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Abstract. The modeling investigation in this paper discusses the system
level effects of a toxicant on a three species food chain system. In the
models, we have assumed that the presence of top predator reduces the
predatory ability of the intermediate predator. The stability analysis of
the models is carried out and the sufficient conditions for the existence and
extinction of the populations under the stress of toxicant are obtained. Fur-
ther, it is also found that the predation rate of the intermediate predator is
a bifurcating parameter and Hopf-bifurcation occurs at some critical value
of this parameter. Finally, numerical simulation is carried out to support
the analytical results.

Keywords: Stability, Bifurcation, Interference, Lyapunov function.

AMS Subject Classification: 92D40, 93A30, 34D20.

1 Introduction

Species are regularly exposed to many natural and synthetic chemicals
which are adversely affecting their growth rate directly or indirectly. The
direct effects of toxicant on the species are alterations in their mortality
and reproductive rates. The indirect effects are observed either through
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the food chain or through the reduction in the carrying capacity of the en-
vironment due to the degradation of the habitat. It is generally observed in
nature that the toxicants decrease the growth rate of species and also their
carrying capacity. The presence of toxicants in the environment affects not
only the species but their resources also. These toxicants have very pro-
nounced effects on the species if the availability of the resource is limited.
There are many instances where the toxicants have been the main cause
of extinction of many species and depletion of resources such as forestry,
fertile crop and wild life.

Ecologists and mathematicians have often used food chain systems to
describe the feeding relationships between species within ecosystems and
there has been considerable interest in the predator-prey models, especially
for systems of three species [5, 7, 10, 12, 16]. However, the ecological com-
munities in nature are observed to exhibit very complex dynamical behav-
iors and three species continuous time models are reported to have more
complicated patterns. In [14], Lv and Zhao have proposed and examined
the dynamic complexities of a three species food chain model and found
different forms of complexities in their model. In [22], Sun and Loreau pro-
posed a three-species food chain model with dynamically variable adaptive
traits in the intermediate consumer and from the stability analysis they
have shown that the positive equilibrium is globally stable under specific
conditions. However, recently in [5], Gomes et al., have considered the
classical fishpond management for tilapia fish culture model and studied
three levels consisting of young tilapia (prey), developed tilapia (predator)
and tucunare fish (top − predator) in order to describe the dynamical be-
havior of a three-species food chain system. It may be noted here that
these studies have not incorporated the effects of toxicants on the survival
or extinction of prey populations in the food chain systems.

In a food–chain system with prey–predator relationship, it is observed
that the predator interference occur naturally in the presence of top preda-
tor on intermediate predator. Mathematical studies related to the effect of
interference on the dynamics of prey–predator population have been carried
out by several researchers [3, 4, 9, 20].

The study of the effects of toxic substances on ecological communities
is of great interest, both from environmental and conservational points of
view. Species exposed to polluted environment become vulnerable to sev-
eral stresses due to which their existence may be threatened in long run.
In the experiment study of [21], the authors have observed that the fish
from the polluted environment suffered significantly greater mortality in
the presence of a predator, the blue crab Callinectes sapidus Rathbun,



Dynamical Study of Food–Chain System. . . 191

than fish from the unpolluted environment. In the study of [17], the au-
thors evaluated that the during exposure to sublethal concentrations of LC
(lambda-cyhalothrin) the predator-prey interactions between G. pulex and
L. nigra were significantly altered. The relative frequency of successful pre-
dation by G. pulex on L. nigra decreased from nearly 100 percent in the
control and the < 1 ng L−1 treatments to approximately 50 percent in the
6.6 ng L−1 treatment, and no predation was observed in the 62.1 ng L−1

treatment during the 60 min observation period. These findings probably
reflect an increased stress response of G. pulex to increasing concentrations
of LC prompting behavioural hyperactivity that overrules the natural in-
stinct of catching the prey. So, inorder to use and regulate toxic substances
wisely, we must asses the risk of the populations exposed to toxicants. Some
investigators have studied the effects of toxicant on one and two interacting
species systems using mathematical models [1, 6, 8, 11, 18, 19]. Previously,
some research have been done on tri-trophic food-chain systems includ-
ing toxicant effects on the survival or extinction of species in the system
[2, 6, 15].

In this paper therefore we have studied the dynamical behaviour of a
three-species food-chain system under toxicant stress considering modified
smith model for prey species [6] and predatory interference by top predator
using mathematical model.

2 Mathematical Model

The model formulation has been carried out in the light of the research pa-
pers of [14] and [6]. In the model, the underlying food chain system consists
of a prey population, an intermediate predator population and a top preda-
tor population with Holling type-II functional responses. It is assumed in
the model that the presence of the top predator reduces the predatory abil-
ity of the intermediate predator [14]. In the model, the growth equation for
the prey population in the absence of predator is assumed to be governed
by a modified smith-type differential equation [6]. The state variables of
the model are x(t), the density of the prey population; y(t), the density of
the intermediate predator population; z(t), the density of the top predator
population; co(t), the organism toxicant concentration in the prey popula-
tion; and ce(t), the environmental toxicant concentration.

Taking these as state variables, we formulate the mathematical model
using following system of nonlinear ordinary differential equations in order
to study the effect of toxicant on a three-species food chain system:
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Model A: (with toxicant)

dx

dt
= x

(
r(co)B(c+ r0 − a)− acx
B(c+ r0 − a) + ax

)
−
(

A1x

B1 + x

)
y

1 + z
,

dy

dt
= β10

(
A1x

B1 + x

)
y

1 + z
−
(

A2y

B2 + y

)
z −D1y,

dz

dt
= β20

(
A2y

B2 + y

)
z −D2z, (1)

dco
dt

= a1ce +
d1

a1
θβ − (l1 + l2)co,

dce
dt

= g0 + k1l1cox− k1a1cex− k2ce.

The initial conditions are

x(0) = x0 > 0, y(0) = y0 > 0, z(0) = z0 > 0, co(0) = 0, ce(0) = ce0 > 0.

In Model A, B is the population carrying capacity; r0 is the intrinsic growth
rate of the population; a is a measure of the population response to stress
effects; D1 and D2 are the death rates of y and z respectively.

We assume that the toxicant concentration θ in the population is a
constant; β is the average rate of food intake per unit organismal mass; l1
and l2 are egestion and depuration rates respectively; k1l1cox is the total
toxicant ingested; k1a1cex is the total toxicant uptake from the environ-
ment; k2ce is the term which describes the loss due to detoxifying process
such as hydrolysis, volatilization, etc.; The exogenous input to the body
burden co is assumed to be from the environment at a rate proportional to
the environmental concentration: a1ce, where a1 is the population rate of
toxicant uptake per unit mass; g0 represents exogenous input of toxicant
into the environment; d1 is a constant numerically less than or equal to the
numerical value of a1; c is the rate of replacement of mass in the population
at saturation.

