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POSITIVE CONE IN p-OPERATOR PROJECTIVE
TENSOR PRODUCT OF FIGÀ-TALAMANCA-HERZ

ALGEBRAS

M. SHAMS YOUSEFI

Abstract. In this paper we define an order structure on the p-
operator projective tensor product of Herz algebras and we show
that the canonical isometric isomorphism between Ap(G×H) and

Ap(G)⊗̂p
Ap(H) is an order isomorphism for amenable groups G

and H.

1. Introduction

Operator spaces were introduced in the mid 70’s by E.G. Effros [6].
By Ruan’s Theorem each operator space can be embedded completely
isometrically in B(H) for some Hilbert space H. The C∗-algebra B(H)
has a natural order structure, inducing a cone on any embedded ∗-
subalgebra (see [3] for more details on order structure of operator al-
gebras). Also, the dual of a C*-algebra has a natural cone. The case
is more interesting when the dual space is a Banach algebra. An ex-
ample is the commutative C∗-algebra C0(G), and a less trivial example
is provided by the group C∗-algebra C∗(G), which is the enveloping
C∗-algebra of the Banach algebra L1(G) of absolutely integrable (with
respect to the Haar measure) Borel functions on G. In this case, the
dual space B(G), is the Fourier-Stieltjes algebra. The Fourier algebra
A(G) and Fourier-Stieltjes algebra B(G), introduced by Eymard in the
60’s [7], are commutative Banach algebras which have a natural order
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structure (given by the cone of positive-definite functions) and a quite
relevant operator space structure.

Let G be a locally compact group, the Fourier algebra A(G) consists
of all coefficient functions of the left regular representation λ of G

A(G) = {w = (λξ , η) : ξ , η ∈ L2(G)},

which is a Banach algebra with the norm ‖w‖A(G) = inf{‖ξ‖2‖η‖2 :
w = (λξ , η)}, introduced by Eymard in 1964 [7]. For an abelian group
G, the Fourier transform yields an isometric isomorphism from A(G)

onto L1(Ĝ), where Ĝ is the Pontryagin dual group of G. In general,
A(G) is a two-sided closed ideal of the Fourier-Stieltjes algebra B(G)
[7]. This is the linear span of the set P (G) of all positive definite
continuous functions on G. There is a vast literature about A(G) and
B(G). In an earlier paper, the authors studied the order structure of
the Fourier algebra A(G) [15].

There are reasons to believe the significance of the order structure
of the Fourier algebra. For instance, it is shown by W. Arendt, J.
De Cannière that for locally compact groups G1 and G2, the Fourier
algebras A(G1) and A(G2) are order isomorphic (in either positive-
definite or pointwise orders) if and only if G1 and G2 are isomorphic
and homeomorphic, whereas a similar statement about usual Banach
algebra isomorphism fails [2].

In [8], Figà-Talamanca introduced a natural generalization of the
Fourier algebra, for a compact abelian group G and p ∈ (1,∞), by
replacing L2(G) by Lp(G). In [9], Herz extended the notion to an
arbitrary group, leading to the commutative Banach algebra Ap(G),
called the Figà-Talamanca-Herz algebra. The p-analog of the Fourier-
Stieltjes algebra, is defined as the multiplier algebra Bp(G) of Ap(G)
[4],[12]. Runde in [13] defined this algebra using coefficient functions
of p-representations on QSLp-spaces.

In [16] the authors introduced and studied the order structure of
Ap(G), and extended the result of Arendt and De Cannière. In this pa-

per, using the p-operator space structure on Ap(G)⊗̂pAp(H), for locally
compact groups G,H, we introduce an order structure on this space.
Then we show that the isometric isomorphism between Ap(G×H) and

Ap(G)⊗̂pAp(H), studied in [5], is an order isomorphism for amenable
groups G and H. The amenability assumption is crucial and may not
be removed.
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2. p-Operator Spaces

In this section we give a brief introduction to the notion of p-operator
spaces, defined by Daws in [5] and studied in [1]. Let n ∈ N, p ∈ (1,∞),
and let E be a vector space. We denote the vector space of n × m
matrices with entries from E by Mn,m(E). We put Mn,m := Mn,m(C).
The space Mn := Mn,n is equipped with the operator norm | · |n from
its canonical action on n-dimensional Lp-space , `np . The matrix space
Mn acts on Mn(E) by matrix multiplication. For a square matrix
a = (aij) ∈Mn, we have

‖a‖B(`np ) = sup{(
n∑
i=1

|
n∑
j=1

aijxj|p)1/p : xj ∈ C,
n∑
j=1

|xj|p ≤ 1}.

