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Abstract. The predator-prey model with stage structure for predator is
generalized in the context of ecoepidemiology, where the prey population is
infected by a microparasite and the predator completely avoids consuming
the infected prey. The intraspecific competition of infected prey is con-
sidered. All the equilibria are characterized and the existence of a Hopf
bifurcation at the coexistence equilibrium is shown. Numerical simulations
are carried out to illustrate the obtained results.
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1 Introduction

The most celebrated work of Kermack and McKendrick [12] on epidemic
models creates major interest to scientists. Much work has been done in
this area [1,3,6,11]. Most of the studies deal with the spread of the disease
assuming the considered species are not related with the other species.
In the real world, it is seen that when species spreads the disease, it also
competes with the other species for space or food, or it is predated by the
other species. Thus it is realistic to consider the effect of interacting species
when we study epidemiological models. Effect of disease in ecological in-
teractions are investigated in [2, 7, 10,16–20,24,25].

Most of the previous studies on eco-epidemic model showed that preda-
tor preferentially selects infected prey and several experimental studies have
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shown that parasite mediated mortality increases vulnerability to preda-
tion. However there are situations where predator consumes healthy prey
only because it risks incidental infection from infected prey, as many oc-
cur with anthrax or bovine tuberculosis. In nature it is observed that
predator can discriminate the infected prey and non-infected prey. For
example, Bullfrog (Rana catesbenia) tadpoles avoid conspecies carrying in-
fectious yeast, Candida humicola, by detecting chemical cues producing
from infected individuals at a distance [13]. Levri [14] pointed out that
fish predators avoid infected snails (Potamopyrgus antipodarum). Further,
Pfennig [21] has done experiment on spadefoot tadpoles (Spea bombifrons,
Spea multiplicata, and Scaphiopus couchii), by feeding them either conspe-
cific tadpoles or an equal mass of three different species of heterospecific
prey, all of which contained in naturally occurring bacteria. Now if the
predator can identify and avoid infected prey, then this selection of the
predator may accrue the enhanced nutritional benefits of eating phylogenit-
ically close prey while limiting risks of disease. More biological situations
can be found in [9]. Above biological examples in prey-predator interaction
with prey infection suggest that disease-selective predation can prevent the
predators being affected from the infected prey. But this type of behavior
of predator can cause prey extinction. Therefore a natural question arises
that, will the prey population always go to extinction if the predator con-
sume susceptible prey only? This question will be answered by analyzing
a mathematical model where predator avoid infected prey.

Here we propose and analyze a predator-prey model with stage structure
for predator in the context of ecoepidemiology. Further we incorporate
intraspecific competition, due also to the infected prey. Predator functional
response is taken as Holling type II. Predator consumes susceptible prey
only. In our model, predator has two stages. In the first stage, predator can
neither attack prey nor reproduce, being raised by their mature parents.

In the next section, we briefly review the starting population model,
and in Section 3 introduce the ecoepidemic one with some basic properties
and its equilibria. Bifurcation and global stability are presented in Section
4.

2 The original population model

Georgescu and Hsiesh [8] studied the following predator-prey model with
stage structure for predator:
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dx

dt
= x(r − ax)− bx

1 +mx
z,

dy

dt
= q

bx

1 +mx
z − (D + d1)y, (1)

dz

dt
= Dy − d2z.

Here, x(t), y(t), z(t) are the densities of prey, immature and mature preda-
tors respectively at time t. The growth of prey population follows logistic
law. The functional response of the mature predator is taken Holling type
II. The positive parameters r, a, b,m, k,D, d1 and d2 are interpreted as fol-
lows :

• r represents the intrinsic growth rate of the prey population,

• a represents intraspecies competition among the prey,

• b represents the search rate of the mature predators,

• m represents the search rate multiplied by the handling time of the
mature predators,

• q represents the conversion coefficient of the mature predators,

• D represents the rate at which immature predators become the ma-
ture predators,

• d1 represents the death rate of the immature predators,

• d2 represents the death rate of the mature predators.

In [8], the authors defined the basic reproduction number of the predator
by

R0 = q
br

amr

1

d2

D

D + d1
,

and showed that if R0 > 1 and lim
t→∞

x(t) >
r

2a
then the unique positive

steady state of system (1) is globally asymptotically stable on (0,∞)3.
When R0 ≤ 1 then the prey only equilibrium ( ra , 0, 0) is globally asymptot-
ically stable. Moreover, if R0 > 1 but the condition limt→∞ x(t) > r

2a does
not necessarily hold, then the prey only equilibrium ( ra , 0, 0) is unstable,
there exists a unique positive equilibrium and the system becomes uni-
formly persistent. In staged model, global stability of the positive steady
state requires persistence type condition which is difficult to check analyt-
ically. When there is an infection in the prey population, global stability
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condition can be achieved by controlling the intrinsic growth rate of the
prey population. Further, presence of intraspecific competition of sound
prey can give rise to oscillation.

