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ABSTRACT 
The performance of geostatistical and spatial interpolation techniques were investigated for estimation of spatial 

variability of heavy metals and water quality mapping of groundwater resources in Ramiyan district (Golestan 

province, Iran). 24 spring/well water samples were collected and the concentration of heavy metals (Ni, Co, Pb, 

Cd and Cu) was determined using differential pulse polarography. Multivariate and geostatistical methods have 

been applied to differentiate the influences of natural processes and human activities as the sources of    heavy 

metal pollutants in groundwater across the study area. The results of the cluster analysis and factor analysis show 

that Ni and Co are grouped in the factor F1, whereas, Pb and Cd in F2 and Zn and Cu in F3. The probability of 

presence of elevated levels for the three factors was predicted by utilizing the most appropriate Variogram Model, 

whilst the performance of methods, was evaluated using mean absolute error, mean bias error and root mean 

square error. The spatial structure results show that the variograms and cross-validation of the six variables can 

be modeled with three methods, namely, the radial basis fraction, inverse distance weight and ordinary kriging. 

Moreover, the results illustrated that radial basis fraction method was the best due to its highest precision and 

lowest error. The geographic information system can fully display spatial patterns of heavy metal concentrations 

in groundwater resources of the study area. 
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INTRODUCTION 

Water is the basic requirement for all life on 

earth and an increase in the population and 

urbanization necessitates growth of 

agricultural and industrial sectors, increasing 

demand for fresh water. When surface water is 

not available; the alternative is to depend on 

groundwater (GW) (Subramani et al., 2012). A 

variety of natural and human factors, affects the 

quality and use of water resources. Heavy 

metals are among the major pollutants of these 

sources (Marcovecchio et al., 2007). Many 

human activities, such as agriculture, mining 

and the combustion of fossil fuels, release 

heavy metals into the environment. Thereby, 

with an increase in their concentration and a 

decrease in the capacity of soils towards heavy 

metals, these leach into the soil solution and 

GW and then they accumulate in living tissues 

among people through the food chain (Mantovi 

et al., 2003; Lei et al., 2008), in addition to being 

sensitive indicators for monitoring changes in 

the aqueous environment. In environmental 

monitoring, such as groundwater quality 

investigations, the collected data may harbor 

significant uncertainty, including complex or 

extremely complicated variations in the 

observed values of measurable characteristics, 

of the investigated medium or pollution 

sources in time and space (Yeh et al., 2006). 

Geostatistics, is a spatial statistical technique 

used in environmental monitoring, which is 

applied to analyze and map distributions of 

pollutant concentrations and their spatial and 
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temporal variations. It is more widely used to 

analyze the collected data from groundwater 

resources (Yu et al., 2003; Yeh et al., 2006; Nas & 

Berkta, 2006; Khodapanah & Sulaiman, 2009; 

Uyan & Cay, 2010; Amin et al., 2010; Belkhiri et 

al., 2011; Sarukkalige, 2012). Furthermore, the 

application of different multivariate statistical 

techniques helps in the interpretation of 

complex data matrices, for a better 

understanding of water quality of the studied 

systems. These methods allow identification of 

possible factors/sources which influence the 

water systems and offer a valuable tool for a 

reliable management of water (Shrestha & 

Kazama, 2007; Iscen et al., 2008; Ogunribido & 

Kehinde–Philips, 2011; Li et al., 2012; Bajpayee 

et al., 2012). Multivariate geostatistical methods 

combine the advantages of geostatistical 

techniques and multivariate analysis, while 

incorporating spatial or temporal correlations 

and multivariate relationships to detect and 

map the varied sources of spatial variation on 

different scales (Smyth & Istok, 1989; Einax & 

Soldt, 1999; Yeh et al., 2006; Zheng et al., 2008; 

Lin et al., 2009). Excavation of coal mines, 

agricultural activities and development of 

industrial parks in Ramiyan, in Golestan 

Province (Iran), provoke evaluation of 

contaminations resulting from these activities. 

The lack of a systematic investigation of the 

probable contamination by heavy metals in 

Ramiyan, urges an assessment of the quality of 

groundwater sources in this area.  