Definition 2.1. Let E be a vector space. A p-matricial norm on E is
a family (‖ · ‖n)∞n=1 such that for each n ∈ N, ‖ · ‖n is a norm on Mn(E)
satisfying

‖λ · x · µ‖m ≤ |λ|‖x‖n|µ|, ‖x⊕ y‖n+m = max{‖x‖n, ‖y‖m},
for each λ ∈Mm,n, µ ∈Mn,m, x ∈Mn(E), and y ∈Mm(E). Here λ·x·µ
is the obvious matrix product, and |λ| and |µ| are the norms of λ and
µ as the members of B(`np , `

m
p ) and B(`mp , `

n
p ), respectively.

The vector space E equipped with a p-matricial norm (‖ · ‖n)∞n=1 is
called a p-matricial normed space. If moreover, each (Mn(E), ‖ · ‖n) is
a Banach space, E is called an (abstract) p-operator space.

Clearly 2-operator spaces are the same as the classical operator
spaces. For more details about operator spaces see [6], [13] and [20].

Definition 2.2. Let E and F be p-operator spaces, and let T ∈
B(E,F ), then for each n ∈ N

T (n) : Mn(E) −→Mn(F ), T (n)([xij]) = [T (xij)]

is the n-th amplification of T . The map T is called p-completely
bounded if

‖T‖pcb := sup ‖T (n)‖ <∞.
If ‖T‖pcb ≤ 1, we say that T is a p-complete contraction, and if T (n) is
an isometry, for each n ∈ N, we call T a p-complete isometry.

We use the notation ∼=p−iso for p-complete isometries.

By [5, Section 4], the collection CBp(E,F ) of all p-completely bounded
maps from E to F is a Banach space under ‖ · ‖pcb and a p-operator
space through the identification

Mn(CBp(E,F )) = CBp(E,Mn(F )) (n ∈ N).
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Let SQp be the collection of subspaces of quotients of Lp spaces (the
Banach spaces of the form Lp(X) for some measure space X), where
we identify spaces which are isometrically isomorphic. A concrete p-
operator space is a closed subspace of B(E), for some E ∈ SQp. Now
[5, Section 4.1] shows that an abstract p-operator space can be isomet-
rically embedded in B(E) for some E ∈ SQp.

3. Tensor product

Daws in [5] defined the p-operator space projective tensor norm on
the tensor product of two p-operator spaces X and Y , that is

‖u‖∧ = inf {‖α‖‖x‖‖y‖‖β‖, u = α(x⊗ y)β} , u ∈Mm(X ⊗ Y )

where the norm of α and β is taken as members of all linear maps on
suitable `p spaces. The norm defined above, gives X ⊗ Y an abstract

p-operator space structure and the completion is denoted by X⊗̂pY .

Theorem 3.1. [5, Proposition 4.9] Let X, Y and Z be p-operator
spaces. There is a identification

CBp(X⊗̂
p
Y, Z) ∼=p−iso CBp(X,CBp(Y, Z)).

4. Figà-Talamanca-Herz algebras

Throughout the rest of this paper G is a locally compact group, p is
a real number in (1,∞) and q ∈ (1,∞) is the conjugate scalar of p, that
is 1

p
+ 1

q
= 1. Figà-Talamanca-Herz algebras are our main examples of

p-operator spaces, studied in [5]. For any function f : G −→ C we

define f̃ : G→ C by f̃(x) = f(x−1), x ∈ G. The Figà-Talamanca-Herz
algebra Ap(G) consists of those functions f : G → C for which there
are sequences (ξn)∞n=1 and (ηn)∞n=1 in Lq(G) and Lp(G), respectively,
such that f = Σ∞n=1ξn ∗ η̃n and

Σ∞n=1‖ξn‖q‖ηn‖p <∞.

The norm ‖f‖Ap(G) of f ∈ Ap(G) is defined as the infimum of the
above sums over all possible representations of f . Then Ap(G) is a
Banach space which is embedded contractively in C0(G). It was shown
by Herz that Ap(G) is a Banach algebra under pointwise multiplication.
When p = 2, we get the Fourier algebra A(G).