3 The ecoepidemic model

Suppose the prey population in the model (1) is infected by a micropara-
site. The total prey population x is thus divided into two classes, namely
susceptible prey denoted by S(t) and the infected prey denoted by I(t).
Thus x(t) = S(t) + I(t). The disease spreads horizontally with mass action
incidence rate βSI. The infected prey population cannot recover from the
disease nor reproduce but it contributes to intra- and interspecific compe-
tition, although at a lower rate c2 than the susceptible prey, i.e., c1 > c2.
The population density of immature and mature predator are denoted by
Y (t) and Z(t) respectively. The predator eats only the susceptible prey
with Holling type II response function. The model (1) is then extended to
the following one :

dS
dt = rS − c1S(S + I)− βSI − bSZ

1+mS ,

dI
dt = βSI − µI − c2I(S + I),

dY
dt = q bSZ

1+mS − (D + d1)Y,

dZ
dt = DY − d2Z,

(2)

where r is the growth rate of the susceptible prey, µ is the mortality rate of
infected prey including disease related death, b represents the search rate of
the mature predators, m denotes the search rate multiplied by the handling
time of the mature predators, q is the conversion coefficient of the mature
predators, D represents the rate at which immature predators become the
mature predators, d1 is the death rate of the immature predators and d2

represents the death rate of the mature predators.

3.1 Boundedness

We show that, all the solutions of system (2) are bounded in a positive
orthant R4

+. The boundedness of system (2) is given by the following
lemma.
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Lemma 1. All the solutions of system (2) will be in the region B =

{(S, I, Y, Z) ∈ R4
+ : 0 ≤ S + I + Y + Z ≤ (r+λ)2

4c1λ
} as t→∞ for all positive

initial values (S(0), I(0), Y (0), Z(0)) ∈ R4
+ where λ = min{µ, d1, d2}.

Proof. Define the function W (t) = S(t)+I(t)+Y (t)+Z(t). From equation
(2) and if λ = min{µ, d1, d2},

dW (t)

dt
+ λW ≤ S(r + λ)− c1S

2 ≤ (r + λ)2

4c1
.

Then by usual comparison theorem [4], we get the following expression as

t→∞ : W (t) ≤ (r+λ)2

4c1λ
.

3.2 Equilibria

The system (2) has the following boundary equilibrium points: E0(0, 0, 0, 0),
E1( rc1 , 0, 0, 0), E12(S̄, Ī, 0, 0) where

S̄ =
(c1 + β)µ+ rc2

c1c2 + (β + c1)(β − c2)
, Ī =

r(β − c2)− c1µ

c1c2 + (β + c1)(β − c2)
.

Clearly E1 and E2 always exist and E12 is feasible if β > c1µ
r + c2.

Theorem 1.
i) E0 is always unstable.
ii)E1 is stable if βr < µc1 + rc2 and (D + d1)d2 >

qbr
c1+mr and unstable

otherwise.
iii) E12 is stable if (D + d1)d2 >

qbS̄D
1+mS̄

and unstable otherwise.

Proof. It follows immediately by linearizing around the equilibria.

It is to be noted here that if E12 is feasible then E1 is unstable. Next
we are interested about the existence of the interior equilibrium point of
system (2) which is given by E∗(S∗, I∗, Y ∗, Z∗) where

S∗ = (D+d1)d2
qbd−m(D+d1)d2

, I∗ = (β−c2)S∗−µ
c2

,

Y ∗ = d2(1+mS∗){r−c1S∗−(β+c1)I∗}
bD , Z∗ = DY ∗

d2
.

Clearly, the interior equilibrium point E∗ is feasible if

(i) qbD > m(D + d1)d2,

(ii) r > (c1 + β)I∗ + c1S
∗, (3)

(iii) (β − c2)S∗ > µ.
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The condition (iii) indicates that β > c2.