In the model Aiu/(Bi + u), (i=1,2; u = x and y), account for the
interactions between two different species, representing the Holling type-
II functional response. This functional response is parameterized by the
constants Ai and Bi (i = 1, 2), and we verify that Bi is the value of the
prey population level when the predation rate per unit prey is half their
maximum value [14].

Exposure to toxicant may lead to changes in fecundity and mortality
rates of a population. This stress can be modelled by assuming that the
growth rate of the population is a function of the body burden r(co) =
r0 −H(co). Here H is a non-decreasing function of co with H(0) = 0 and
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r0 is the intrinsic growth rate of the population. H(co) is a dose-response
function, which is assumed to be linear and taken as H(co) = r1co [6].

We can reduce the number of parameters in the above system by the
following scaling transformations, even if, for our analytical and numerical
tests, we will continue to use the original system:

x→ x

B1
, y → A1y

B1
, z → A1z

A2B1
, co →

r0co
k1

, ce →
r0ce
a1

, t→ D1t.

Thus, system (1) after re-scaling becomes as follows:

Model 1:

dx

dt
= xe1

(
e0(co)e2 − x
e4 + x

)
− u1xy

(1 + x)(1 + e5z)
, (2)

dy

dt
=

o6xy

(1 + x)(1 + e5z)
− u2yz

e8 + y
− y, (3)

dz

dt
=

o7yz

e8 + y
− u3z, (4)

dco
dt

= o2ce + o3 − u4co, (5)

dce
dt

= u0 + o4cox− u5cex− u6ce. (6)

The initial conditions are

x(0) = x0 > 0, y(0) = y0 > 0, z(0) = z0 > 0, co(0) = 0, ce(0) = ce0 > 0.

Here,

e1 = c
D1
, e2 = T0r0r1

ack1B1
, e3 = k1

r1
, e4 = T0

aB1
, e5 = A1

A2B1
,

e8 = A1B2
B1

, u0 = g0a1
r0D1

, u1 = 1
D1B2

1
, u2 = 1

D1
, u3 = D2

D1
,

u4 = (l1+l2)
D1

, u5 = a1k1B1
D1

, u6 = k2
D1
, o2 = k1

D1
, o3 = k1d1θβ

r0a1D1
,

o4 = l1a1B1
D1

, o6 = β10
A1D1

, o7 = A2β20
D1

,

T0 = B(c+r0−a), e0(co) = e3−co. All these parameters, of course, assume
only positive values.

Now, if the effect of toxicant is not considered in the above Model 1,
then we have the following Model 2 for three species food chain system:
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Model B: (without toxicant)

dx

dt
= x

(
r0B(c+ r0 − a)− acx
B(c+ r0 − a) + ax

)
−
(

A1x

B1 + x

)
y

1 + z
,

dy

dt
= β10

(
A1x

B1 + x

)
y

1 + z
−
(

A2y

B2 + y

)
z −D1y, (7)

dz

dt
= β20

(
A2y

B2 + y

)
z −D2z,

with the initial conditions as

x(0) = x0 > 0, y(0) = y0 > 0, z(0) = z0 > 0,

where, the state variables and parameters are the same as defined for the
Model 1.

We can reduce the number of parameters in the above system, even if,
for our analytical and numerical tests, we will continue to use the original
system. Here, o5 = e2e3 and rest of the parameters are the same as defined
for the Model 1. All these parameters, of course, assume only positive
values. Thus, system (7) after re-scaling becomes as follows:

Model 2:

dx

dt
= xe1

(
o5 − x
e4 + x

)
− u1xy

(1 + x)(1 + e5z)
, (8)

dy

dt
=

o6xy

(1 + x)(1 + e5z)
− u2yz

e8 + y
− y, (9)

dz

dt
=

o7yz

e8 + y
− u3z. (10)

The initial conditions are

x(0) = x0 > 0, y(0) = y0 > 0, z(0) = z0 > 0.

3 Boundedness of the Models:

To analyze the Models 1 and 2, in this section we need the bounds of de-
pendent variables involved. First we see the boudedness of Model 2 and
Model 1. So here, we find the region of attraction for all the Models in
the following lemma.
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Lemma 1. The set

Ω = {(x, y, z, co, ce) ∈ R6
+ : 0 ≤ x(t) ≤ o5, 0 ≤ o6x(t) + u1y(t) +

u1u2
o7

z(t) ≤ θ1}

0 ≤ co(t) + ce(t) ≤ θ2, o6x(t) + u1y(t) +
u1u2
o7

z(t) + ce(t) ≥ θ3}

is a region of attraction for all solutions initiating in the interior of the
positive region, where

θ1 = (1 + e1o5)o5o6/Φ1, θ2 = u0/Φ2, θ3 = u0/Φ3,Φ1 = min{1, 1, u3},
Φ2 = min{u4 − o4o5, u6 − o2},Φ3 = max{u5θ2, 1, u3, u6}.

Proof. From equation (8) we obtain dx/dt ≤ xe1(o5 − x). Then, by the
usual comparison theorem, we get

x ≤ o5.

Now, let us consider the following function

ψ1(t) = o6x(t) + u1y(t) +
u1u2

o7
z(t).

By using equations (8)-(10), we conclude

dψ1/dt+ Φ1ψ1 ≤ (1 + e1o5)o5o6,

where Φ1 = min{1, 1, u3} and then by the usual comparison theorem, we
get ψ1(t) ≤ (1 + e1o5)o5o6 as t→∞, and hence,

o6x(t) + u1y(t) +
u1u2

o7
z(t) ≤ θ1,

where θ1 = (1 + e1o5)o5o6/Φ1.
Now, let us consider the function: ψ2(t) = co(t) + ce(t), by using equations
(5) - (6), we get

dψ2/dt+ Φ2φ2 ≤ u0,

where Φ2 = min{u4 − o4o5, u6 − o2} and then by the usual comparison
theorem, we get as t→∞, ψ2(t) ≤ u0/φ2 and hence,

co(t) + ce(t) ≤ θ2,

where θ2 = u0/Φ2. Again let us consider the function

ψ3(t) = o6x(t) + u1y(t) +
u1u2

o7
z(t) + ce(t).
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By using the equations (2)–(6), we get dψ3/dt + Φ3ψ3 ≥ u0, where, Φ3 =
max{u5θ2, 1, u3, u6} and then by the usual comparison theorem, we get as
t→∞, ψ ≥ u0/Φ3 and hence

o6x(t) + u1y(t) +
u1u2

o7
z(t) + ce(t) ≥ θ3,

where θ3 = u0/Φ3. Hence the solution of the Models 1 and 2 are bounded
in Ω.