Let λp : G −→ B(Lp(G)) be the left regular representation of G
on Lp(G), defined by λp(s)(f)(t) = f(s−1t). Then λp can be lifted to
a representation of L1(G) on Lp(G). The algebra of pseudomeasures
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PMp(G) is defined as the w∗-closure of λp(L1(G)) in B(Lp(G)). There
is a canonical duality PMp(G) ∼= Ap(G)∗ via

〈ξ ∗ η̃, T 〉 := 〈ξ, T (η)〉 (ξ ∈ Lp(G) , η ∈ Lq(G) , T ∈ PMp(G)).

In particular PM2(G) is the group von Neumann algebra V N(G). If
the map Λp from the projective tensor product Lq(G)⊗̂γLp(G) to C0(G)
is defined by

Λp(g ⊗ f)(s) = 〈g, λp(s)f〉,
for g ∈ Lq(G), f ∈ Lp(G), and s ∈ G, then Ap(G) is isometrically

isomorphic to Lq(G)⊗̂γLp(G)/kerΛp and the dual space of Ap(G) is

PMp(G) = Ap(G)∗ = kerΛp
⊥ = {T ∈ B(Lp(G)) : T |kerΛp=0}.

Since PMp(G) ⊆ B(Lp(G)), it has a natural p-operator space struc-
ture. In particular Ap(G) carries a natural dual p-operator space struc-
ture [5, Section 5.1]. Also there is a quotient structure on Ap(G), mak-

ing the map Λp : Lq(G)⊗̂γLp(G)→ Ap(G) a p-complete quotient map.
When G is amenable, then the two natural p-operator space structures
on Ap(G) agree.[5, Theorem 7.1]

One of the main result of [5] is the following, which we shall use later.

Proposition 4.1. [5, Theorem 7.3] Let G and H be amenable locally
compact groups. Then Ap(G)⊗̂pAp(H) ∼=p−iso Ap(G×H).

For p = 2 this result is proved in [6, Theorem 7.2.4].

Remark 4.2. We use the above identification, whenever we consider an
element u ∈ Ap(G)⊗̂pAp(H) as an element of Ap(G×H).

In this paper we study the above isomorphism of p-operator spaces
as ordered spaces. We show that with a canonical order structure on
p-operator tensor product the above equality is order isomorphism.

5. Order Structure

The concept of positivity appears in the theory of ordered spaces,
lattice spaces and C∗-algebras.

If E is a real vector space, then EC = E+iE is the complexification of
E [17]. Each R-linear map T : E → F has a unique C-linear extension
T̃ : EC → FC. A real vector space E endowed with an order relation
≤ is called a real ordered space if, given x, y ∈ E, the relation x ≤ y
implies x + z ≤ y + z and αx ≤ αy, for all z ∈ E and α ∈ R+. The
positive cone of E is E+ = {x : 0 ≤ x}. We say that E+ is proper
if E+ ∩ (−E+) = {0}. The complexification of a real ordered vector
space is called an ordered space. For given ordered spaces EC and FC,
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a C-linear map T : EC → FC is positive if T (E+) ⊆ F+, and is an order
isomorphism if it is one-one, surjective positive map with a positive
inverse.

The dual space of each (normed) ordered space is an ordered space
as well. Let A be a normed space which is an ordered space. ϕ ∈ A∗ is
positive if for all positive element x in A, we have ϕ(x) is positive.

In this section we give the definition of positivity in spaces which
will be studied in this paper.

Let 1 < p < ∞, X be a measure space and 1 < q < ∞ be the
conjugate scalar of p.

• The natural order structure on C and Mn = Mn(C) come from
their C∗ algebra structures. An element u ∈ C is positive if it
is a real and positive scalar. A matrix [aij] ∈Mn is positive if∑

i,j

aijcicj > 0,

for all chose of scalars c1, · · · , cn ∈ C.
• The natural positive cone of each C∗-algebra gives an order

structure. Also by Ruan’s Theorem [6], each operator space
E isometrically embeds in B(H) for some Hilbert space H and
inherits a natural order structure of C∗-algebra B(H).
• We say that T ∈ B(Lp(X)) is positive if 〈Tf, f〉 ≥ 0 for each
f ∈ Lp(X) ∩ Lq(X), where the pairing is the canonical dual
action of Lq(X) on Lp(X). For p = 2 this order is the natural
order on the C∗-algebra B(L2(X)).
• We say that T = [Tij] ∈ Mn(B(Lp(X))) ∼= B(Lnp (X)), (where
Lnp (X) is the direct sum of n-copies of Lp(X)), is positive if

n∑
i,j=1

〈Tijfi, fj〉 ≥ 0,

for each f1, · · · , fn ∈ Lp(X) ∩ Lq(X).

