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ON COMPONENT EXTENSIONS OF LOCALLY
COMPACT ABELIAN GROUPS

H. SAHLEH ∗ AND A. A. ALIJANI

Abstract. Let £ be the category of locally compact abelian groups
and A,C ∈ £. In this paper, we define component extensions of
A by C and show that the set of all component extensions of A
by C forms a subgroup of Ext(C,A) whenever A is a connected
group. We establish conditions under which the component ex-
tensions split and determine LCA groups which are component
projective. We also gives a necessary condition for an LCA group
to be component injective in £.

1. Introduction

Let £ denote the category of locally compact abelian (LCA) groups
(will be written additively) with continuous homomorphisms as mor-
phisms. The identity component of a group G ∈ £ is denoted by
G0. A morphism is called proper if it is open onto its image and

a short exact sequence 0 → A
φ→ B

ψ→ C → 0 in £ is said to
be proper exact if φ and ψ are proper morphisms. In this case the
sequence is called an extension of A by C ( in £ ). Following [4],
we let Ext(C,A) denote the (discrete) group of extensions of A by
C.The group operation on Ext(C,A) is as in Theorem 2.19. The split-
ting problem in LCA groups is finding conditions on A and C under
which Ext(C,A) = 0. In [2, 3, 5, 7, 8, 9, 12, 13] the splitting prob-
lem is studied. Sometimes, the splitting problem is limited to a sub-
group or a subset of Ext(C,A). Some subgroups of Ext(C,A) such as
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Pext(C,A),∗Pext(C,A),Tpext(C,A) and Apext(C,A) have been stud-
ied in [2, 7, 8, 9]. In [13], we define s-pure extensions and obtained some
results. In [8] the question investigated is connected with the search
for condition under which the group of pure extensions , Pext(C,A), is
null. In this paper, we introduce a new subgroup of Ext(C,A) , namely
Ext(C,A)0. We study the vanishing problem for this subgroup and will

find a classification for the group C. An extension 0→ A
φ→ B

ψ→ C →
0 is called a component extension if 0 → A0

φ→ B0
ψ→ C0 → 0 is an

extension. Let Ext(C,A)0 denote the set of all component extensions
of A by C. In Section 2, we show that Ext(C,A)0 is a subgroup of
Ext(C,A) whenever A is a connected group (Theorem 2.19). In Sec-
tion 3, we introduce component injective and component projective in
£. An LCA group G is a component projective group in £ if and
only if G ∼= Rn

⊕
C
⊕

A where C is a compact connected group hav-
ing a cotorsion dual and A a discrete free group (Theorem 3.6). If
G is a component injective group in £, then G ∼= Rn

⊕
(R/Z)σ

⊕
H

where n is a nonnegative integer, σ a cardinal number and H a totally
disconnected, LCA group (Theorem 3.3).

The additive topological group of real numbers is denoted by R, Q
is the group of rationals with the discrete topology and Z is the group
of integers with the discrete topology. The Pontrjagin dual of a group
G is denoted by Ĝ. For more on locally compact abelian groups, see
[6].

2. Component extensions

Let A,C ∈ £. In this section, we will define component extensions
and will show that the set of all component extensions of A by C is a
subgroup of Ext(C,A) whenever A is a connected group.

Definition 2.1. An extension 0 → A
φ→ B

ψ→ C → 0 is called a

component extension if 0→ A0
φ→ B0

ψ→ C0 → 0 is an extension.

Lemma 2.2. An extension E : 0→ A
φ→ B

ψ→ C → 0 is a component

extension if and only if 0→ A0
φ→ B0

ψ→ C0 → 0 is an exact sequence.

Proof. Let 0 → A0
φ→ B0

ψ→ C0 → 0 be an exact sequence. By [6,
Theorem 5.29], φ : A0 → B0 and ψ : B0 → C0 are proper morphisms.
Hence E is a component extension. �

Remark 2.3. Let G ∈ £ and H be a connected subgroup of G. We know
that (G/H)0 is the intersection of all open subgroups of G/H. But an
open subgroup of G/H has the form K/H where K is an open subgroup
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of G containing H. Since H is connected, then by [6, Theorem 7.8],
H ⊆ K for every open subgroup K of G. Hence, (G/H)0 = G0/H.