4 Analysis of Model 2

4.1 Equilibria of Model 2:

The Model 2 has following four non-negative equilibria in x, y and z space

namely, E20 = (0, 0, 0), ˜̃E21 = (˜̃x, 0, 0),
ˆ̂
E22 = (ˆ̂x, ˆ̂y, 0) and ¯̄E23 = (¯̄x, ¯̄y, ¯̄z).

The existence of E20 is obvious. We prove the existence of ˜̃E21,
ˆ̂
E22 and

¯̄E23 as follows:

1. Existence of ˜̃E21 = (˜̃x, 0, 0),
from (8),

˜̃x = o5. (11)

2. Existence of
ˆ̂
E22 = (ˆ̂x, ˆ̂y, 0),

from (9),
ˆ̂x = o6 − 1 > 0, (12)

ˆ̂x > 0 if o6 > 1,
from (8),

ˆ̂y =
e1o6

u1

(
o5 − (o6 − 1)

e4 + (o6 − 1)

)
> 0, (13)

ˆ̂y > 0 if o5 > (o6 − 1).

3. Existence of ¯̄E23 = (¯̄x, ¯̄y, ¯̄z),
from (10),

¯̄y =
u3e8

o7 − u3
, (14)

¯̄y > 0 if o7 > u3,
from (8) and (9),

¯̄z =
u3 + (o7 − u3)

u1u2u3

(
¯̄xe1o6

(o5 − ¯̄x)

(e4 + ¯̄x)
− u1u3e8

o7 − u3

)
, (15)



Dynamical Study of Food–Chain System. . . 197

and ¯̄x is given by

¯̄x2e1o6(o7 − u3)− ¯̄x[e1o5o6(o7 − u3)− u1u3e8] + u1u3e4e8 = 0.

¯̄x, ¯̄y and ¯̄z are positive provided o7 > u3; e1o5o6(o7 − u3) > u1u3e8;
$2 > 0; and

$1 −
√
$2

2e1o6(o7 − u3)
< ¯̄x <

$1 +
√
$2

2e1o6(o7 − u3)
, (16)

where$1 = e1o5o6(o7−u3)−u1u3e8 and$2 = $2
1−4e1u1u3e4o6e8(o7−

u3).

4.2 Dynamical behaviour of Model 2:

The general variational matrix corresponding to the Model 2 is

J2(x, y, z) =

 −m11 −m12 m13

m21 m22 −m23

0 m32 m33

 ,
where,

m11 =
u1y

(1 + x)2(1 + e5z)
+
e1(x(o5 + e5)− (x+ e4)(o5 − x))

(e4 + x)2
,

m12 =
u1x

(1 + x)(1 + e5z)
, m13 =

u1e5xy

(1 + x)(1 + e5z)2
,

m21 =
o6y

(1 + x)2(1 + e5z)
, m22 =

o6x

(1 + x)(1 + e5z)
− u2e8z

(e8 + y)2
− 1,

m23 = y(
e5o6x

(1 + x)(1 + e5z)2
+

u2

(e8 + y)
), m32 =

o7e8z

(e8 + y)2
,

m33 =
o7y

e8 + y
− u3.

1. At E20, the eigenvalues of the characteristic equation are e1o5/e4,−1
and −u3, which shows that E20 is unstable.

2. At ˜̃E21, the eigen values of the characteristic equation are o5o6/(1 +

o5)−1 −e1o5(o5 + e4)/(e4 + o5)2 and −u3, which shows ˜̃E21 is locally
asymptotically stable if

o5o6 < (1 + o5), (17)

holds good.
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3. At
ˆ̂
E22, one of the eigenvalue of the characteristic equation is o7y/(e8 + y)−

u3 and the other two eigenvalues are given by the roots of the follow-
ing quadratic equation

λ2 + λˆ̂x[
e1(o5 + e4)

(e4 + ˆ̂x)2
− u1

ˆ̂y

(1 + ˆ̂x)2
] +

u1o6
ˆ̂xˆ̂y

(1 + ˆ̂x)3
= 0. (18)

From the Routh-Hurwitz criteria it is found that
ˆ̂
E22 is locally asymp-

totically stable if the following condition hold good.

u1
ˆ̂y(e4 + ˆ̂x)2 < e1(o5 + e4)(1 + ˆ̂x)2. (19)

4. The characteristic equation about ¯̄E23 is given by

λ3 + F1λ
2 + F2λ+ F3 = 0, (20)

where,

F1 = N11 −N22,

F2 = N12N21 +N23N32 −N11N22,

F3 = (N11N23 −N13N21)N32,

and

N11 =
e1(o5 + e5)

(e4 + ¯̄x)2
− u1 ¯̄y

(1 + ¯̄x)2(1 + e5 ¯̄z)
,

N12 =
u1 ¯̄x

(1 + ¯̄x)(1 + e5 ¯̄z)
,

N13 =
u1e5 ¯̄x¯̄y

(1 + ¯̄x)(1 + e5 ¯̄z)2
,

N21 =
o6 ¯̄y

(1 + ¯̄x)2(1 + e5 ¯̄z)
,

N22 =
u2 ¯̄y ¯̄z

(e8 + ¯̄y)2
,

N23 = ¯̄y(
e5o6 ¯̄x

(1 + ¯̄x)(1 + e5 ¯̄z)2
+

u2

e8 + ¯̄y
),

N32 =
o7e8 ¯̄z

(e8 + ¯̄y)2
.

According to Routh-Hurwitz criteria ¯̄E23 is locally asymptotically
stable if F1 > 0, F2 > 0, F3 > 0 and F1F2 > F3. It is difficult
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to interpret the results in ecological terms, from these complicated
expressions, however, numerical examples are taken and graphs are
plotted to illustrate the dynamical behaviour of the system about
equilibrium ¯̄E23.

We are now in a position to make an attempt to find out the conditions
under which the system undergoes Hopf-bifurcation. For this purpose, we
choose the parameter A1 in the system (7) as bifurcation parameter as it
plays a crucial role in Holling type II functional response which describes the
predation of intermediate consumer. We shall now apply the Lius criteria,
[13] to obtain the conditions for small amplitude periodic solution arising
from Hopf-bifurcation.

As the equilibrium population densities are functions of A1, the coeffi-
cients of the characteristic equation (20) are functions of the parameter A1

and hence we can use the notation Fi = Fi(A1) for i = 1, 2, 3. Noting that
the quantities Fis are smooth functions of the parameter A1, we first state
in our case, the definition of a simple Hopf-Bifurcation.