• We know that B(Lp(X)) ∼=
(
Lq(G)⊗̂γLp(G)

)∗
. For T = [Tij]

belongs to Mn(B(Lp(X))∗), (B(Lp(X))∗) is the predual space)
we say that T is positive, if for each, m ∈ N and φ = [φij] ∈
Mm(B(Lp(X)))+, the natural matrix action 〈φ, T 〉 = [〈φij, Tkl〉]
∈Mn×n is positive.
• For p′ ∈ (1,∞) and measure space Y subspacesM⊆ B(Lp(X))

orM⊆ B(Lp(X))∗ andN ⊆ B(Lp′(Y )) orN ⊆ B(Lp′(Y ))∗, we
say that a linear map T :M−→ N is (p, p′)-completely positive,
if for all n ∈ N, the n-th amplification T (n) : Mn(M) −→
Mn(N ), T (n)[xij] = [T (xij)] of T is a positive map.
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For simplicity, in the case where p = p′ we call such maps
p−completely positive.
• LetM be as above, then since Mn(M∗) ∼= CBp(M,Mn), we say

that T ∈ Mn(M∗) is positive, when it is a p-complete positive
map from M to Mn.

Lemma 5.1. Let the matrix [vij] be a positive element in Mn(B(Lp(X))),
then for each α = (α1, · · · , αn), scalar row vector, we have α[vij]α

∗ is
positive, where α∗ is the conjugate transpose of α.

Proof. We must show that (α1, · · · , αn)[vij](α1, · · · , αn)t =
∑n

i,j=1 vijαiαj
is positive. Suppose that f ∈ Lp(X) ∩ Lq(X), then since [vij] is in
Mn(B(Lp(X)))+ we have

〈
n∑

i,j=1

vijαiαjf, f〉 = 〈
n∑

i,j=1

(vij(αif)αj, f〉

= 〈
n∑

i,j=1

vij(αif), αjf〉 ≥ 0.

�

Theorem 5.2. Let A be a commutative unital C∗-algebra, then a linear
map T : B(Lp(X)) → A is completely positive if and only if it is
positive.

Proof. Proof is similar to that of operator spaces, we give it here for
convenience.

Without loss of generality we may assume that A = C(Ω) for some
compact Hausdorff space Ω, by Gelfand-Naimark Theorem. For a pos-
itive element v = [vij] ∈ Mn(B(Lp(X))) we must show that [T (vij)] is
a positive element in Mn(C(Ω)). By the isometrically isomorphism of
C∗-algebras Mn(C(Ω)) ∼= C(Ω,Mn) and for ω ∈ Ω and α ∈ Cn we have

〈[T (vij)(ω)]α, α〉 =
∑

αT (vij)(ω)α = T
(∑

αvijα
)

(ω) ≥ 0,

since
∑
αvijα is positive by Lemma 5.1. �

6. Order Structure of Herz Algebras

Fourier algebra and its natural order structure induced by its oper-
ator space structure, which is the same as the order structure induced
by positive definite functions as a proper cone, has been studied in
[15], where they defined complete order amenability of the Fourier al-
gebra and compared it with operator amenability. Also in [16] authors
studied the order structure of Figà-Talamanca-Herz algebras.
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With the notation of Section 4, we define the positive cone of Ap(G)
as the closure in Ap(G), of the set of all function of the form f =

Σn
i=1ξi ∗ ξ̃i, for (ξi) in Lp(G) ∩ Lq(G), and denote it by Ap(G)+. Since

with the norm of Fourier algebra the space Cc(G) ∩ P (G) is dense in
A(G) ∩ P (G), the order structure defined above, in the case where
p = 2, is the same as the order structure of A(G), induced by the set
P (G) ∩ A(G), as a positive cone.

The Banach space PMp(G) is a subset of B(Lp(G)), and so has
a natural order structure, induced by B(Lp(G))+. We say that ϕ ∈
Ap(G)∗ is positive if 〈ϕ, f〉 is a positive scalar, for all positive element
f ∈ Ap(G).