Theorem 2. Suppose (3) holds. Then E∗ is locally asymptotically sta-
ble provided the following conditions are satisfied: c1 − bZ∗m

(1+mS∗)2
> 0 and

A3(A1A2 −A3)−A2
1A4 > 0 where

A1 = c2I
∗ + S∗(c1 − bZ∗m

(1+mS∗)2
) +D + d1 + d2,

A2 = S∗I∗{c2(c1 − bZ∗m
(1+mS∗)2

) + (β + c1)(β − c2)}

+(D + d1 + d2){S∗(c1 − bZ∗m
(1+mS∗)2

) + c2I
∗},

A3 = S∗I∗{(β + c1)(β − c2) + c2(c1 − bZ∗m
(1+mS∗)2

)}(D + d1 + d2)

+ qb2S∗Z∗D
(1+mS∗)3

,

A4 = c2S∗qb2I∗Z∗D
(1+mS∗)3

.

Proof. The characteristic equation about E∗ is given by

λ4 +A1λ
3 +A2λ

2 +A3λ+A4 = 0 (4)

The result follows by the application of the Routh-Hurwitz criterion.

4 Global stability and bifurcation

Let us define F (S) = bS
1+mS and G(S, I) = S{r − c1(S + I)− βI}.

Theorem 3. The interior equilibrium point E∗ of system (2) is globally
asymptotically stable if c1µ

β−c2 + c1S
∗ + βI∗ > r.

Proof. Consider the following positive definite function about E∗

V (t) =

∫ S

S∗

F (θ)− F (S∗)

F (θ)
dθ +

β

(1 +mS∗)(β − c2)
(I − I∗ − I∗ln I

I∗
)

+1
q

∫ Y

Y ∗

θ − Y ∗

θ
dθ +

D + d1

qD

∫ Z

Z∗

θ − Z∗

θ
dθ.

Differentiating V with respect to t along the solution of system (2), we get
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dV

dt
=
F (S)− F (S∗)

F (S)
[G(S, I)− F (S)Z] +

β(I − I∗)(βS − c2(S + I)− µ)

(1 +mS∗)(β − c2)

+1
q
Y−Y ∗

Y [qF (S)Z − (D + d1)Y ] + D+d1
qD

Z−Z∗

Z (DY − d2Z)

= G(S, I)F (S)−F (S∗)
F (S) + ZF (S∗)− (D+d1)Y ∗

q

[
F (S)ZY ∗

F (S∗)Z∗Y + Z∗Y
ZY ∗ + F (S∗)

F (S)

−3
]

+ (D+d1)Y ∗

q
F (S∗)
F (S) −

(D+d1)Y ∗

q − (D+d1)d2Z
qD − 3 (D+d1)Y ∗

q

+β(I−I∗){(β−c2)(S−S∗)−c2(I−I∗)}
(1+mS∗)(β−c2) .

Since F (S∗) = (D+d1)d2
qD , this yields

dV

dt
= {G(S, I)−G(S∗, I∗)}F (S)− F (S∗)

F (S)
− (D + d1)Y ∗

q

[ F (S)ZY ∗

F (S∗)Z∗Y
+
Z∗Y

ZY ∗

+F (S∗)
F (S) − 3

]
+ β(S−S∗)(I−I∗)

1+mS∗ − βc2(I−I∗)2

(1+mS∗)(β−c2)

= [{r − c1(S + S∗)− βI∗}(S − S∗)− βS(I − I∗)] S−S∗

S(1+mS∗)

− (D+d1)Y ∗

q [ F (S)ZY ∗

F (S∗)Z∗Y + Z∗Y
ZY ∗ + F (S∗)

F (S) − 3]

+β(S−S∗)(I−I∗)
1+mS∗ − βc2(I−I∗)2

(1+mS∗)(β−c2)

= {r−c1(S+S∗)−βI∗}(S−S∗)2

S(1+mS∗) − βc2(I−I∗)2

(1+mS∗)(β−c2)

− (D+d1)Y ∗

q

[
F (S)ZY ∗

F (S)Z∗Y
+ Z∗Y

ZY ∗ + F (S∗)
F (S)

]
.

Using the arithmetic mean is greater than or equal to the geometric
mean, it is clear that,

F (S)ZY ∗

F (S∗)Z∗Y
+
Z∗Y

ZY ∗
+
F (S∗)

F (S)
≥ 3,

and the equality holds only for S = S∗, Y = Y ∗, Z = Z∗. Further, we
note that from second equation of system (2), S > µ

β−c2 . If S ≤ µ
β−c2 then

dI
dt will be negative. Thus if c1µ

β−c2 + c1S
∗ + βI∗ ≥ r then dV

dt is negative
definite. Hence V is a Lyapunov function with respect to E∗ whose domain
of attraction is B, proving the theorem.
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Set f(c1) = A1(c1)A2(c1)A3(c1)−A2
1(c1)A4(c1)−A2

3(c1).