Lemma 2.4. Every extension of a connected LCA group by a LCA
group is a component extension.

Proof. Let E : 0 → A
φ→ B → C → 0 be an extension such that A

is connected. Since φ(A) is a connected subgroup of B, so by Remark

2.3, C0
∼= B0/φ(A). Hence 0 → A

φ→ B0 → C0 → 0 is a component
extension. �

Lemma 2.5. Every extension of a totally disconnected group by a to-
tally disconnected group is a component extension.

Proof. Let E : 0→ A
φ→ B

ψ→ C → 0 be an extension such that A and
C are totally disconnected. We claim that B is totally disconnected.
Since ψ(B0) ⊆ C0 and C is totally disconnected, it follows that ψ(B0) =
0. Hence, B0 ⊆ Imφ. But, Imφ is a totally disconnected group.
Therefore, B0 = 0 and B is a totally disconnected group. �

The extension 0 → A → A
⊕

C → C → 0 is called the trivial
extension.

Lemma 2.6. The trivial extension of A by C is a component extension.

Proof. It is clear. �

Recall that two extensions 0 → A
φ1−→ B

ψ1−→ C → 0 and 0 →
A

φ2−→ X
ψ2−→ C → 0 are said to be equivalent if there is a topological

isomorphism β : B → X such that the following diagram

0 // A
φ1 //

1A
��

B
ψ1 //

β
��

C //

1C
��

0

0 // A
φ2 // X

ψ2 // C // 0

is commutative.

Lemma 2.7. An extension equivalent to a component extension is a
component extension.

Proof. Let

E1 : 0→ A
φ1−→ B

ψ1−→ C → 0

and

E2 : 0→ A
φ2−→ X

ψ2−→ C → 0

be two equivalent extensions such that E1 is a component extension.
Then, there is a topological isomorphism β : B → X such that βφ1 =
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φ2 and ψ2β = ψ1. Let c0 ∈ C0. Since E1 is a component extension,
so ψ1(b0) = c0 for some b0 ∈ B0. Hence, ψ2(β(b0)) = ψ1(b0) = c0. So,
ψ2 : X0 → C0 is surjective. Now, let ψ2(x0) = 0 for some x0 ∈ X0.
Since β(B0) = X0, so there exists b0 ∈ B0 such that β(b0) = c0.
Hence, ψ1(b0) = ψ2(β(b0)) = 0. Since E1 is a component extension,then
φ1(a0) = b0 for some a0 ∈ A0. Consequently, φ2(a0) = β(φ1(a0)) =
x0. �

Definition 2.8. Let E : 0 → A
φ−→ B

ψ−→ C → 0 be an extension
and α : A→ A′ be a proper morphism. We define the sequence αE as
follows:

αE : 0→ A′
φ′−→ X

ψ′−→ C → 0

where

X = (A′
⊕

B)/H

H = {(−α(a), φ(a)); a ∈ A}

φ′(a′) = (a′, 0) +H

ψ′((a′, b) +H) = ψ(b)

Then, αE is an extension which is called the standard pushout of E
(See [4, Proposition 2.3]).

Let γ : C ′ → C be a proper morphism. We define the sequence Eγ
as follows:

Eγ : 0→ A
φ′−→ X

ψ′−→ C ′ → 0

where

X = {(b, c′); b ∈ B, c′ ∈ C ′, ψ(b) = γ(c′)}

φ′(a) = (φ(a), 0)

ψ′(b, c′) = c′

Then, Eγ is an extension which is called the standard pullback of E
(See [4, Proposition 2.3]).