The aquifer is the main source for drinking and 

irrigation critical for the local residents. 24 

well/spring samples were collected and 

analyzed by voltametric method for 

determination of such heavy metals. The 

presence and concentration of heavy metals 

were determined and the results were 

compared to the maximum contaminant level, 

specified by WHO and the Institute of 

Standards and Industrial Research of Iran 

(ISIRI). This study aims at investigating the 

contents of Cu, Ni, Zn, Cd, Pb and Co in the 

groundwater resources of Ramiyan, including 

the analysis of their spatial distribution as well 

as unveiling their possible sources by 

integrating multivariate statistical and 

geostatistical methods.  

MATERIALS AND METHODS 

Site description 

Golestan Province is located at the southeast of 

the Caspian Sea in Northern Iran. The study 

area is Ramiyan district, with an area of 780.73 

km2 situated between 54˚ 45´ and 55˚ 15´ east 

longitude and 36˚ 48´ and 37˚ 12´ north latitude. 

The main activity carried out in this area is 

agriculture and the main crops grown are 

wheat, oilseeds, rice and garden products 

(Mosaedi & Gharib, 2008). Due to the presence 

of coal mines, industrial and mining activities 

have also been developed across the study area. 

Sample collection 

The samples were collected for the assessment 

of groundwater pollution with heavy metals 

from twenty four stations (wells/springs) in 

the study area (Fig. 1, Table 1). The sampling 

was carried out in summer 2012 and three 

replicate samples from each station were 

selected for analysis. The glassware and vessels 

were treated in 10% (v/v) nitric acid solution 

for 24 h and washed with distilled and de-

ionized water. The samples were collected in 

polypropylene containers, labeled and a few 

drops of HNO3 (ultrapure grade) of pH < 2 

were added immediately, to prevent the loss of 

metals, bacterial and fungal growth. These 

were then stored in a refrigerator. 

Multivariate and geostatistical analysis 

The multivariate analysis provides techniques, 

such as the Principle Component Analysis 

(PCA), Factor Analysis (FA) and Cluster 

Analysis (CA) for classifying the inter-

relationship of measured variables (Zamani et 

al., 2012). The CA was performed on the data, 

by utilizing the ward method and squared 

euclidean distance characteristic. Multivariate 

geostatistical methods combine the advantages 

of geostatistical techniques and multivariate 

analysis, whereas, the geostatistical techniques 

have been applied to illustrate the 

incorporating spatial or temporal correlations 

and multivariate relationships, in order to map 

the various sources of spatial variation on 
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divergent scales (Faccinelli et al., 2001). 

Geostatistics is presented as a collection of 

techniques for solving estimation problems 

involving spatial variables. It includes a variety 

of tools such as interpolation, integration and 

differentiation of hydro-geologic parameters to 

produce the prediction surface and other 

derived characteristics from measurements at 

known locations (Sahoo & Jha, 2014).  

The first step in the geostatistical estimation, is 

a provision of a model that can facilitate the 

computation of semivariogram value for any 

possible sampling intervals.  

The most commonly used models are the 

Spherical, Exponential, Gaussian and Pure 

Nugget effect (Isaaks & Srivastava, 1989).  

The semivariogram plays a fundamental role in 

the analysis of geostatistical data by employing 

the Kriging Method. Prior to performing 

Kriging, a valid semivariogram model has to be 

selected and the model parameters have to be 

estimated (Pang et al., 2009).  An experimental 

semivariogram is calculated as follows: 

 
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 Where, ( )h denotes the semivariogram, h  is 

the spatial interval, which is designated as lag; 

( )n h  is the observed paired data, when the h  

interval 
( )iZ x

and 
( )iZ x h

 are the 

measured values, when the Z(x) values are as 

xi+h, respectively. Valid models which are 

commonly fitted to the experimental semi 

variograms include the spherical, Gaussian and 

exponential functions. These are characterized 

by a sill, which represents the covariance 

accounted for by the model and a range that 

signifies the extent of spatial correlation. The 

value of the semi variograms is referred to as 

the nugget effect, where the model approaches 

the abscissa. These significant geostatistical 

parameters can indicate the spatial variation 

and relativity of regionalized variables under a 

certain scale (Yang et al., 2009).  