If a critical value ¯̄A1 of parameter A1 be found such that (i) a sim-
ple pair of complex conjugate eigenvalues of characteristic equation exists,
say, λ1(A1) = u(A1) + iv(A1), λ2(A1) = u(A1) − iv(A1) = λ1(A1). These
eigen values will become purely imaginary at A1 = ¯̄A1, i.e., λ1( ¯̄A1) = iv0,
λ2( ¯̄A1) = −iv0, with v( ¯̄A1) = v0 > 0, and the other eigenvalue remains real
and negative; and (ii) the transversality condition,

dReλi(
¯̄A1)/dA1 |A1= ¯̄A1

= du(A1)/dA1 |A1= ¯̄A1
6= 0,

is satisfied. Then we find at A1 = ¯̄A1, a simple Hopf-bifurcation. Without
knowing eigenvalues, [13] proved that (referring the result to the current
case): if F1(A1), F3(A1),∆(A1) = F1(A1)F2(A1)−F3(A1) are smooth func-
tions of the parameter ‘A1’ in an open interval containing ¯̄A1ε<+ such that
following conditions hold:
(i∗) F1( ¯̄A1) > 0, ∆( ¯̄A1) = 0, F3( ¯̄A1) > 0;
(ii∗) d∆(A1)/dA1 |A1= ¯̄A1

6= 0
then (i∗) and (ii∗) are equivalent to conditions (i) and (ii) for the occur-
rence of a simple Hopf-bifurcation at A1 = ¯̄A1. Hence we can propose the
following theorem.

Theorem 1. If a critical value ¯̄A1 of parameter A1 be found such that
F1( ¯̄A1) > 0, F3( ¯̄A1) > 0 and ∆( ¯̄A1) = 0 and further ∆′ 6= 0 (where prime
denotes differentiation with respect to A1) then system (7) undergoes Hopf-
bifurcation around ¯̄E23.
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Theorem 2. Let the following inequalities hold in the region Ω.

u1 ¯̄y

σ2
(1 + e5θ3) <

e1(e4 + o5)

σ1
, (21)

θ3o6

σ2
(1 + ¯̄x)(1 + e5 ¯̄z) < (1 +

u2e8θ1

σ3
), (22)

o7θ3(e8 + ¯̄y) < u2σ3, (23)

2[(1 + ¯̄x)
u1e5 ¯̄y

σ2
]2 < G11(u2 −

o7θ3

σ3
(e8 + ¯̄y)), (24)

2G2
23 < G22(u2 −

o7θ3

σ3
(e8 + ¯̄y)), (25)

where,

G1 >
u1(1 + ¯̄x)

o6 ¯̄y
, (26)

G11 =
e1(e4 + o5)

σ1
− u1 ¯̄y

σ2
(1 + e5θ3),

G22 = G1

(
(1 +

u2e8θ1

σ3
)− θ3o6

σ2
(1 + ¯̄x)(1 + e5 ¯̄z)

)
,

G23 = G1

(
(1 + ¯̄x)

e5o6 ¯̄x¯̄y

σ2
+ (e8 + y)

u2 ¯̄y

σ3

)
− o7e8 ¯̄z

σ3
,

σ1 = (e4 + θ1)(e4 + ¯̄x), σ2 = (1 + θ1)(1 + ¯̄x)(1 + e5θ1)(1 + e5 ¯̄z),

σ3 = (e8 + θ1)(e8 + ¯̄y),

then the positive equilibrium ¯̄E23 is globally asymptotically stable with re-
spect to all solutions initiating in the interior of positive region Ω.

Proof. We consider the following positive definite function about ¯̄E23:

V2 = (x− ¯̄x− ¯̄xln(x/¯̄x)) + (G1/2)(y − ¯̄y)2 + (1/2)(z − ¯̄z)2.

Differentiating V2 with respect to time t, we get

V̇2 = (x− ¯̄x/x)(dx/dt) +G1(y − ¯̄y)(dy/dt) + (z − ¯̄z)(dz/dt).

Using system of equations (8)-(10), we get after some algebraic manipula-
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tions

V̇2 = −(x− ¯̄x)2

(
e1(e4 + o5)

σ1
− u1 ¯̄y

σ2
(1 + e5z)

)
−(y − ¯̄y)2G1

(
(1 +

u2e8z

σ3
)− xo6

σ2
(1 + ¯̄x)(1 + e5 ¯̄z)

)
−(z − ¯̄z)2

(
u2 −

o7y

σ3
(e8 + ¯̄y)

)
+ (x− ¯̄x)(z − ¯̄z)(1 + ¯̄x)

u1e5 ¯̄y

σ2

+(x− ¯̄x)(y − ¯̄y)

(
1 + e5 ¯̄z

σ2

)
(G1o6 ¯̄y − u1(1 + ¯̄x))

−(y − ¯̄y)(z − ¯̄z)

(
G1

(
(1 + ¯̄x)

e5o6 ¯̄x¯̄y

σ2
+ (e8 + y)

u2 ¯̄y

σ3

)
− o7e8 ¯̄z

σ3

)
.

Now, V̇2 can further be written as sum of the quadratic forms as

V̇2 ≤ −[((a11/2)(x− ¯̄x)2 − a13(x− ¯̄x)(z − ¯̄z) + (a22/2)(z − ¯̄z)2)

+((a22/2)(y − ¯̄y)2 + a23(y − ¯̄y)(z − ¯̄z) + (a33/2)(z − ¯̄z)2)],

where,

a11 =
e1(e4 + o5)

σ1
− u1 ¯̄y

σ2
(1 + e5z),

a22 = G1

(
(1 +

u2e8z

σ3
)− xo6

σ2
(1 + ¯̄x)(1 + e5 ¯̄z)

)
,

a13 = (1 + ¯̄x)
u1e5 ¯̄y

σ2
, a23 = G1

(
(1 + ¯̄x)

e5o6 ¯̄x¯̄y

σ2
+ (e8 + y)

u2 ¯̄y

σ3

)
− o7e8 ¯̄z

σ3
,

a33 =

(
u2 −

o7y

σ3
(e8 + ¯̄y)

)
/2, σ1 = (e4 + x)(e4 + ¯̄x),

σ2 = (1 + x)(1 + ¯̄x)(1 + e5z)(1 + e5 ¯̄z), σ3 = (e8 + y)(e8 + ¯̄y).

Now, by using Sylvesters criteria and by choosing G1 = u1(1+¯̄x)
o6 ¯̄y > 0, we get

that V̇2 is negative definite under the following conditions:

a11 > 0, (27)

a22 > 0, (28)

a33 > 0, (29)

a11a22 > a2
12, (30)

a11a33 > a2
13, (31)

a22a33 > a2
23. (32)
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We note that the fourth inequality, i.e., a11a22 > a2
12 is satisfied due

to the proper choice of G1, and other inequalities, (21) ⇒ (27), (22) ⇒
(28), (23) ⇒ (29), (24) ⇒ (31) and (25) ⇒ (32). Hence V2 is a Lyapunov
function with respect to ¯̄E23, whose domain contains the region of attrac-
tion Ω, proving the theorem.

