تعداد نشریات | 31 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,108 |
تعداد مشاهده مقاله | 10,239,994 |
تعداد دریافت فایل اصل مقاله | 6,897,717 |
Approximation of stochastic advection diffusion equations with finite difference scheme | ||
Journal of Mathematical Modeling | ||
مقاله 1، دوره 4، شماره 1، آبان 2016، صفحه 1-18 اصل مقاله (391.16 K) | ||
نوع مقاله: Research Article | ||
نویسندگان | ||
Mehran Namjoo* ؛ Ali Mohebbian | ||
School of Mathematical Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran | ||
چکیده | ||
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $\rm It\hat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes, i.e. consistency, stability and convergence, are developed for the stochastic case. It is shown through analysis that the proposed scheme has these properties. Numerical results are given to demonstrate the computational efficiency of the stochastic scheme. | ||
کلیدواژهها | ||
stochastic partial differential equations؛ Consistency؛ Stability؛ Convergence | ||
آمار تعداد مشاهده مقاله: 1,674 تعداد دریافت فایل اصل مقاله: 2,214 |