e-2 9.6851e-3 5.6892e-3
2−9 3.2284e-2 2.4004e-2 1.5947e-2 9.6523e-3 5.6701e-3
2−10 3.2225e-2 2.3964e-2 1.5921e-2 9.6362e-3 5.6607e-3
2−11 3.2195e-2 2.3934e-2 1.5901e-2 9.6242e-3 5.6537e-3
2−12 3.2173e-2 2.3929e-2 1.5898e-2 9.6222e-3 5.6525e-3
2−13 3.2169e-2 2.3926e-2 1.5896e-2 9.6212e-3 5.6519e-3
2−14 3.2168e-2 2.3925e-2 1.5896e-2 9.6208e-3 5.6517e-3
2−15 3.2167e-2 2.3924e-2 1.5895e-2 9.6205e-3 5.6515e-3
2−16 3.2166e-2 2.3924e-2 1.5895e-2 9.6205e-3 5.6513e-3
2−17 3.2166e-2 2.3924e-2 1.5895e-2 9.6203e-3 5.6515e-3
2−18 3.2166e-2 2.3924e-2 1.5894e-2 9.6208e-3 5.6512e-3
2−19 3.2166e-2 2.3924e-2 1.5895e-2 9.6203e-3 5.6574e-3
2−20 3.2166e-2 2.3924e-2 1.5895e-2 9.6203e-3 5.6574e-3

DN
2 8.0236e-2 4.1792e-2 2.1304e-2 1.1884e-2 6.1696e-3

pN2 9.4103e-1 9.7207e-1 8.4213e-1 9.4575e-1 -

Using inequalities (19) and (22) in (18), we get

|W̄ (xi)− w̄(xi)| ≤

{
CN−1,

CN−1,
∀ N/4 ≤ i ≤ N/2. (23)

Proceeding analogously on [0, 1− τ ], we get

|W̄ (xi)− w̄(xi)| ≤

{
CN−1,

CN−1,
∀ N/2 ≤ i ≤ 3N/4. (24)

It remains to prove the results for xi ∈ ΩL and xi ∈ ΩR. Let xi ∈ ΩL. For
i = 0 there is nothing to prove. For xi ∈ ΩL the proof follows the same lines
as for the case τ = 1/2 except that we use the discrete maximum principle
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on ΩL and the already established bound |W̄ (xN/4)| ≤

{
CN−1,

CN−1.
In this

case, we have

|L̄N (W̄ − w̄)(xi)| ≤

{
Cτε−2N−1e−α(1+xi)/ε,

Cτε−2N−1e−α(1+xi)/ε,
∀i, 0 ≤ i ≤ N/4. (25)

We introduce the mesh functions

Ψ±1 (xi) =
Ce2γh/ε

γ(α− γ)
τε−1N−1Y1(xi) + C ′N−1 ± (W̄ − w̄)(xi), (26)

Ψ±2 (xi) =
Ce2γh/ε

γ(α− γ)
τε−1N−1Y2(xi) + C ′N−1 ± (W̄ − w̄)(xi), (27)

where γ is any constant satisfying α > γ > 0 and ∀ i, 0 ≤ i ≤ N/4,

Y1(xi) =

(
λN/4−i − 1

λN/4 − 1

)
, where λ = 1+ γh

ε , D+Y1(xi) ≤ −γ/εe−γ(1+xi+1)/ε.

Let Y2(xi) = Y1(xi). It is easy to see that Ψ̄±(x0) > 0̄, Ψ̄±(xN/4) ≥ 0̄ and

L̄N Ψ̄± ≤ 0̄ for 1 ≤ i ≤ N/4. Then by the discrete maximum principle we
conclude that Ψ±i ≥ 0, ∀xi ∈ ΩL. That is

|(W̄ − w̄)(xi)| ≤
(
CN−1 ln N
CN−1 ln N

)
, 0 ≤ i ≤ N/4

Similarly the proof follows for xi ∈ ΩR. Combining the estimates for
the singular components in different regions, we obtain

|(W̄ − w̄)(xi)| ≤
(
CN−1(ln N)2

CN−1(ln N)2

)
, 0 ≤ i ≤ N,

as required.