5 Analysis of Model 1

5.1 Equilibria of Model 1:

The Model 1 has following four non-negative equilibria in x, y, z, co and
ce space namely, E10(0, 0, 0, 0, u0), Ẽ11(x̃, 0, 0, c̃o, c̃e), Ê12(x̂, ŷ, 0, ĉo, ĉe) and
Ē13(x̄, ȳ, z̄, c̄o, c̄e). The existence of E10 is obvious. We prove the existence
of Ẽ11, Ê12 and Ē13 as follows:

1. Existence of Ẽ11(x̃, 0, 0, c̃o, c̃e),
from (2),

x̃ = e2e3 > 0, (33)

from (5) and (6),

c̃e =
u0u4 + e2e3o3o4

(e2e3u5 + u6)u4 − o2e2e3o4
, (34)

c̃e > 0 if (e2e3u5 + u6)u4 > o2e2e3o4,

c̃o =
o2

u4

(
u0u4 + e2e3o3o4

(e2e3u5 + u6)u4 − o2e2e3o4

)
+
o3

u4
> 0. (35)

2. Existence of Ê12(x̂, ŷ, 0, ĉo, ĉe),
from (3),

x̂ =
1

o6 − 1
, (36)

x̂ > 0 if o6 > 1,
from (5) and (6),

ĉe =
u0u4 + x̂o3o4

(x̂u5 + u6)u4 − o2o4x̂
, (37)

ĉe > 0 if x̂u5 + u6)u4 > o2o4x̂,

ĉo =
o2

u4

(
u0u4 + x̂o3o4

(x̂u5 + u6)u4 − o2o4x̂

)
+
o3

u4
> 0, (38)
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from (2),

ŷ = (1 + x̂)
e1

u1

(
e2(e3 − ĉ0)− x̂

e4 + x̂

)
, (39)

ŷ > 0 if e3 > ĉ0 and e2(e3 − ĉ0) > x̂.

3. Existence of Ē13(x̄, ȳ, z̄, c̄o, c̄e).
Now, we show the existence of Ē13 as follows:
Here x̄, ȳ, z̄, c̄0 and c̄e are the positive solutions of the system of
algebraic equations given below:
from (4),

ȳ =
u3e8

o7 − u3
, (40)

ȳ > 0 if o7 > u3,
from (3),

x =
(1 + e5z)(1 + u2z

e8+ȳ )

o6 − (1 + e5z)(1 + u2z
e8+ȳ )

= g1(z), (41)

from (2),

co = e3 −
1

e2

(
g1(z) +

u1ȳ(e4 + g1(z))

e1(1 + g1(z))(1 + e5z)

)
= g2(z), (42)

from (5),

ce =
1

o2
[u4g2(z)− o3] = g3(z). (43)

Let
Q(z) = u0 + o4g1(z)g2(z)− (u6 + u5g1(z))g3(z). (44)

To show the existence of Ē13, it suffices to show that equation (44)
has a unique positive solution for this we may note that

Q(0) = u0 + o4g1(0)g2(0)− (u6 + u5g1(0))g3(0) > 0, (45)

Q(k0) = u0 + o4g1(k0)g2(k0)− (u6 + u5g1(k0))g3(k0) < 0. (46)

This guarantees the existence of a root of Q(z) = 0 for 0 < z < k0,
say z̄. Further, this root will be unique provided

Q′(z) = o4[g1(z)g′2(z) + g′1(z)g2(z)]

−[(u6 + u5g1(z))g′3(z) + u5g
′
1(z)g3(z)] < 0.

Knowing the value of z̄, the values of x̄, c̄0 and c̄e can be computed
from equations (41) to (43) respectively.
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5.2 Dynamical behaviour of Model 1:

The general variational matrix corresponding to the Model 1 is as follows:

J1(x, y, z, c0, ce) =


−v11 −v12 v13 −v14 0
v21 v22 −v23 v24 0
0 v32 v33 v34 0
0 0 0 −v44 v45

−v51 0 0 v54 −v55

 ,
where,

v11 =
u1y

(1 + x)2(1 + e5z)
+

e1x

(e4 + x)2
(e2e0(c0) + e4) + e1

(
r1(C0)e2 − x

e4 + x

)
,

v12 =
u1x

(1 + x)(1 + e5z)
, v13 =

u1e5xy

(1 + x)2(1 + e5z)2
, v14 =

xe1e2

e4 + x
,

v21 =
o6y

(1 + x)2(1 + e5z)
, v22 =

o6y

(1 + x)2(1 + e5z)
− e8u2z

(e8 + y)2
− 1,

v23 =
u2y

(e8 + y)
, v32 =

o7e8z

(e8 + y)2
, v33 =

o7y

e8 + y
− u3, v44 = u4, v45 = o2,

v51 = (u5ce − o4co), v54 = o4x, v55 = (u5x+ u6).

1. At E10, the eigenvalues of the characteristic equation are e1e2e3,−1,
−u3, −u4 and −u6, showing the instability of E10.

2. At Ẽ11, two eigenvalues of the characteristic equation are, o6x̃/(1 + x̃)−
1, −u3 and the other three eigenvalues are given by the roots of the
following cubic equation

λ3 + λ2S1 + λS2 + S3 = 0, (47)

where,

S1 = u4 + u5x̃+ u6 +
x̃e1(e2e0(c̃0) + e4)

(e4 + x̃)2
,

S2 =
x̃e1(e2e0(c̃0) + e4)

(e4 + x̃)2
(u4 + u5x̃+ u6) + u4(u5x̃+ u6)− o2o4x̃,

S3 = u4(u5x̃+ u6)
x̃e1(e2e0(c̃0) + e4)

(e4 + x̃)2
− o2((u5c̃e − o4c̃o)

x̃e1e2

e4 + x̃

+o2x̃
2 e1(e2e0(c̃0) + e4)

(e4 + x̃)2
).

According to Routh-Hurwitz criteria Ẽ11 is locally asymptotically
stable if

o6e2e3 < (1 + e2e3), o2o4 < u2u5,
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and S1S2 − S3 > 0.

3. At Ê12, one of the eigenvalues of the characteristic equation is (o7ŷ)/(e8+
ŷ) − u3 and the other four eigenvalues are given by the roots of the
following equation is

λ4 + λ3T1 + λ2T2 + λT3 + T4 = 0, (48)

where,

T1 = u4 + u5x̂+ u6 +
e1x̂

(e4 + x̂)2
(e2e0(ĉ0) + e4)− u1x̂ŷ

(1 + x̂)2
,

T2 =
u1o6x̂ŷ

(1 + x̂)3
+ (u4 + u5x̂+ u6)(

e1x̂(e2e0(ĉ0) + e4)

(e4 + x̂)2
− u1x̂ŷ

(1 + x̂)2
)

+u4(u5x̂+ u6)− o2o4x̂,

T3 = (u4 + u5x̂+ u6)
u1o6x̂ŷ

(1 + x̂)3
+ u4(u5x̂+ u6)(

e1x̂

(e4 + x̂)2
(e2e0(ĉ0) + e4)

− u1x̂ŷ

(1 + x̂)2
)− o2[(u5ĉe − o4ĉo)

x̂e1e2

e4 + x̂

+o4x̂(
e1x̂

(e4 + x̂)2
(e2e0(ĉ0) + e4)− u1x̂ŷ

(1 + x̂)2
)],

T4 = (u4(u5x̂+ u6)− o2o4x̂)
u1o6x̂ŷ

(1 + x̂)3
.