Lemma 2.9. A pullback of a component extension is a component
extension.
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Proof. Suppose 0 → A
φ−→ B

ψ−→ C → 0 is a component extension
and

0 // A
φ′ //

1A
��

B′
ψ′ //

��

C ′ //

γ

��

0

0 // A
φ // B

ψ // C // 0

is the standard pullback diagram. Then,

B′ = {(b, c′);ψ(b) = γ(c′)}
and

φ′ : a 7−→ (φ(a), 0), ψ′ : (b, c′) 7−→ c′

We show that 0→ A0
φ′−→ B′0

ψ′−→ C ′0 → 0 is exact. Let c′0 ∈ C ′0. Then,
γ(c′0) ∈ C0. Since ψ : B0 → C0 is surjective, so there exists b0 ∈ B0

such that ψ(b0) = γ(c′0). Hence, (b0, c
′
0) ∈ B′0 and ψ′(b0, c

′
0) = c′0.

So ψ′ : B′0 → C ′0 is surjective. Now, suppose that (b, c′) ∈ B′0 and
ψ′(b, c′) = 0. Then, c′ = 0 and b ∈ B0. Since ψ(b) = 0, so there exists
a0 ∈ A0 such that φ(a0) = b. Hence, φ′(a0) = (b, 0) = (b, c′). This
shows that Kerψ′ |B′0⊆ Imφ′ |A0 . �

Remark 2.10. Let f : A→ C be a proper morphism and G ∈ £. Then

(1) f∗ : Ext(G,A)→ Ext(G,C) defined by f∗([E]) = [fE]
and

(2) f ∗ : Ext(C,G)→ Ext(A,G) defined by f ∗([E]) = [Ef ]
are group homomorphisms (See [10, Theorem 2.1]).

Recall that Ext(C,A)0 denotes the set of all component extensions
of A by C. We say that Ext(C,A)0 = 0 if every component extension
of A by C splits.

Lemma 2.11. Let f : A→ C be a proper morphism. Then, f ∗(Ext(C,G)0)
⊆ Ext(A,G)0 for all G ∈ £.

Proof. Let E ∈ Ext(C,G)0. Then, by definition, Ef is a pullback of
E.By Remak 2.10 (2), f ∗(E) = [Ef ] . Now, by Lemma 2.9,f ∗(E) ∈
Ext(A,G)0. �

Theorem 2.12. If C is a connected group and A a totally disconnedted
group, then Ext(C,A)0 = 0.

Proof. Let E : 0→ A
φ→ B

ψ→ C → 0 be a component extension. Then,

0 → A0
φ→ B0

ψ→ C0 → 0 is an extension. Since A is totally discon-
nected and C connected, it follows that ψ : B0 → C is a topological iso-
morphism. We claim that B = B0 + φ(A). Let b ∈ B. Then ψ(b) ∈ C.
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So ψ(b) = ψ(b0) for some b0 ∈ B0. Hence b − b0 ∈ kerψ = imφ. So
b = b0 + φ(a) for some a ∈ A. Now, we show that φ(A)

⋂
B0 = 0. Let

b ∈ φ(A)
⋂
B0. Then, ψ(b) = 0. Since ψ : B0 → C is injective, so

b = 0. Hence, φ(A)
⋂
B0 = 0. Since B0 is σ−compact, it follows from

[4, Corollary 3.2] that B ∼= φ(A)
⊕

B0. This shows that E splits. �

Lemma 2.13. Let G ∈ £ be a non discrete group which contains a
compact open subgroup K. Then Ext(G,Z) 6= 0.

Proof. Consider the exact sequence 0→ K → G→ G/K → 0. By [4,
Corollary 2.10], we have the exact sequence

→ Ext(G/K,Z)→ Ext(G,Z)→ Ext(K,Z)→ 0

If Ext(G,Z) = 0, thenExt(K,Z) = 0. By [4, Theorem 2.12], Ext(Ẑ, K̂)
∼= Ext(K,Z) = 0. It follows from [4, Proposition 2.17] that K̂ = 0
which is a contradiction because G is not a discrete group. �

Lemma 2.14. Let G ∈ £ be a non connected and non totally dis-
connected group such that G0 is not an open subgroup of G. Then
Ext(G,Z)0 6= 0.