Theorem 4. Let ū(x) = (u1(x), u2(x))T for all x ∈ Ω̄ be the solution of
(1)-(2)and let Ū(xi) = (U1(xi), U2(xi))

T for all xi ∈ Ω̄N
ε be the numerical

solution of problem (10)-(11). Then we have

sup
0<ε≤1

||U1−u1||Ω̄N
ε
≤ CN−1(lnN)2 and sup

0<ε≤1
||U2−u2||Ω̄N

ε
≤ CN−1(lnN)2.

Proof. It follows immediately, if one applies Lemma 6 and Lemma 7 to
Ū − ū = V̄ − v̄ + W̄ − w̄.
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Table 3: Values of DN
1 , p

N
1 for the solution component U1 for Example 2.

Number of mesh points N

ε 64 128 256 512 1024

2−1 4.1021e-2 2.1350e-2 1.0918e-2 5.5237e-3 2.7788e-3
2−21 3.1884e-2 1.5615e-2 7.8108e-3 3.9175e-3 1.9632e-3
2−3 3.2748e-2 2.0570e-2 1.1591e-2 6.1597e-3 3.1837e-3
2−4 2.5445e-2 2.2022e-2 1.6722e-2 1.1631e-2 6.1843e-3
2−5 2.6795e-2 2.2758e-2 1.6300e-2 1.0853e-2 6.3287e-3
2−6 2.7451e-2 2.3109e-2 1.6477e-2 1.0947e-2 6.3815e-3
2−7 2.7773e-2 2.3282e-2 1.6564e-2 1.0994e-2 6.4076e-3
2−8 2.7935e-2 2.3369e-2 1.6608e-2 1.1017e-2 6.4207e-3
2−9 2.8020e-2 2.3413e-2 1.6630e-2 1.1029e-2 6.4272e-3
2−10 2.8065e-2 2.3436e-2 1.6641e-2 1.1035e-2 6.4306e-3
2−11 2.8090e-2 2.3448e-2 1.6647e-2 1.1038e-2 6.4323e-3
2−12 2.8102e-2 2.3455e-2 1.6650e-2 1.1040e-2 6.4332e-3
2−13 2.8108e-2 2.3459e-2 1.6652e-2 1.1041e-2 6.4337e-3
2−14 2.8110e-2 2.3461e-2 1.6654e-2 1.1041e-2 6.4340e-3
2−15 2.8111e-2 2.3462e-2 1.6654e-2 1.1042e-2 6.4341e-3
2−16 2.8112e-2 2.3463e-2 1.6655e-2 1.1042e-2 6.4342e-3
2−17 2.8112e-2 2.3463e-2 1.6655e-2 1.1042e-2 6.4341e-3
2−18 2.8112e-2 2.3463e-2 1.6655e-2 1.1042e-2 6.4344e-3
2−19 2.8112e-2 2.3463e-2 1.6655e-2 1.1042e-2 6.4346e-3
2−20 2.8112e-2 2.3463e-2 1.6655e-2 1.1041e-2 6.4350e-3

DN
1 4.1021e-2 2.3463e-2 1.6722e-2 1.1631e-2 6.4350e-3

pN1 8.0597e-1 4.8866e-1 5.2370e-1 8.5402e-1 -

7 Numerical results

In this section, two examples are given to illustrate the numerical method
discussed in this paper. We use the double mesh principle to estimate the
error and compute the rate of convergence in our computed solution. Let
U2N be the piecewise linear interpolants of the numerical solution UN on
the mesh Ω2N , where N, 2N are the number of mesh points.

Define the double mesh differences to be

DN
ε,j =

{
max
xi∈Ω̄N

ε

|UNj (xi)− U2N
j (xi)|

}
, j = 1, 2 and DN

j = max
ε
DN
ε,j ,

where UNj (xi) and U2N
j (xi) respectively, denote the numerical solution ob-

tained using N and 2N mesh intervals. Further, we calculate the parameter



Numerical method for a system of second order singularly perturbed . . . 227

robust order of convergence as

pj = log2

(
DN
j

D2N
j

)
, for j = 1, 2.

The following examples have a turning point at x = 1/2. The numerical
results are presented for various values of the perturbation parameter ε ∈
{2−20, 2−19, . . . , 2−1}.

Table 4: Values of DN
2 , p

N
2 for the solution component U2 for Example 2.