Theorem 4. If there exists c1 = c∗1 such that
i)A3(c∗1) > 0,
ii)f(c∗1) = 0, f ′(c∗1) > 0,

then the positive equilibrium point E∗ is locally stable if c1 > c∗1 but it is
unstable for c1 < c∗1 and a Hopf bifurcation of periodic solution occurs at
c1 = c∗1.

Proof. Proceeding along the lines in [22], we observe that f(c1) is monotonic
increasing function in the neighbourhood of c1 = c∗1. As A3(c∗1) > 0, f(c1) >
0 for c1 > c∗1, thus local stability of E∗ follows from Theorem 2. Again, it
is obvious that f(c1) < 0 for c1 < c∗1 and hence E∗ is unstable. Therefore
Hopf bifurcation follows from a result in [15].

5 Numerical simulations

In the following section we will present some examples to verify our results
obtained earlier. Numerical simulations are performed for a hypothetical
set of data.

Example 1. Suppose r = 8, c1 = 2, β = 1, b = 9,m = 2, µ = 1, c2 =
0.5, q = 1, D = 3, d1 = 0.75, d2 = 3. Clearly system (2) has an equilibrium
point (2.5,0.5,1,1). Condition of Theorem 3 is satisfied and hence it is glob-
ally asymptotically stable. By applying Matlab 7.0.1 to simulate system
(2), we obtain Figure 1.

Example 2. Suppose r = 9, β = 3, b = 4,m = 1, µ = 1, c2 = 1, q = 1, D =
1, d1 = 1, d2 = 1. Set c1 ≈ 1.1493, it is easy to see that system (2) has
an equilibrium point (1,1,1.8507,1.8507) and A3(c∗1) ≈ 26.493 > 0, f(c∗1) ≈
0, f ′(c∗1) = 523.56104 > 0. Then it follows from Theorem 4 that a Hopf
bifurcation of periodic solution occurs at c∗1 ≈ 1.1493. Choose c1 to be 1.18,
1 respectively. When c1 = 1.18, the positive equilibrium (1,1,1.82,1.82) is
locally asymptotically stable (see Figure 2). When c1 = 1.01, the positive
equilibrium (1, 1, 1.99, 1.99) is unstable (see Figure 3).

Example 3. Suppose r = 9, β = 3, b = 4,m = 0, µ = 1, c2 = .6, q = 2, D =
2, d1 = 2, d2 = 2. Set c1 ≈ 2.0127. It follows from Theorem 4 that a Hopf
bifurcation of periodic solution occurs at c∗1 ≈ 2.1. Choose c1 to be 2.2, 2
respectively.When c1 = 2.2, the positive equilibrium (.5, .33, 1.541, 1.541)
is locally asymptotically stable (see Figure 4).When c1 = 2, the positive
equilibrium (.5,.33,1.583,1.583) is unstable (see Figure 5).
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Figure 1: The interior equilibrium point (2.5, 0.5, 1, 1) of system (2) is
globally asymptotically stable.
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Figure 2: Phase portrait of system (2) when c1 = 1.18 indicates that the
equilibrium point (1, 1, 1.82, 1.82) is locally asymptotically stable.

6 Discussion

In this paper, we have proposed and analyzed a four-dimensional three-
species eco-epidemiological system with stage structure for predator. We
have considered Holling type II predator functional response. It is assumed
here that mature predator consumes susceptible prey only. Results ob-
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Figure 3: Stability property of system (2) is lost when c1 = 1.01. The
interior equilibrium point (1, 1, 1.99, 1.99) is unstable.
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Figure 4: The interior equilibrium point (0.5, 0.33,1.541, 1.541) of system
(2) is locally asymptotically stable when predation follows Holling type I
response function.

tained in this paper indicate that intraspecific competition makes possible
coexistence of all species. We got four equilibria. The trivial equilibrium
point E0 is always unstable. The equilibrium point E1 where only suscep-
tible prey population can survive. The equilibrium point E12 where both
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Figure 5: Stability of system (2) is lost when c1 = 2 and m = 0. The
interior equilibrium point (0.5, 0.33, 1.583, 1.583) is unstable.

types of prey exist but no predators. The equilibrium E1 becomes unsta-
ble when E12 exists. The positive equilibrium is that where four type of
individuals are present and for some parametric values it is stable for oth-
ers it is unstable. The global stability condition indicates that the intrinsic
growth rate of prey population must be below certain threshold value. This
result ensures the coexistence of all the populations in future time. If the
global stability condition is not satisfied then there is a possibility of Hopf
bifurcation when intraspecific competition c1 crosses a critical value. Lastly
we note that from numerical simulation that limit cycle can arise by Hopf
bifurcation in case of Holling type I predator functional response (see Fig-
ure 5). Recently some works have been done in eco-epidemic model where
predator consumes sound prey with alternative food source [5,23]. But the
model with intraspecific competition and stage structure for predator in
eco-epidemic context is not addressed earlier.