Proof. Consider the extension 0 → G0
i−→ G −→ G/G0 → 0. By [5,

Corollary 2.10], we have the exact sequence

0→ Ext(G/G0,Z)
π∗−→ Ext(G,Z)

i∗−→ Ext(G0,Z)→ 0

Now, suppose that Ext(G,Z)0 = 0. We have π∗(Ext(G/G0,Z)0) ⊆
Ext(G,Z)0, so π∗(Ext(G/G0,Z)0 = 0. Since π∗ is injective, then
Ext(G/G0,Z)0 = 0. By Lemma 2.5, Ext(G/G0,Z) = 0 which is a
contradiction because G/G0 is a totally disconnected group which con-
tains a compact open subgroup. On the other hand, G/G0 is not a
discrete group. So, by Lemma 2.13, Ext(G/G0,Z) 6= 0. �

Lemma 2.15. Let A be a discrete divisible group and G a LCA group.
Then Ext(G,A)0 = 0.

Proof. Consider the extension 0 → G0
i−→ G −→ G/G0 → 0. By [5,

Corollary 2.10], we have the exact sequence

0→ Ext(G/G0, A)→ Ext(G,A)
i∗−→ Ext(G0, A)→ 0

Since, G/G0 is a totally disconnected group, so by [4, Theorem 3.4]
Ext(G/G0, A) = 0. Hence, i∗ is injective. By Lemma 2.11,i∗(Ext(G,A)0)
⊆ Ext(G0, A)0. By Theorem 2.12, Ext(G0, A)0
= 0. Hence, i∗(Ext(G,A)0) = 0. Now Ext(G,A)0 = 0 because i∗ is
injective. �
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The following remark shows that the pushout of a component exten-
sion need not be a component extension.

Remark 2.16. By Lemma 2.14, if G = Q̂
⊕

(̂Q/Z), then Ext(G,Z)0 6=
0. So there exists a non splitting component extension E : 0→ Z φ−→
X → G→ 0. Consider the standard pushout iE:

iE : 0→ Q→ (Q
⊕

X)/H → G→ 0

where H = {(−n, φ(n));n ∈ Z}. Let iE be a component exten-
sion. Then by Lemma 2.15, it splits. So (Q

⊕
X)/H ∼= Q

⊕
G. Since

Q
⊕

G is torsion-free, so H is a pure subgroup. On the other hand,
H ⊆ Q

⊕
nX. So H is a divisible group. Hence, for a positive in-

teger m 6= 1, there exists (−n, f(n)) ∈ H such that m(−n, f(n)) =
(−1, f(1)). It follows that mn = 1 which is a contradiction. So iE is
not a component extension.

Lemma 2.17. Let A be a connected group. Then a pushout of a com-
ponent extension of A by C is a component extension.

Proof. Suppose 0 → A
φ−→ B

ψ−→ C → 0 is a component extension
and

0 // A
φ //

µ

��

B
ψ //

��

C //

1C
��

0

0 // A′
φ′// (A′

⊕
B)/H

ψ′ // C // 0

is a standard pushout diagram. Then

H = {(µ(a),−φ(a)), a ∈ A}

and

φ′ : a′ 7−→ (a′, 0) +H, ψ′ : (a′, b) +H 7−→ ψ(b)

We show that 0 → A′0
φ′−→ ((A′

⊕
B)/H)0

ψ′−→ C0 → 0 is exact. Let
c0 ∈ C0. Since ψ : B0 → C0 is surjective, so there exists b0 ∈ B0

such that ψ(b0) = c0. Hence (0, b0) + H ∈ ((A′
⊕

B)/H)0. Since
ψ′((0, b0) + H) = c0, so ψ′ : ((A′

⊕
B)/H)0 → C0 is surjective. Let

(a′, b) + H ∈ ((A′
⊕

B)/H)0 and ψ′((a′, b) + H) = 0. So ψ(b) = 0.
Hence, there is a ∈ A such that φ(a) = −b. Since A is connected, then
µ(A) ⊆ A′0. �

Let E1 : 0→ A
φ−→ B

ψ−→ C → 0 and E2 : 0→ A
φ′−→ B′

ψ′−→ C →
0 be two extensions of A by C. Then the direct sum of E1 and E2 is
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denoted by E1

⊕
E2 and defined as follows:

E1

⊕
E2 : 0→ A

⊕
A

φ
⊕
φ′−→ B

⊕
B′

ψ
⊕
ψ′−→ C

⊕
C → 0

Lemma 2.18. The direct sum of two component extensions is a com-
ponent extension.