From the Routh-Hurwitz criteria it is found that Ê12 is locally asymp-
totically stable if the following conditions hold good.

ŷ <
u3e8

o7 − u3
, o2o4 < u4u5,

Ti > 0, i = 1, 2, 3, 4, T1T2 > T3 and T1T2T3 > (T 2
3 + T 2

1 T4).

4. The characteristic equation of Ē13 is as follows:

λ5 + λ4W1 + λ3W2 + λ2W3 + λW4 +W5 = 0, (49)
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where,

W1 = w1 + w9 + w13 − w6,

W2 = w2w5 − w1w6 + w7w8 + w1w9 − w6w9 − w10w12 + w1w13

−w6w13 + w9w13,

W3 = w1w7w8 − w3w5w8 + w2w5w9 − w1w6w9 + w7w8w9

−w4w10w11 − w1w10w12 + w6w10w12 + w2w5w13 − w1w6w13

+w7w8w13 + w1w9w13 − w6w9w13,

W4 = w1w7w8w9 − w3w5w8w9 + w4w6w10w11 − w2w5w10w12

+w1w6w10w12 − w7w8w10w12 − w3w5w8w13 + w1w7w8w13

+w2w5w9w13 − w1w6w9w13 + w7w8w9w13,

W5 = w3w5w8w10w12 − w4w7w8w10w11 − w1w7w8w10w12

−w3w5w8w9w13 + w1w7w8w9w13,

and

w1 =
e1x̄

(e4 + x̄)2
(e2e0(c̄0) + e4)− u1x̄ȳ

(1 + x̄)2(1 + e5z̄)
,

w2 =
u1x̄

(1 + x̄)(1 + e5z̄)
, w3 =

u1e5x̄ȳ

(1 + x̄)2(1 + e5z̄)2
, w4 =

x̄e1e2

e4 + x̄
,

w5 =
o6ȳ

(1 + x̄)2(1 + e5z̄)
, w6 =

u2ȳz̄

(e8 + ȳ)2
, w7 =

u2ȳ

(e8 + ȳ)
,

w8 =
o7e8z̄

(e8 + ȳ)2
, w9 = u4, w10 = o2, w11 = u5c̄e − o4c̄o,

w12 = o4x̄, w13 = u5x̄+ u6.

According to Routh-Hurwitz criteria, the equilibrium point Ē13 is
locally asymptotically stable if
Wi > 0(i = 1, 2, 3, 4, 5), W1W2 > W3, W1W2W3 > (W 2

3 +W 2
1W4) and

(W3W4 −W2W5)(W1W2 −W3) > (W1W4 −W5)2.
It is difficult to interpret the results in ecological terms from these
complicated expressions, however, numerical examples are taken and
graphs are ploted to illustrate the dynamical behaviour of the system
about equilibrium Ē13.

Again, in the similar way the equilibrium population densities are functions
of A1 and the coefficients of the characteristic equation (49) are functions
of the parameter A1. Now we can use the notation Wi = Wi(A1) for i =
1, 2, 3, 4, 5. Now noting that the quantities Wis are smooth functions of the
parameter A1. As we have explained the definition of Hopf-bifurcation in
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previous section. Without knowing eigenvalues, [13] proved that (referring
the result to the current case): if Wi(A1),

∆1(A1) = W1(A1)W2(A1)−W3(A1),

∆2(A1) = W1(A1)W2(A1)W3(A1)− (W 2
3 (A1) +W 2

1 (A1)W4(A1)),

∆3(A1) = [W3(A1)W4(A1)−W2(A1)W5(A1)][W1(A1)W2(A1)−W3(A1)]

−[W1(A1)W4(A1)−W5(A1)]2

are smooth functions of the parameter ‘A1’ in an open interval containing
Ā1ε<+ such that following conditions hold:

(iii∗) W1(Ā1) > 0,∆1(Ā1) > 0,∆2(Ā1) > 0and∆3(Ā1) = 0;

(iv∗) d∆3(A1)/dA1 |A1=Ā1
6= 0

then (iii∗) and (iv∗) are equivalent to conditions (i) and (ii) mentioned in
section 4.2, for the occurrence of a simple Hopf-bifurcation at A1 = Ā1.
Hence, in the similar way, we can propose the following theorem:

Theorem 3. If a critical value Ā1 of parameter A1 be found such that
Wi(Ā1) > 0, ∆1(Ā1) > 0, ∆2(Ā1) > 0, ∆3(Ā1) = 0 and further ∆′3 6= 0
(where primes denotes differentiation with respect to A1) then system (1)
undergoes Hopf-bifurcation around Ē13.

Theorem 4. Let the following inequalities hold in the region Ω:

u1ȳ

σ12
(1 + e5θ3) <

e1

σ11
(e4 + e2e0(c̄o)), (50)

θ3o6

σ12
(1 + x̄)(1 + e5z̄) < (1 +

u2e8θ1

σ13
), (51)

o7θ3(e8 + ȳ) < u2σ13, (52)

6[
u1e5ȳ

σ11
(1 + x̄)]2 < P12

(
u2 −

o7θ3

σ13
(e8 + ȳ)

)
, (53)

6[
e1e2

σ11
(e4 + x̄)]2 < P12u4, (54)

6(u5c̄e − o4θ2)2 < P12(u6 + θ1u5), (55)

2P 2
11 < P13

(
u2 −

o7θ3

σ13
(e8 + ȳ)

)
, (56)

4[o2 + o4x̄]2 < u4(u6 + θ1u5), (57)

where,

K1 >
u1(1 + x̄)

o6ȳ
, (58)
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P11 = K1(
e5o6x̄ȳ

σ12
(1 + θ3) +

u2ȳ

σ13
(e8 + θ3))− o7e8z̄

σ13
,

P12 =
e1

σ11
(e4 + e2e0(c̄o))−

u1ȳ

σ12
(1 + e5θ3),

P13 = K1

(
(1 +

u2e8θ1

σ13
)− θ3o6

σ12
(1 + x̄)(1 + e5z̄)

)
,

σ11 = (e4 + θ1)(e4 + x̄), σ12 = (1 + θ1)(1 + x̄)(1 + e5θ1)(1 + e5z̄),

σ13 = (e8 + θ1)(e8 + ȳ),

then the positive equilibrium Ē13 is globally asymptotically stable with re-
spect to all solutions initiating in the interior of the positive region Ω.