It is easy to see that T ∈ PMp(G) is positive as an element of
B(Lp(G)) if and only if it is positive as an element of Ap(G)∗. Also since
Ap(G)+ is closed, u ∈ Ap(G)+ if and only if for each T ∈ PMp(G)+,
〈T, u〉 ≥ 0 [17].

By the definitions of order structure in Section 5, we can give the
order structure of matrix spaces of Figà-Talamanca-Herz algebra.

Let m,n ∈ N, it is easy to see that T = [Tij] ∈Mn(Ap(G)) is positive
if and only if for every p-completely positive and p-completely bounded
linear map φ : PMp(G) −→Mm the natural action 〈φ, T 〉 is a positive
scalar matrix.

For M = Ap(G) or PMp(G)) and N = Ap′(G) or PMp′(G) we say
that a linear map T :M−→ N is (p, p′)-completely positive if for each
positive integer n, the n-th amplification T n : Mn(M) −→ Mn(N ) of
T is a positive map. If this is the case for p = p′, we say that T is
p-completely positive.

In the following, the positive cone of Figà-Talamanca-Herz algebra
is characterized.

Theorem 6.1. [16, Theorem 2.7] Let G be a locally compact amenable
group. Then Ap(G)+ = P (G) ∩ A(G).

Let µ be a measure, and E a Banach space. Daws defined a norm on
the algebraic tensor product Lp(µ)⊗ E by embedding Lp(µ)⊗ E into
Lp(µ,E) and he denoted the completion by Lp(µ) ⊗p E. It is easy to
see that Lp(µ)⊗E is dense in Lp(µ,E), and so Lp(µ)⊗p E = Lp(µ,E)
isometrically [5].

The Banach space PMp(G)⊗PMp(H) is the w∗-closure of PMp(G)⊗
PMp(H) in B(Lp(G)⊗pLp(G)) ∼= B(Lp(G×H)). It has a natural order
structure, coming from B(Lp(G×H)).

Theorem 6.2. [5, Proposition 7.2] Let G and H be locally compact
groups, then PMp(G)⊗PMp(H) ∼= PMp(G×H).
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Let λGp , λHp , λG×Hp be the left regular representation on G, H and
G×H, respectively, Then clearly,

λGp (s)⊗ λHp (t) = λG×Hp (s, t).

For s ∈ G and t ∈ H, suppose λGp (s) ∈ PMp(G)+, λHp (t) ∈ PMp(H)+,
and f ⊗ g belongs to Lp(G×H) ∩ Lq(G×H), then

〈λG×Hp (s, t)f ⊗ g, f ⊗ g〉 = 〈λGp (s)(f)⊗ λHp (t)(g), f ⊗ g〉
= 〈λGp (s)(f), f〉〈λHp (t)(g), g〉

it means that λG×Hp (s, t) belongs to PMp(G×H)+. So

Conv(PMp(G)+ ⊗ PMp(H)+) ⊆ PMp(G×H)+,

but since PMp(G×H)+ = Ap(G×H)∗+, is w∗-closed, and so

Conv(PMp(G)+ ⊗ PMp(H)+)
w∗

⊆ PMp(G×H)+

6.1. p-operator tensor product of Herz algebras. In this section
we discuss if the p-isomtrically isomorphism Ap(G)⊗̂pAp(H) ∼= AP (G×
H), for amenable groups G and H, preserves the order structure.

Consider the following p-complete isometries defined in Proposition
4.1,

Φ0 : Ap(G)⊗̂pAp(H) −→ Ap(G×H)

Φ1 : (Ap(G)⊗̂pAp(H))∗ −→ CBp(Ap(G), PMp(H)),

ϕ→ u, v → ϕ(u⊗ v) ϕ ∈ (Ap(G)⊗̂pAp(H))∗, u, v ∈ Ap(G)

Here we define an order structure on p-operator projective tensor
product of Herz algebras: we say that u ∈ Ap(G)⊗̂pAp(H) is positive
if for all p-completely bounded and p-completely positive linear map
T : Ap(G) −→ PMp(H), 〈T, u〉 is a positive scalar, where the pairing is

defined as Φ1(T )−1(u). In this paper u ∈ Ap(G)⊗̂pAp(H) is considered
as an element of Ap(G×H), identified with Φ0(u).