Proof. It is clear. �

Theorem 2.19. Let A,C ∈ £ such that A is a connected group. Then,
Ext(C,A)0 is an subgroup of Ext(C,A) with respect to the operation
defined by

[E1] + [E2] = [∇A(E1

⊕
E2)4C ]

where E1 and E2 are component extensions of A by C and ∇A and 4C

are the diagonal and codiagonal homomorphism.

Proof. Clearly, 0 → A → A
⊕

C → C → 0 is a component extension.
Let [E] ∈ Ext(C,A)0. The inverse of [E] is [−1AE] which belongs to
Ext(C,A)0 (Lemma 2.17). By Lemma 2.9 and Lemma 2.17, [E1] +
[E2] ∈ Ext(C,A)0 for two component extensions E1 and E2 of A by C.
Therefore, Ext(C,A)0 is a subgroup of Ext(C,A). �

3. component injective and projective in £

In this section, we define the concept of component injective and
component projective in £ and classify them.

Definition 3.1. Let G ∈ £. We call G a component injective group
in £ if for every component extension

0→ A
φ−→ B → C → 0

and a morphism f : A → G, there is a morphism f̄ : B −→ G such
that f̄φ = f .

We call G a component projective group in £ if for every component
extension

0→ A→ B
ψ−→ C → 0

and a morphism f : G→ C, there is a morphism f̄ : G→ B such that
ψf̄ = f .

Lemma 3.2. Q is not a component injective in £.

Proof. By Lemma 2.14, there is a non splitting component extension

E : 0→ Z
φ−→ X

ψ−→ G→ 0. Let Q be a component injective. Then,
there is a morphism f : X → Q such that fφ = i where i : Z ↪→ Q is an
inclusion. Since E is a component extension, so ψ(X0) = G0. Hence,
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X = X0 +φ(Z). Since f is continuous and Q totally disconnected,then
f(X0) = 0. We claim that f(x) = n for some n ∈ Z. Let x ∈ X.
Then x = x0 + φ(n) for some n ∈ Z. So f(x) = f(φ(n)) = n. An
easy calculation shows that f−1(0) = X0. So X0 is open in X. Hence
ψ(X0) = G0 is open in G which is a contradiction. �

Theorem 3.3. Let G ∈ £. Consider the following conditions for G:

(1) G is component injective in £.
(2) Ext(X,G)0 = 0 for all X ∈ £.
(3) G ∼= Rn

⊕
(R/Z)σ

⊕
H where n is a nonnegative integer, σ a

cardinal number and H is a totally disconnected, LCA group.

Then: (1)⇒ (2)⇒ (3).

Proof. (1)⇒ (2): It is clear.
(2)⇒ (3): Let G ∈ £ and Ext(X,G)0 = 0 for all X ∈ £. Let C be

a connected group. Consider the following exact sequence

0→ Ext(C,G0)
i∗−→ Ext(C,G)

π∗−→ Ext(C,G/G0)→ 0

Since Ext(C,G)0 = 0 and i∗(Ext(C,G0)0) ⊆ Ext(C,G)0 = 0, so
Ext(C,G0)0 = 0. By Lemma 2.4 (2), Ext(C,G0) = 0. So By [5, Theo-
rem 3.3], G0

∼= Rn
⊕

(R/Z)σ. Hence G ∼= G0

⊕
G/G0. Set H = G/G0.