 
Fig 1. Location map of Ramiyan and the sampling points.

 

Interpolation methods 

Kriging Method was used as estimating tool in 

sustainable management of groundwater. It is 

a geostatistical interpolation technique that 

considers both the distance and the degree of 

variation between known data points when 

estimating values in unknown areas (Sahoo & 

Jha, 2014). This technique is an exact 

interpolation estimator, which is used to detect 

the best linear unbiased estimate. The optimum 

linear unbiased estimator must have a 
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minimum variance of error of estimation (Einax 

& Soldt, 1999; Ahmadi & Sedghamiz, 2008). In 

order to estimate the values of some locations 

which are not sampled, it is necessary to solve 

the following linear equation: 

*

1

( ) ( )
n

i i

i

Z x W Z x



                                   (2)                                                                 

*Z  denotes the estimate of the unknown value 

( )iZ x
and iW

are the weights of known 

neighboring points ix
.  

Kriging is an estimating method that is stable 

on weighty mobile average coincident. This 

estimator is known as a best unbiased linear 

estimator. Spherical, circular, Gaussian and 

exponential functions are available models 

when the Kriging method is ordinary (Nas, 

2009). Goovaerts describes the detail of the 

method (Goovaerts, 1997).  

Because it uses statistical models, it allows a 

variety of map outputs, including predictions, 

prediction standard errors, probability, and 

quantile maps. Among the various forms of 

Kriging, ordinary Kriging has been used 

widely as a reliable estimation method (Nas, 

2009). In interpolation with the Inverse 

Distance Weighted (IDW) method, a weight is 

attributed to the point to be measured. In other 

words weight is the function of inverse distance 

and closer points have more influence in 

estimating unknown points (Eslami et al., 2013). 

The amount of this weight depends on the 

distance of the point to another unknown point. 

These weights are controlled on the bases of 

power ten.  

So, with an increase of power, the effect of the 

points (that are farther) diminishes, whilst a 

lesser power distributes the weights more 

uniformly between neighboring points.  In this 

method the distance between the points counts, 

so that, the points of equal distance have equal 

weights (Balakrishnan et al., 2011). The weight 

factor is determined based on the distance 

between the data points as follows: 
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Where iW
designates the weight of point iD

 

which is the distance between point i and the 

unknown point,  which is the weight on the 

bases of power ten and n is the number of data 

points (Karandish & Shahnazari, 2014). Kriging 

in geostatistics is similar to inverse distance 

weighting except that the weights are based not 

only on the distance between the measured 

sampling points but also on the overall spatial 

arrangement among the sampling points. The 

basic assumption in kringing is that the 

sampling points that are close to each other are 

similar than those that are away. Kriging is 

regarded as an optimal spatial interpolation 

method, which is a type of weighted moving 

average (Gorai & Kumar, 2013). The Radial 

Basis Functions (RBF) Methods are a series of 

exact interpolation techniques, where the 

surface must go through for each measured 

sample value. The basis of each function has a 

different shape and results in a slightly 

different interpolation surface (Kazemi 

Poshtmasari et al., 2012). RBF Methods predict 

values that can vary above the maximum or 

below the minimum of the measured values. 

For all RBF Methods, there is a parameter that 

controls the smoothness of the resulting 

surface. The estimated values of the methods 

are based on a mathematical function that 

minimizes the overall surface curvature, 

generating surfaces that are quite smooth. The 

differences among them are slight, so the 

generated surfaces are almost similar. A 

formula f, which minimizes the following 

factor [eq. (4)], is an example of the RBF 

technique and more specifically of the exact SP 

line method (Karydas et al., 2009):  

 
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Where 
( ) ( ) ( )i i iy x z x x 

 signifies the 

source of random error, z  is the measured 
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value of an attribute at point ix
and epsilon is 

the associated random error. The term ( )A f  

represents the smoothness of the function f and 

the second term represents its proximity to the 

data (Karydas et al., 2009).  