The above definition can be given for two p-operator spaces which are
subspaces of some space of the form B(Lp(X)) or B(Lp(X))∗, for each
of preduals, if any. We use the generalized definition in the following
theorem.

Theorem 6.3. Let E and F be p-operator spaces which are subspaces
of some space of the form B(Lp(X)) or B(Lp(X))∗, then the linear

map ϕ : E⊗̂pF −→ C is positive if and only if its natural induced map
Tϕ : E −→ F ∗ is completely positive.
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Proof. Let ϕ : E⊗̂pF → C be a positive linear map. We must show
that, for each n ≥ 1, the n-th amplification Tϕ

(n) : Mn(E)→Mn(F ∗) is
a positive map. But Mn(F ∗) ∼= CBp(F,Mn), with its natural definition
mentioned before.

Let x = [xij] be in Mn(E)+, m ∈ N and y = [ykl] be in Mm(F )+.

We need to check that T
(n)
ϕ (x)(y) = [Tϕ(xij)][ykl] = [ϕ(xij ⊗ ykl)] is a

positive scalar matrix. Let α = (c1, . . . , cmn) be a scalar row vector
and put u = α · (x ⊗ y) · α∗. Then u belongs to (E⊗̂pF )∗+. Therefore

〈Tϕ(n)(x)(y)α, α〉 = ϕ(α · (x⊗ y) · α∗) = ϕ(u) ≥ 0.
On the other hand let Tϕ : E −→ F ∗ be a completely positive.

We must show that he linear map ϕ : E⊗̂pF −→ C is positive. Let
u ∈ (E⊗̂pF )+ then by definition of positivity in E⊗̂pF , the natural
action 〈T, u〉 is positive. It means that ϕ(u) = 〈T, u〉 is positive. Now
the statement follows from Theorem 5.2. �

Corollary 6.4. The linear map T : Ap(G) → PMp(H) is completely

positive if and only if the natural induced map ϕT : Ap(G)⊗̂pAp(H)→
C is positive functional.

The next proposition which is proved in [16, Proposition 3.4(ii)] will
be used in the Theorem 6.6, so we mentioned it here.

Proposition 6.5. Let G be an amenable locally compact group, p ∈
(1,∞) and T : Ap(G) −→ PMp(G) be a linear map. Let T1 = T |A(G)

be the restriction of T to A(G).
(i) If T is p-completely positive, then T1 is a completely positive linear

map from A(G) to V N(G).

(ii) If p ≥ 2 and T is a bounded linear map, then for each n ∈ N, we

have ‖T1
(n)‖ ≤ ‖T (n)‖.

(iii) If 1 < p ≤ 2 and T is bounded, then for each n ∈ N we have

‖T (n)‖ ≤ β2
n‖T1

(n)‖.
(iv) If 1 < p ≤ 2 and T is a p-completely positive map, then there

are infinitely many n ∈ N such that ‖T (n)‖ ≤ β2
nn

2.

Theorem 6.6. Let G and H be amenable groups and 2 ≤ p <∞. Then
the p-complete isomrphism between Ap(G×H) and Ap(G)⊗̂pAp(H) is
an order isomorphism (ie. a positive map with positive inverse).

Proof. Let G and H be amenable groups and let u ∈ Ap(G × H)+.
By Theorem 6.1, u belongs to P (G × H), so u is positive as an ele-
ment of A(G×H). We must show that u is positive as an element of
Ap(G)⊗̂pAp(H).
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For this, let T : Ap(G) −→ PMp(H) be an arbitrary p-completely
bounded and p-completely positive linear map, by the definition of
positivity in Ap(G)⊗̂pAp(H), we must show that 〈T, u〉 is a positive
scalar.

In the first step we will show that the map i : A(G) −→ Ap(G) is
(2, p)-completely positive, for this we must show that the map

i(n) : Mn(A(G)) −→Mn(Ap(G))

is a positive map, with respect to the positive cones of Mn(A(G)) and
Mn(Ap(G)). To this aim, for [xij] in Mn(A(G))+, we show that [xij]
belongs to Mn(Ap(G))+. But the order structure on Mn(Ap(G)) is
defined by its dual space. So we prove that the natural action

〈[Sij], [xij]〉 ∈Mn2 ,

gives a positive matrix, for n ∈ N, [Sij] in Mn(PMp(G))+ and [xij] in
Mn(A(G))+.