So G ∼= Rn
⊕

(R/Z)σ
⊕

H. �

Remark 3.4. In Theorem 3.3, (3) may not imply (1).For example, take
G = Q. Then, by Lemma 3.2, G is not a component injective group.

Also, if X = Q̂
⊕

(̂Q/Z) then by Lemma 2.14 Ext(X,Z)0 6= 0. Hence,
(3) may not imply (2) as well.

Lemma 3.5. Let G ∈ £ and {Hi; i ∈ I} be a collection in £ such that⊕
i∈I Hi ∈ £. If Ext(Hi, G)0 = 0 for every i, then Ext(

⊕
i∈I Hi, G)0 =

0.

Proof. By [4, Theorem 2.13], σ : Ext(
⊕

i∈I Hi, G) →
∏

i∈I Ext(Hi, G)
defined by σ([E]) = ([Eli])i∈I is an isomorphism where li : Hi →⊕

i∈I Hi is an injection. By Lemma 2.9, [Eli] ∈ Ext(Hi, G)0 for every
i. So σ(Ext(

⊕
i∈I Hi, G)0) ⊆

∏
i∈I Ext(Hi, G)0. Now, suppose that

Ext(Hi, G)0 = 0 for every i. Then, σ(Ext(
⊕

i∈I Hi, G)0) = 0. Since σ
is injective, then Ext(

⊕
i∈I Hi, G)0 = 0. �

Theorem 3.6. Let G ∈ £. The following statements are equivalent:

(1) G is component projective in £.
(2) Ext(G,X)0 = 0 for all X ∈ £.
(3) G ∼= Rn

⊕
C
⊕

A where C is a compact connected group having
a cotorsion dual and A a discrete free group.
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Proof. (1)⇒ (2): It is clear. (2)⇒ (3): Let G ∈ £ and Ext(G,X)0 =
0 for all X ∈ £. Let X be a totally disconnected group. Consider the
following exact sequence

0→ Ext(G/G0, X)
π∗−→ Ext(G,X)

i∗−→ Ext(G0, X)→ 0

Since Ext(G,X)0 = 0, so Ext(G/G0, X)0 = 0. Hence Ext(G/G0, X) =
0 for all totally disconnected groups X. By [4, Theorem 4.1], G/G0

is a free group. So G ∼= G0

⊕
G/G0. By Lemma 2.4, Ext(G,C) =

Ext(G,C)0 = 0 for all connected groups C ∈ £. So Ext(G0, C) = 0
for all connected groups C ∈ £. by [5, Theorem 3.6], G0

∼= Rn
⊕

C
where C is a compact group having a cotorsion dual. (3) ⇒ (2): Let
G ∼= Rn

⊕
C
⊕

A where C is a compact connected group having a
cotorsion dual and A a discrete free group. By [11, Theorem 3.3],
Ext(Rn

⊕
A,X) = 0 for all X ∈ £. Let X ∈ £. Now, we show that

Ext(C,X)0 = 0. Consider the following exact sequence

0→ Ext(C,X0)→ Ext(C,X)
π∗−→ Ext(C,X/X0)→ 0

Since Ĉ is a cotorsion group, so Ext(C,X0) ∼= Ext((̂X0), Ĉ) = 0. By
Theorem 2.12, Ext(C,X/X0)0 = 0. Hence π∗(Ext(C,X)0) = 0. So
Ext(C,X)0 = 0. Hence, by Lemma 3.5, Ext(Rn

⊕
C
⊕

A,X)0 = 0.

(2) ⇒ (1): Let 0 → A
φ−→ B

ψ−→ C → 0 be a component extension
and f : G→ C a morphism. Consider the pullback diagram

0 // A
φ′ //

1A
��

B′
ψ′ //

β
��

G //

f
��

0

0 // A
φ // B

ψ // C // 0

By Lemma 2.9, Ef is a component extension. So by assumption,
Ef splits. Hence, there is a morphism h : C → B′ such that ψ′h = f .
Now, βh is a morphism of G to B and ψβh = f . So G is component
projective in £.

�
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