Evaluation criteria 

The adequacy and validity of the developed 

semivariogram models was tested satisfactorily 

by a technique called cross-validation. The idea 

of cross-validation consists of removing a 

datum at a time from the data set and 

reestimating this value from remaining data by 

using different variogram models. The 

interpolated and actual values are compared, 

and the model that yields the most accurate 

predictions is retained (Burrough & 

McDonnell, 1998; Karimi Nezhad et al., 2012 ;). 

In this paper, to compare the applied 

Interpolation methods, a cross validation was 

performed by utilizing the Mean Bias Error 

(MBE), Mean Absolute Error (MAE) and the 

Root Mean Square Error (RMSE) of the  

statistical parameters. When MAE and MBE 

shift to zero, the applied method simulates the 

fact well. Finally, we used the RMSE to evaluate 

the model performances in the cross-validation 

mode. Each of these measures is such 

‘dimensioned’ that, it expresses an average 

interpolator error in the units of the variable of 

interest. The smallest RMSE indicates the most 

accurate predictions. This method was recently 

adopted by many researchers (Twomey & 

Smith, 1996; Willmott & Matsuura, 2006; 

Kazemi Poshtmasari et al., 2012; Karandish & 

Shahnazari, 2014). These parameters are 

calculated according to the following equation 

Nos. (5 to 7): 
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Where Z (xi) is the observed value at point xi, 

Z*(xi) is the predicted value at point x and N 

denotes the number of samples. 

RESULTS AND DISCUSSION 

The extent of heavy metal contamination 

The results of the analysis of target metal ions 

i.e., Co, Ni, Zn, Cd and Pb in samples from 24 

wells/springs under study are given in Table 

(2). The results show that Co, Ni, Pb and Cd are 

evident in 100% of the samples and Zn and Cu 

are detected in 96% and 88% of the samples, 

respectively. The concentration of investigated 

metals (in µg/L) in the samples were found to 

be below their MCL and in the ranges of 5.69 -

92.44 for Zn, 1.23 -7.06 for Pb, 0.14-8.40 for Cu, 

0.01-0.99 for Cd, 1.23 -21.79 for Ni and 0.49 -7.79 

for Co. The geographical location of the 

sampling stations and the average 

concentrations of metals at each station are 

shown in Table (1). 

Classification survey of heavy metals by the 

Cluster Analysis Method 

Two main groups of elements have been 

determined using the Cluster Analysis Method, 

one group includes Ni and Co and the other 

comprises of Pb, Cd, Zn and Cu (Fig. 2).  

Principal component analysis and factor 

analysis 

The major objective of the Factor Analysis (FA) 

is to reduce the contribution of less significant 

variables so as to further simplify even more of 

the data structure given by the PCA. This goal 

can be achieved by rotating the axis defined by 

the PCA and the construction of new variables, 

which are also called Varifactors (Shrestha & 

Kazama, 2007). Prior to such analysis, the raw 

data is commonly normalized to avoid 

misclassifications, due to the varied order of 

magnitude and range of variation of the 

analytical parameters (Tabachnick & Fidell, 

2007). This process reduces the dimensionality 

of data by a linear combination of original data, 

to generate new latent variables which are 
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orthogonal and uncorrelated to each other 

(Nkansah et al., 2010). According to the results 

of the Eigen values in Table (3), three factors are 

extracted from the available data set, which 

accounts for over 82.07% of all the data 

variation. The common factors were extracted 

by means of the maximum-likelihood method 

with the Varimax-rotation.  

Nickel and cobalt, contained in the first factor, 

are typical emitted elements of electronic 

plants. The second factor includes cadmium 

and lead elements which are emitted by the 

agricultural activities and the metallurgical 

plant.  

The third factor is loaded with zinc and copper, 

which are emissions of batteries, pigments and 

fungicides. The heavy metal grouping has been 

explored in plotting the first three principle 

components generated from these parameters 

(Fig. 3).