References

[1] R.M. Anderson and R.M. May, Infectious diseases of Humans, Dy-
namics and Control , Oxford University, Oxford, 1991.

[2] R.M. Anderson, and R.M. May, The invasion of infectious diseases
within animal and plant communities, Philos. Trans. R. Soc. B. 314



114 D. Mukherjee

(1986) 533–570.

[3] N.J.T. Bailey, The Mathematical Theory of Infectious Diseases and its
Applications, Griffin, London, 1975.

[4] G. Birkhoff and G.C. Rota, Ordinary Differential Equations, John Wi-
ley & Sons Inc., Boston, 1982.

[5] K.P. Das, S. Roy and J. Chattopadhyay, Effect of disease-selective
predation on prey infected by contact and external sources, BioSystems
95 (2009) 188–199.

[6] A.P. Dobson, The population biology of parasite induced changes in
host behaviour, Q. Rev. Biol. 63 (1988) 139–165.

[7] H. I. Freedman, A model of predator-prey dynamics as modified by the
action of parasite, Math. Biosci. 99 (1990) 143–155.

[8] P. Georgescu and Y. H. Hsieh, Global dynamics of a predator-prey
model with stage structure for predator, SIAM J. Appl. Math. 67
(2006) 1379–1395.

[9] M. Haque and D. Greenhalgh, When a predator avoids infected prey:
a model-based theoretical study, Math. Med. Biol. 27 (2010) 75–94.

[10] K.P. Hadeler and H.I. Freedman, Predator-prey population with para-
sitic infection, J. Math. Biol. 27 (1989) 609–631.

[11] H.W. Hethcote, A thousand and one epidemic models in S.A. Levin.
Frontiers in Mathematical Biology , Lect. Notes in Biomath., Springer,
Berlin, 1994.

[12] W. Kermack and A, McKendrick, A contribution to the mathematical
theory of epidemics, Proc. Roy. Soc. A. 115 (1927) 700–721.

[13] J.M. Keisecker, D.K. Skelly, L.H. Beard and E. Preisser, Behavioral
reduction of infection risk, Proc. Natl. Acad. Sci. USA 96 (1999) 9165–
9168.

[14] E. P. Levri, Perceived predation risk, parasitism, and the foraging be-
haviour of a freshwater snail potamopyrgus antipodarum, Can. J. Zool.
76 (1998) 1878–1884.

[15] W. M. Liu, Criterion of Hopf bifurcation without using eigenvalues, J.
Math. Anal. Appl. 182 (1994) 250–256.



Dynamics of an eco-epidemic model with stage structure for predator 115

[16] D. Mukherjee, Uniform persistence in a generalized prey-predator sys-
tem with parasitic infection, Biosystems 47 (1998) 149–155.

[17] D. Mukherjee, Persistence in a prey-predator system with disease in
the prey, J. Biol. Systems 11 (2003) 101–112.

[18] D. Mukherjee, A delayed prey-predator system with parasitic infection,
Biosystems 85 (2006) 158–164.

[19] D. Mukherjee, Hopf bifurcation in an eco-epidemic model, Appl. Math.
Comput. 217 (2010) 2118–2124.

[20] D. Mukherjee, Persistence aspect of a predator-prey model with disease
in the prey, Differential Equations Dynam. Systems 24 (2016) 173–188.

[21] D.W. Pfennig, Effect of predator-prey phylogentic similarity on the
fitness consequences of predation:a trade-off between nutrition and dis-
eases, Am. Nat. 155 (2000) 335–345.

[22] Z. Qiu, Dynamics of a model for virulent phase T4, J. Biol. Systems
16 (2008) 597–611.

[23] S. Roy and J. Chattopadhyay, Disease-selective predation may lead to
prey extinction, Math. Meth. Appl. Sci. 28 (2005) 1257–1267.

[24] Y. Xiao and L. Chen, Modelling and analysis of a predator-prey model
with disease in the prey, Math. Biosci. 171 (2001) 59–82.

[25] Y. Xiao and L. Chen, Analysis of three species eco-epidemiological
model, J. Math. Anal. Appl. 258 (2001) 733–754.


	1 Introduction
	2 The original population model
	3  The ecoepidemic model
	3.1 Boundedness
	3.2 Equilibria

	4 Global stability and bifurcation
	5 Numerical simulations
	6 Discussion