For n ∈ N and [xij] ∈Mn(A(G)). Since Mn(A(G))+ = CPσ(V N(G),
Mn), where CPσ(V N(G),Mn) is the set of all w∗-continuous com-
pletely positive linear maps from V N(G) to Mn, it follows that [xij] ∈
Mn(A(G))+ if and only if for each [Tij] ∈ Mn[V N(G)]+, we have
[Tkl(xij)] ∈ Mn2+ . Since G is amenable, the embedding i : A(G) −→
Ap(G) is norm decreasing [9]. Therefore, each element [Sij] in Mn[
PMp(G)] can be considered as an element of Mn[V N(G)]. More-
over, [Sij] ∈ Mn[PMp(G)]+ if and only if 〈[Sij][f ], [f ]〉 ≥ 0, for all
[f ] = (f1, · · · , fn) with f1, · · · , fn ∈ Cc(G). Now it is clear that if
[Sij] ∈ Mn[PMp(G)]+, then it also belongs to Mn[V N(G)]+, and so
〈[Sij], [xij]〉 = [Skl(xij)] ∈ Mn2+. Therefore i : A(G) → Ap(G) is a
(2, p)-completely positive map.

This fact implies that T |A(G) : A(G) → V N(G) is a completely
positive linear map and by Proposition 6.5(ii) it is completely bounded.
But A(G×H)+ is equal to the predual cone of all completely bounded
and completely positive linear map from A(G) to V N(H) [15, Section
2]. It means that for u ∈ Ap(G×H)+ = A(G×H)+, 〈T, u〉 is positive

and so u is positive as an element Ap(G)⊗̂pAp(H).

On the other hand let u be a positive element in Ap(G)⊗̂pAp(H),
by the definition of positivity in p-operator tensor product which can
be seen in Section 5, we have for each p-completely bounded and p-
completely positive linear map T : Ap(G) → PMp(H), the natural
action of T on u is positive. But if T : Ap(G) → PMp(H) is a p-
completely bounded and p-completely positive linear map, then by the
computation above T1 : A(G) → V N(G) is a completely positive and
by Proposition 6.5(ii), for p ≥ 2 is completely bounded linear map.
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So T1 belongs to the positive cone of CB(A(G), V N(H)). But the
isometrical isomorphisms

CB(A(G), V N(H)) ∼= (A(G)⊗̂opA(H))∗ ∼= V N(G×H),

are order isomorphism. It means that T which is an element of PMp(G×
H), is a positive element of V N(G×H) and so is a positive element of
PMp(G×H). But u is an element of Ap(G×H) and for each positive
element T of PMp(G×H), T (u) is positive, now by the closedness of
the positive cone of Ap(G×H), we have u ∈ Ap(G×H)+. �

Remark 6.7. Let G and H be locally compact amenable groups, p ∈
(1,∞), and T : Ap(G)⊗̂pAp(H) −→ C be a positive linear map, then
by Theorem 6.6 (with the same nomination) T : Ap(G ×H) −→ C is
a positive linear map. Since in this case Ap(G × H)+ = A(G × H) ∩
P (G × H), we have T |A(G×H) : A(G × H) −→ C is a positive linear
map.

In the following we show that the map T |A(G×H) is continuous, with
the norm of A(G×H).

For u ∈ A(G×H), there exists u1, · · · , u4 with ui ∈ A(G×H)∩P (G×
H) and ‖ui‖A(G) ≤ ‖u‖A(G). It means that if we denote the unit ball of
A(G×H) by U then, U ⊆ U+ − U+ + i(U+ − U+). Suppose T |A(G×H)

is not continuous on U+−U+ + i(U+−U+), then so is on U+. It means
that there exists a sequence {xn}∞n=1 in U+ such that ‖Txn‖ ≥ n3, for
each n ∈ N. Since A(G×H)+ is closed, z :=

∑
xn/n

2 is in A(G×H)+.
Hence Tz ≥ Txn/n

2 > 0, for each n ∈ N. Therefore ‖Tz‖ ≥ n, for
each n ∈ N, which is impossible. So T |A(G×H) is continuous with the
norm of A(G×H) so T belongs to A(G×H)∗.

This shows that the restriction of T belongs to

CB(A(G), V N(H)) ∼= V N(G)⊗V N(H) ∼= V N(G×H).

But in this case we can not conclude continuity of T . This is because of
decomposition of any element of Fourier algebra into positives, which
may fail for Herz algebras.
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