 

Table 1. GPS location and concentration of heavy metals in sampling stations. 

Station X Y 
Zn 

(µg/L) 

Pb 

(µg/L) 

Cd 

(µg/L) 

Cu 

(µg/L) 

Ni 

(µg/L) 

Co 

(µg/L) 

1W 331881 4103244 21.29 2.87 0.04 ND 2.48 6.20 

2W 318661 4093812 36.48 3.64 0.15 4.68 5.33 1.72 

3W 316518 4094590 19.22 7.06 0.37 3.41 2.69 1.29 

4W 318301 4097255 64.68 7.03 0.99 ND 2.99 1.78 

5W 331486 4105353 34.60 5.88 0.24 5.12 1.71 1.51 

6W 328781 4105267 12.85 2.92 0.09 1.86 2.29 2.32 

1S 327797 4096396 36.77 2.54 0.08 1.75 2.28 2.11 

7W 316718 4091641 6.73 3.26 0.08 3.06 7.48 2.18 

2S 343356 4086870 56.52 3.42 0.04 3.72 2.00 2.31 

8W 318492 4091655 15.11 5.56 0.08 7.33 6.98 1.81 

9W 315558 4090055 32.65 4.18 0.09 6.60 5.07 2.03 

10W 330180 4107361 52.07 6.46 0.2 7.43 1.89 1.12 

11W 315050 4101192 19.68 4.59 0.13 2.47 4.64 2.25 

12W 334472 4103554 18.46 3.14 0.03 0.14 4.43 0.81 

13W 322519 4104116 ND 2.98 0.15 1.27 5.12 1.77 

14W 327726 4108520 17.88 5.50 0.05 3.66 1.98 0.01 

15W 334669 4104096 50.23 5.49 0.05 2.16 2.84 1.19 

16W 324922 4100196 12.62 3.89 0.07 5.79 19.30 3.65 

17W 316424 4099638 10.61 3.06 0.05 2.54 3.98 2.77 

3S 324628 4098775 16.15 5.04 0.08 ND 3.29 2.77 

18W 330192 4107354 62.28 3.40 0.09 3.22 4.12 1.44 

4S 335731 4086350 18.93 3.28 0.04 1.48 2.81 1.32 

5S 319249 4092456 44.84 3.21 0.07 1.83 3.50 2.48 

19W 318221 4092774 31.49 3.14 0.07 4.58 5.50 1.82 

 

Table 2. Summary of statistics of heavy metal contents in water samples (µg/L). 

Metal Ni Co Pb Cd Zn Cu 

Detected (%) 100% 100% 100% 100% 96% 88% 

Min 1.23 0.49 1.23 0.01 5.69 0.14 

Max 21.79 7.79 7.06 0.99 92.44 8.40 

Mean 4.38 1.99 4.21 0.12 30.55 4.05 

Standard deviation 3.65 1.22 1.94 0.17 18.77 14.26 

WHO Standard 70 - 10 3 3000 1000 

ISIRI Standard 70 - 10 3 3000 2000 
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Table 3. Rotated component matrix of three-factor model. 

Variable 
Component 

F1 F2 F3 

Ni 0.90 -0.07 0.11 

Co 0.84 -0.21 -0.10 

Pb -0.15 0.86 0.21 

Cd -0.08 0.88 -0.04 

Zn -0.52 -0.16 0.72 

Cu 0.29 0.31 0.82 

Eigen Value 2.21 1.57 1.12 

Variance (%) 36.99 26.27 18.79 

Cumulative (%) 36.99 63.27 82.07 
†Extraction method: Principle component analysis. Rotation method: Varimax with Kaiser Normalization. 

 

 

Fig. 2. Dendrogram of heavy metal concentrations in groundwater samples. 

 

Fig. 3. Component plot in rotated space for heavy metals (Factor loading, factor 1 vs. factor 2 vs. 

factor 3, Rotation: varimax normalized, extraction: principle component).
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Spatial structure analysis 

The geostatistical analysis is to be assumed that 

the distribution behavior of the metal ions in 

the sampling stations is normal. The random 

and normal distribution assumptions were 

checked by the (K-S) (Kolmogorov-Smirnov) 

Methods. Alternatively, the homogeneity and 

normal distribution in the data, can be achieved 

by transforming the obtained data to another 

mathematically presentation, which lowers the 

difference between the data. This can be 

achieved by using the logarithmic form of data.  