Proof. We consider the following positive definite function about Ē13:

V1 = (x− x̄− x̄ln(x/x̄)) + (K1/2)(y − ȳ)2 + (K2/2)(z − z̄)2

+(K3/2)(c0 − c̄0)2 + (K4/2)(ce − c̄e)2.

V̇1 = (x− x/x)(dx/dt) +K1(y − y)(dy/dt) +K2(z − z)(dz/dt)
+K3(C0 − C0)(dC0/dt) +K4(CE − CE)(dCE/dt).

Using system of equations (2)-(6), we get after some algebraic manipula-
tions

V̇1 = −(x− x̄)2

(
e1

σ11
(e4 + e2e0(c̄o))−

u1ȳ

σ12
(1 + e5z)

)
−(y − ȳ)2K1

(
(1 +

u2e8z

σ13
)− xo6

σ12
(1 + x̄)(1 + e5z̄)

)
−(z − z̄)2K2

(
u2 −

o7y

σ13
(e8 + ȳ)

)
− (ce − c̄e)2K4(u6 + xu5)

−(co − c̄o)2K3u4 − (x− x̄)(y − ȳ)
(1 + e5z̄)

σ12
(u1(1 + x̄)−K1o6ȳ)

+(x− x̄)(z − z̄)u1e5ȳ

σ11
(1 + x̄)− (x− x̄)(co − c̄o)

e1e2

σ11
(e4 + x̄)

−(y − ȳ)(z − z̄)
(
K1(

e5o6x̄ȳ

σ12
(1 + x) +

u2ȳ

σ13
(e8 + y))−K2

o7e8z̄

σ13

)
−(x− x̄)(ce − c̄e)K4(u5c̄e − o4co) + (co − c̄o)(ce − c̄e)(o2K3 +K4o4x̄).

Now, V̇1 can further be written as sum of the quadratic forms:

V̇1 ≤ −[
(
(b11/2)(x− x̄)2 − b13(x− x̄)(z − z̄) + (b33/2)(z − z̄)2

)
+
(
(b11/2)(x− x̄)2 + b14(x− x̄)(co − c̄o) + (b44/2)(co − c̄o)2

)
+
(
(b11/2)(x− x̄)2 + b15(x− x̄)(ce − c̄e) + (b55/2)(ce − c̄e)2

)
+
(
(b22/2)(y − ȳ)2 + b23(y − ȳ)(z − z̄) + (b33/2)(z − z̄)2

)
+
(
(b44/2)(co − c̄o)2 − b45(co − c̄o)(ce − c̄e) + (b55/2)(ce − c̄e)2

)
],
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where,

b11 =
1

3

(
e1

σ11
(e4 + e2e0(c̄o))−

u1ȳ

σ12
(1 + e5z)

)
, b13 =

u1e5ȳ

σ11
(1 + x̄),

b14 =
e1e2

σ11
(e4 + x̄), b15 = (u5c̄e − o4co),

b22 = K1

(
(1 +

u2e8z

σ13
)− xo6

σ12
(1 + x̄)(1 + e5z̄)

)
,

b23 = K1(
e5o6x̄ȳ

σ12
(1 + x) +

u2ȳ

σ13
(e8 + y))− o7e8z̄

σ13
,

b33 =
1

2

(
u2 −

o7y

σ13
(e8 + ȳ)

)
, b44 =

u4

2
, b45 = o2 + o4x̄, b55 =

1

2
(u6 + xu5),

σ11 = (e4 + x)(e4 + x̄), σ12 = (1 + x)(1 + x̄)(1 + e5z)(1 + e5z̄),

σ13 = (e8 + y)(e8 + ȳ), e0(c̄o) = e3 − c̄o.

Now, by using Sylvesters criteria and by choosing K1 = u1(1+x̄)
o6ȳ

> 0 and

K2 = K3 = K4 = 1, we get that V̇1 is negative definite under the following
conditions:

b11 > 0, (59)

b22 > 0, (60)

b33 > 0, (61)

b11b22 > b212, (62)

b11b33 > b213, (63)

b11b44 > b214, (64)

b11b55 > b215, (65)

b22b33 > b223, (66)

b44b55 > b245. (67)

We note that the fourth inequality, i.e., b11b22 > b212 is satisfied due to the
proper choice ofK1 and other inequalities, (50)⇒ (59), (51)⇒ (60), (52)⇒
(61), (53)⇒ (63), (54)⇒ (64), (55)⇒ (65), (56)⇒ (66) and (57)⇒ (67).
Hence V1 is a Lyapunov function with respect to Ē13, whose domain con-
tains the region of attraction Ω, proving the theorem.

6 Numerical Example

In this section, we demonstrate the dynamical behavior of a three species
food chain system with toxicant and without toxicant with the help of
numerical examples.
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6.1 Numerical Example for Model 2:

We choose the following values of parameters for ˜̃E21:

r0 = 0.41, c = 0.1, A1 = 1.5, B1 = 43.1, β10 = 0.6, D1 = 0.9,
B = 153.3, a = 0.5, A2 = 0.5, B2 = 8.9, β20 = 0.1, D2 = 0.01.

It is found that under the above set of parameters, the equilibrium point
˜̃E21 = (12.5706, 0, 0) is locally asymptotically stable (see Fig. 1).

We choose the following values of parameters for
ˆ̂
E22:

B = 130.3, A1 = 0.8, B1 = 5.1, β10 = 0.003,
D1 = 0.001, A2 = 0.003, B2 = 6.5, β20 = 0.02.

With the above values of parameters and taking the remaining parameters

to be the same as considered for ˜̃E21, it is found under the above set of

parameters that the equilibrium
ˆ̂
E22 = (3.6744, 1.2250, 0) is locally asymp-

totically stable (see Fig. 2).
We choose the following values of parameters for ¯̄E23:

D1 = 0.001, A1 = 1.35, A2 = 0.501, B2 = 12.0.

With the above values of parameters and taking the remaining parameters

to be the same as considered for ˜̃E21, it is found that the interior equilibrium
¯̄E23 = (9.5375, 2.2163, 1.3688) is locally asymptotically stable (see Figs. 3

and 4).
Now, we study the Hopf-bifurcation of the Model 2, taking A1 as the

bifurcating parameter. The transversality condition holds with the above
set of parameters when A1 = ¯̄A1 = 0.6377. It is clear that the interior
equilibrium point ¯̄E23 of Model 2 is stable when A1 > ¯̄A1 and unstable
when A1 ≤ ¯̄A1 for which Hopf-bifurcation occurs (see Figs. 5 and 6).