Number of mesh points N

ε 64 128 256 512 1024

2−1 1.3970e-1 7.0640e-2 3.5578e-2 1.7865e-2 8.9528e-3
2−2 1.6114e-1 7.2911e-2 3.4704e-2 1.6933e-2 8.3636e-3
2−3 4.7313e-2 2.7199e-2 1.4573e-2 7.9083e-3 3.8371e-3
2−4 4.9447e-2 3.4826e-2 2.3091e-2 1.4504e-2 7.4398e-3
2−5 4.3795e-2 3.2327e-2 1.9970e-2 1.2381e-2 7.1476e-3
2−6 4.3061e-2 3.2216e-2 2.0015e-2 1.2455e-2 7.2046e-3
2−7 4.2689e-2 3.2160e-2 2.0065e-2 1.2491e-2 7.2327e-3
2−8 4.2486e-2 3.2127e-2 2.0089e-2 1.2508e-2 7.2462e-3
2−9 4.2364e-2 3.2106e-2 2.0100e-2 1.2516e-2 7.2525e-3
2−10 4.2286e-2 3.2090e-2 2.0103e-2 1.2520e-2 7.2554e-3
2−11 4.2238e-2 3.2076e-2 2.0104e-2 1.2521e-2 7.2565e-3
2−12 4.2212e-2 3.2064e-2 2.0103e-2 1.2521e-2 7.2569e-3
2−13 4.2201e-2 3.2056e-2 2.0101e-2 1.2520e-2 7.2569e-3
2−14 4.2197e-2 3.2051e-2 2.0098e-2 1.2519e-2 7.2567e-3
2−15 4.2196e-2 3.2049e-2 2.0096e-2 1.2518e-2 7.2563e-3
2−16 4.2196e-2 3.2049e-2 2.0095e-2 1.2517e-2 7.2558e-3
2−17 4.2196e-2 3.2049e-2 2.0095e-2 1.2517e-2 7.2562e-3
2−18 4.2196e-2 3.2049e-2 2.0095e-2 1.2515e-2 7.2572e-3
2−19 4.2196e-2 3.2049e-2 2.0094e-2 1.2518e-2 7.2495e-3
2−20 4.2196e-2 3.2049e-2 2.0096e-2 1.2519e-2 7.2559e-3

DN
2 1.6114e-1 7.2911e-2 3.5578e-2 1.7865e-2 8.9528e-3

pN2 1.1441 1.0351 9.9389e-1 9.9669e-1 -

Example 1. Consider the following system of singularly perturbed turning
point problem

εu
′′
1(x)− 2(2x− 1)u

′
1(x)− 9u

′
1(x) + 2u2(x) = 0, x ∈ (0, 1),

εu
′′
2(x)− 4(2x− 1)u

′
2(x)− 6u

′
2(x) + u1(x) = 0, x ∈ (0, 1),

u1(0) = 1, u2(0) = 1, u1(1) = 1, u2(1) = 1.
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The computed maximum pointwise errors DN
1 , D

N
2 and the computed order

of convergence pN1 , p
N
2 for the Example 1 are presented in Tables 1 and 2.

The graph of the numerical solution is given in Figure 7, which shows
the layer occur at both the end points.The loglog plot of the maximum
pointwise errors for U1 and U2 are given in Figure 2, which validate the
theoretical error bound given in Theorem 6.5.
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Figure 1: Solution graph of Example 1 for ε = 2−4 and N = 27.
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Figure 2: Maximum pointwise errors as a function of N and ε for the
solution U1 and U2 for Example 1.
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Figure 3: Solution graph of Example 2 for ε = 2−4 and N = 27

Example 2. Consider the following system of singularly perturbed turning
point problem

εu
′′
1(x)− 7(2x− 1)u

′
1(x)− 10u

′
1(x) + 2u2(x) = −e−x, x ∈ (0, 1),

εu
′′
2(x)− 3(2x− 1)u

′
2(x)− 7u

′
2(x) + 3u1(x) = x+ 5, x ∈ (0, 1),

u1(0) = 1, u2(0) = 2, u1(1) = 1, u2(1) = 2.

The computed maximum pointwise errors DN
1 , D

N
2 and the computed order

of convergence pN1 , p
N
2 for the Example 2 are presented in Tables 3 and 4.

Figure 3 represents the numerical solution of Example 2. The loglog plot
of the maximum pointwise errors for U1 and U2 are given in Figure 4.
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