The normality of heavy metal data set was 

checked by the Kolmogorov–Smirnov Test. It is 

often observed that environmental variables 

are lognormal (McGrath et al., 2004), and data 

transformation is necessary to normalize such 

data sets. The normality tests of the six heavy 

metals for the 24 samples were performed as 

described by K-S test. It was detected that only 

Cu and Zn were in accordance with the normal 

distribution using K-S (p>0.05) before data 

transformation. To further normalize the data 

logarithmic transformation was utilized (Table 

4).  

After the logarithmic transformation of the 

original data, a normal distribution can be 

obtained. Thus, the following calculations must 

be performed on the logarithms of the data. 

After normalizing the data Semivariogram 

parameters were generated for each theoretical 

model.  

Then, the confidence level of all variograms 

was evaluated using the ratio of nugget 

variance to sill which is regarded as a criterion 

for classifying the spatial dependence of 

ground water quality parameters. If this ratio is 

less than 25%, then the variable has strong 

spatial dependence; if the ratio is between 25 

and 75%, the variable has moderate spatial 

dependence and the ratio greater than 75%, 

represents weak spatial dependence 

(Taghizadeh et al, 2008).  

The most appropriate theoretical model was 

selected, which was based on highest R2 and 

lowest RSS (Table 5). 

  

Table 4. Normal distribution behaviors of heavy metal concentration. 

Metal N Mean Std. Deviation 
Kolmogorov- 

Smirnov Z 

Asymp. Sig. 

(2-tailed) 

Ni 74 4.38 3.65 1.90 0.001 

Co 74 1.99 1.22 1.80 0.003 

Pb 74 4.21 1.94 1.72 0.005 

Cd 59 0.12 0.17 2.52 0.00 

Zn 72 30.53 18.77 1.20 0.11 

Cu 48 4.05 2.25 1.06 0.20 

log Ni 74 0.55 0.25 0.67 0.75 

log Co 74 0.24 0.21 0.90 0.38 

log Pb 74 0.58 0.17 1.14 0.14 

log Cd 59 -1.70 0.34 1.25 0.08 

log Zn 72 1.39 0.28 0.86 0.43 

log Cu 48 0.52 0.31 0.76 0.69 

 

Table 5. Summary of the most appropriate models for different heavy metals of GW. 

Heavy 

metals 
Transformation 

Best-fit 

model 

Nugget 

(C0) 

Sill 

(C0+C) 

Proportion 

(C0/ 

C0+C)×100 

R2 RSS 

F1 
Ni Log-normal Exponential 0.024 0.276 8.69 0.196 0.100 

Co Log-normal Exponential 0.029 0.162 17.90 0.194 0.033 

F2 
Pb Log-normal Exponential 0.015 0.060 25.00 0.154 0.0032 

Cd Log-normal Exponential 0.095 0.412 23.05 0.052 0.256 

F2 
Zn Log-normal Gaussian 0.0910 9.647 0.943 0.099 109.6 

Cu Log-normal Gaussian 1.195 4.805 24.86 0.179 57.23 

The attributes of the semivariograms for each 

factor are summarized in Table (5). 

Semivariograms show that the first and second 

factors are appropriate with the Exponential 
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Model, whereas, the third factor fits well with 

the Gaussian Model. The values of R2 illustrate 

that the semivariogram models give good 

descriptions of the spatial structure of the 

heavy metals of groundwater. The nugget/sill 

ratios can be regarded as the criterion to classify 

the spatial dependence of data sets (Liu et al., 

2009). The ratio of nugget to sill (RNS) can be 

used to express the extent of spatial 

autocorrelations of environmental factors, for 

example, groundwater heavy metal 

concentrations, in this study. A low RNS 

indicates the strong spatial autocorrelations of 

heavy metal concentrations in groundwater 

sources, while a high RNS indicates that 

random effects play an important role in spatial 

heterogeneity of heavy metals (Zheng et al., 

2008). The RNS of six heavy metals 

demonstrate weak spatial correlations for all 

factors. Cross-validation permits the 

determination as to which model provides the 

best predictions (Adhikary et al., 2012).  