6.2 Numerical Example for Model 1:

We choose the following values of parameters for Ẽ11:

r1 = 0.081, a1 = 1.61, d1 = 0.01, β = 0.8, β10 = 0.6, β20 = 0.1,
θ = 0.31, l1 = 1.2, l2 = 0.599, g0 = 0.2, k1 = 0.1, k2 = 0.11,
r0 = 0.41, B = 153.3, c = 0.1, a = 0.5, A1 = 1.5, B1 = 43.1,

D1 = 0.9, A2 = 0.5, B2 = 8.9, D2 = 0.01.

It is found that under the above set of parameters, the equilibrium point
Ẽ11 = (11.9736, 0.0000, 0.0000, 0.2401, 0.2679) is locally asymptotically sta-
ble (see Fig. 7).
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Figure 1: Time graph for the
Model 2, around the equilibrium

point ˜̃E21, showing the stability
behavior.
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Figure 2: Time graph for the
Model 2, around the equilibrium

point
ˆ̂
E22, showing the stability

behavior.
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Figure 3: Time graph for the
Model 2, around the equilibrium
point ¯̄E23, showing the stability
behavior.
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Figure 4: Phase graph for the
Model 2, around the equilibrium
point ¯̄E23, showing the stability
behavior.

Now, we choose the following values of parameters for Ê12:

r1 = 0.02, β10 = 0.003, β20 = 0.02 a1 = 1.6, B = 140.3, A1 = 1.3,
B1 = 5.1, D1 = 0.001, A2 = 0.008, B2 = 6.5.

With the above values of parameters and taking the remaining param-
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Figure 5: Time graph for the
Model 2, around the equilibrium
point ¯̄E23, showing the bifurca-
tion behavior.
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Figure 6: Phase graph for the
Model 2 around the equilibrium
point ¯̄E23, showing the bifurca-
tion behavior.
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Figure 7: Time graph for the
Model 1, around the equilibrium
point Ẽ11, showing the stability
behavior.
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Figure 8: Time graph for the
Model 1, around the equilibrium
point Ê12, showing the stability
behavior.

eters to be the same as considered for Ẽ11 of Model 1, it is found that the
equilibrium Ê12 = (1.7587, 1.0694, 0.0000, 0.8796, 0.9603) is locally asymp-
totically stable (see 8).

Now, we choose the following values of parameters for Ē13:

r1 = 0.2, a1 = 1.00, A1 = 1.1, D1 = 0.001, B2 = 9.0, A2 = 0.6.
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Figure 9: Time graph for the
Model 1, around the equilibrium
point Ē13, showing the stability
behavior.
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Figure 10: Phase graph for the
Model 1, around the equilibrium
point Ē13, showing the stability
behavior.

With the above values of parameters and taking the remaining parameters
to be the same as considered for Ẽ11 of Model 1, it is found that the
interior equilibrium Ē13 = (8.4842, 1.8039, 0.9731, 0.2989, 0.5211) is locally
asymptotically stable (see Figs. 9 and 10).

Now, we study the Hopf-bifurcation of the Model 1, taking A1 as the
bifurcating parameter. The transversality condition holds with the above
set of parameters when A1 = Ā1 = 0.7015. It is clear that the interior
equilibrium point Ē13 of Model 1 is stable when A1 > Ā1 and unstable
when A1 ≤ Ā1 for which Hopf-bifurcation occurs (see Figs. 11 and 12).

6.3 Effect of Toxicant on Model 1 and Comparison with
Model 2:

Now, we compare the equilibrium levels of the population for both the
Models. From the Tables 1, 2 and Fig. 13, we can see that the populations
are decreasing under the stress of toxicant.

7 Conclusion

In this paper we have proposed and analyzed a nonlinear mathematical
model to study the effect of toxicant on a three species food chain system.
The local stability analysis of all the equilibrium points of the Model 1 and
2 has been carried out. The global stability analysis of only the non-trivial
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Figure 11: Time graph for the
Model 1, around the equilibrium
point Ē13, showing the bifurca-
tion behavior.
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Figure 12: Phase graph for the
Model 1, around the equilibrium
point Ē13, showing the bifurca-
tion behavior.

Table 1: Numerical values of equilibrium points of Model 2.

Equilibrium Points Numerical values of Model 2

˜̃E21(˜̃x, 0, 0) (12.5706, 0, 0)
ˆ̂
E22(ˆ̂x, ˆ̂y, 0) (3.6744, 1.2250, 0)
¯̄E23(¯̄x, ¯̄y, ¯̄z) (9.5375, 2.2163, 1.3688)

positive equilibrium points of both the Models has been conducted. From

the stability of ˜̃E21 of Model 2, it is concluded that only the prey population
will survive and both the predator populations would tend to extinction.
From the stability of Ẽ11 of Model 1 we derive the same dynamical behav-

ior of prey and predator populations as observed for ˜̃E21 of Model 2 with
the only difference that equilibrium level of prey population reduces due to

the presence of toxicant (see Figs. 1 and 7). From the stability of
ˆ̂
E22 of

Model 2, it is concluded that only prey and intermediate predator popula-
tions would survive and the top predator population may die out. Similar
dynamical behavior has been observed for prey and predator populations
from the stability analysis of Ê12 as being observed from the stability anal-

ysis of
ˆ̂
E22. However, in this case also the equilibrium level of prey and

predator populations decrease due to the presence of toxicant (see Figs. 2
and 8). The interior equilibrium points of both the Models are locally sta-
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Table 2: Numerical values of equilibrium points of Model 1.

Equilibrium Points Numerical values of Model 1

Ẽ11(x̃, 0, 0, C̃0, C̃E) (11.9736, 0, 0, 0.2401, 0.2679)

Ê12(x̂, ŷ, 0, Ĉ0, ĈE) (1.7587, 1.0694, 0, 0.8796, 0.9603)

Ē13(x̄, ȳ, z̄, C̄0, C̄E) (8.4842, 1.8039, 0.9731, 0.2989, 0.5211)

ble showing the same dynamical behavior and co-existence of all the three
populations of prey and predator species. However, from the equilibrium
values it is seen that the equilibrium density of top predator reduces due to
the presence of toxicant in prey and intermediate predator (see Figs. 3, 4,
9, 10 and 13). It may be also noted from the equilibrium of the intermedi-
ate predator population that the level of intermediate predator population
may increase due to the presence of toxicant in the top predator.

The interior equilibrium points of both the Models are globally asymp-
totically stable in the region Ω. Looking at Ω, it may be concluded that
the region of global stability shrinks when the toxicant is introduced in
the underlying system of prey and predator species. It is noted from the
stability conditions of the equilibrium of the Models that the system with
toxicant seems to be more stable than that of the system with no toxicant
effects. It is further concluded that the system with toxicant moves faster
towards equilibrium after given perturbation than that of the system with-
out toxicant for same parametric values. Finally, we have demonstrated
the dynamical behavior of a three species food chain system with toxi-
cant and without toxicant with the help of numerical simulation to support
analytical results.
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