Table 6. Geostatistical analyses of heavy metals in groundwater (Ramiyan area). 

Heavy Metal Method Model 
Cross validation 

MBE MAE RMSE 

Ni 

OK Exponential 0.426 2.587 3.958 

IDW 

1 0.240 2.216 3.828 

2 0.388 2.650 4.377 

3 0.268 2.877 4.812 

RBF 

SP line with Tension 0.041 2.242 3.687 

Multi-quadric 0.308 3.636 4.352 

Inverse Multi-quadric -0.011 2.218 3.628 

Co 

OK Exponential -0.018 0744 1.190 

IDW 

1 -0.083 0.661 1.125 

2 -0.030 0.632 1.143 

3 -0.074 0.728 1.176 

RBF 

SP line with Tension 0.002 0.727 1.132 

Multi-quadric -0.027 0.739 1.173 

Inverse Multi-quadric -0.041 0.695 1.107 

Pb 

OK Exponential -0.050 1.258 1.436 

IDW 

1 -0.027 1.453 1.715 

2 0.013 1.617 1.799 

3 0.027 1.703 1.843 

RBF 

SP line with Tension 0.168 1.382 1.618 

Multi-quadric -0.052 1.604 1.808 

Inverse Multi-quadric -0.010 1.312 1.440 

Cd 

OK Exponential -0.003 0.103 0.197 

IDW 

1 -0.003 0.109 0.199 

2 -0.015 0.098 0.194 

3 -0.026 0.092 0.191 

RBF 

SP line with Tension 0.000 0.111 0.196 

Multi-quadric 0.020 0.109 0.199 

Inverse Multi-quadric 0.004 0.107 0.202 

Zn 

OK Gaussian 0.008 15.82 18.57 

IDW 

1 2.927 18.01 20.56 

2 3.268 19.14 21.64 

3 2.402 19.33 23.34 

RBF 

SP line with Tension 1.039 15.86 18.02 

Multi-quadric -0.801 17.73 20.07 

Inverse Multi-quadric 0.024 17.21 17.15 

Cu 

OK Gaussian -0.056 1.961 1.006 

IDW 

1 0.225 2.278 2.609 

2 0.247 2.401 2.878 

3 0.426 2.675 3.039 

RBF 

SP line with Tension 0.202 2.020 2.417 

Multi-quadric 0.228 2.846 3.125 

Inverse Multi-quadric -0.047 1.944 2.267 
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The applicability of different semivariogram 

models is tested by cross-validation and best 

model is selected (Table 6). In this study, 

ordinary kriging (OK), IDW and RBF were 

utilized to estimate six heavy metal 

concentrations.  

Comparisons between different methods were 

carried out by the MAE, MBE, and RMSE 

statistical parameters. In this research, the 

Radial Basis Functions Method (Inverse 

Multiquadric Model) was found to be the most 

suitable method for the estimation of Ni 

mapping. Whereas, statistics for the 

geostatistical method also show that Ordinary 

Kriging for Pb (Exponential Model), Zn and Cu 

(Gaussian Model); the Inverse Distance 

Weighted method for Co (power 2) and Cd 

(power 3) provides a much better estimation for 

results of concentrations, than the other 

methods (Table 6).  

After plotting the values of heavy metal 

concentrations of groundwater for various 

sample locations, drinking water quality maps 

for heavy metal concentrations, can be drawn 

to demonstrate locations, where the water is 

almost clean or to some extent at risk (Fig. 4). 

 
                                  Filled contour map of Co  Filled contour map of Ni 

 
                                 Filled contour map of Cd                                       Filled contour map of Pb 

 
                                    Filled contour map of Cu                              Filled contour map of Zn 

 

Fig. 4. Filled contour maps of heavy metals in sampling groundwater.
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CONCLUSIONS 

Due to the complexity and a large variation of 

environmental data sets, the application of 

geostatistical and multivariate statistical 

methods is recommended.  

The main objective of this study was to 

determine the best estimators for providing 

heavy metals maps in ground water resources 

in Ramyian district. The application of 

multivariate statistical and geostatistical 

methods were performed on six heavy metals 

and three principal components were 

identified, so as to represent the variability of 

heavy metals in groundwater sources. From the 

spatial distributions of 6 heavy metals, it was 

evident that the parent materials and 

anthropogenic factors played important roles 

in heavy metal concentrations of GW in 

Ramiyan. The effects of these two factors varied 

with that of the heavy metals. The results of the 

Cluster Analysis (CA) and Factor Analysis (FA) 

on the heavy metals, showed that Ni and Co 

was grouped in factor F1, Pb and Cd in F2 and 

Zn and Cu in F3. The probability of the 

presence of elevated levels of the heavy metals 

studied in the groundwater was predicted by 

using the best-fit semivariogram model. The 

performance of methods was evaluated by 

utilizing the Mean Average Error (MAE), Mean 

Bias Error (MBE), and Root Mean Square Error 

(RMSE). Moreover, results showed that Radial 

Basis Functions (RBF), Inverse distance 

weighted (IDW) and Ordinary Kriging (OK) 

methods were the best methods employed to 

estimate the Ni; Co and Cd; Pb, Zn and Cu 

mappings, respectively. The Geographic 

Information System (GIS) can fully display the 

spatial patterns and relationships among 

landscape indices and heavy metal 

concentrations, in the groundwater of this area 

of study. Application of different multivariate 

statistical techniques interprets complex data 

matrices and better understanding of water 

quality. Although the concentrations of 

investigated metals in the collected samples 

were found to be below their maximum 

contaminant level values reported by WHO 

and ISIRI but the source of heavy  

 

metals contamination should be investigated 

specially in hot points within the studied area. 
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های زمین آمار در تعیین توزیع فضایی فلزهای سنگین در منابع کاربرد آمار چند متغیره و روش

 آب زیر زمینی
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  چکیده

ای آمار هچنین تخمین روشبندی کیفیت آب زیرزمینی و همی نقشه پهنههای درونیابی برای تهیهاین تحقیق با هدف تعیین کارآیی روش

نگین ایران( انجام شده است. فلزهای س-)گلستانهای زیرزمینی شهرستان رامیان چند متغیره در تحلیل توزیع فضایی فلزهای سنگین در آب

های آماری چند متغیره و زمین آمار برای متمایز گیری شد. روشی آب چشمه/ چاه اندازهنمونه 24) نیکل، کبالت، سرب، کادمیم ، مس( در 

نشان  ای و فاکتورینتایج تحلیل خوشه ی مورد مطالعه استفاده شد.زاد و طبیعی به فلزهای سنگین در منطقهنمودن منابع آلاینده انسان

 هایدهد که نیکل و کبالت در فاکتور اول، سرب و مس در فاکتور دوم و روی و مس نیز در فاکتور سوم قرار دارند. احتمال حضور سطحمی

 استفاده از خطای متوسطبینی شده با بینی شد، و عملکرد روش پیشتخمین زده شده  برای سه عامل با استفاده از مدل واریاگرام پیش

انحراف خطا و ریشه میانگین مجذور بررسی شد. نتیجه ساختار مکانی نشان داد که روش واریوگرام و اعتبار متقابل شش مطلق، متوسط 

نشان  نتایجشود. با این وجود های کسر پایه شعاعی، معکوس وزن فاصله و کریجینگ معمولی  مدل میمتغیر با استفاده از سه روش به نام

واند تچنین سیستم اطلاعات جغرافیایی به طور کامل میترین خطا بود. همداد که روش کسر پایه شعاعی بهترین مدل با بالاترین دقت و کم

 های زیرزمینی منطقه مورد مطالعه استفاده شود.در تحلیل فضایی مقدار فلزهای سنگین، در آب
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