
An efficient algorithm for finding the

semi-obnoxious (k, l)-core of a tree

Samane Motevallia, Jafar Fathalib∗and Mehdi Zaferaniehc

aFaculty of Mathematics, Shahrood University, Shahrood, Iran

email: samane.motevalli@gmail.com

bFaculty of Mathematics, Shahrood University, Shahrood, Iran

email: fathali@shahroodut.ac.ir
cDepartment of Mathematics, Hakim Sabzevari University, Sabzevar, Iran

email: mehdi.zaferanieh@gmail.com

Journal of Mathematical Modeling

Vol. 3, No. 2, 2016, pp. 129-144 JMM
�
�

�
�

�
�

�
�

Abstract. In this paper we study finding the (k, l)-core problem on a tree
which the vertices have positive or negative weights. Let T = (V,E) be
a tree. The (k, l)-core of T is a subtree with at most k leaves and with
a diameter of at most l which the sum of the weighted distances from all
vertices to this subtree is minimized. We show that, when the sum of the
weights of vertices is negative, the (k, l)-core must be a single vertex. Then
we propose an algorithm with time complexity of O(n2logn) for finding the
(k, l)-core of a tree with pos/neg weight, which is in fact a modification of
the one proposed by Becker et al. [Networks 40 (2002) 208].

Keywords: Core, Facility location, Median subtree, Semi-obnoxious.

AMS Subject Classification: 90B90, 90B06.

1 Introduction

Classical location theory is concerned with the finding optimal location of a
set of single points on a given network G = (V,E). An important location
problem of this kind is the p-median problem. In this problem we want to
find a subset X ⊆ V of cardinality p such that the sum of the weighted
distances from X to all other vertices is minimized. The p-median problem

∗Corresponding author.
Received: 20 April 2015 / Revised: 19 June 2015 / Accepted: 5 July 2015.

c© 2016 University of Guilan http://jmm.guilan.ac.ir

130 S. Motevalli, J. Fathali and M. Zaferanieh

has been known to be NP-hard [15]. When the underlying network is a tree
Kariv and Hakimi [15] showed that this problem can be solved in O(p2n2)
time (also see [18]). Tamir [25] improved the time complexity to O(pn2).
For the case p = 1 Goldman [11] presented a linear time algorithm. For
p = 2 an O(n log n) algorithm was given by Gavish and Sridhar [10]. Hassin
and Tamir [13] proposed an O(pn) algorithm for the p-median problem on
a path with positive weights. Maimani [16] and Fathali et al. [9] considered
the median location problem on special graphs.

In many real applications, the facility to be located is too large to
be modeled as a point. These kinds of facilities called extensive facilities
which have the form of a path or of a tree (see [12]). A path-center on a
tree is a path which the maximum distance from all vertices to this path is
minimized. Hedetniemi et al. [14] and Slater [23] considered the problem
of finding a path-center on a tree. A core of a tree is a path of tree so
that the sum of the weighted distances from all vertices to this path is
minimized. For the case in which weight of all vertices is positive, Morgan
and Slater [19] and Becker [1] presented linear time algorithms for finding
a core of a tree. After that a number of authors considered problem with
a constraint on length of path so that length can be at most l [2, 17, 20].
Peng et al. [21] extended the problem to finding k-tree core on the tree. A
k-tree core is a subtree that minimizes the sum of the distances and which
contains exactly k leaves. A linear time algorithm is gave for it by Shioura
and Uno [22]. Zaferanieh and Fathali [28] applied meta-heuristic methods,
ant colony and simulated annealing algorithm, for finding the core of a
graph.

Problem of finding a core of a tree is a special case of problem of finding
the (k, l)-core which in that k = 2 and there isn’t any constraints on l. A
(k, l)-core is a subtree of tree with at most k leaves and with a diameter
of at most l so that the sum of the weighted distances from all vertices to
the subtree is minimized. Becker et al. [2] presented an efficient algorithm
for finding a (k, l)-core of a tree with time complexity of O(n2logn). Their
idea is that, by starting from the tree T , construct new rooted trees where
the maximum length of a path is at most l. Then, for each new tree, apply
a greedy-type procedure to find a subtree containing the root with at most
k leaves and which minimizes the sum of the distances.

If all vertices have negative weights, the problem is the obnoxious loca-
tion problem, and the median problem of this kind called maxian problem.
Zelinka [29] show that the solution of 1-maxian problem, is obtained at a
leaf of the tree and Ting [26] presented a linear algorithm for this problem.
An algorithm for 1-maxian on general networks is provided by Church and

Efficient algorithm for finding the semi-obnoxious (k,l)-core of a tree 131

Garfinkel [8] with time complexity of O(mnlogn), where m is the number
of edges and n is the number of vertices of the network. The complexity of
this algorithm was improved to O(mn) by Tamir [24].

If weights of some of the vertices are positive and the others are negative
or zero the problem is referred to as the semi-obnoxious location problem.
Burkard and Krarup [7] showed that the pos/neg 1-median problem on a
cactus can be solved in linear time. For the p-median problem on a network
with pos/neg weight, Burkard et al. [4] introduced two different models to
minimize: (1) the sum of the minimum weighted distances (MWD); and
(2) the sum of the weighted minimum distances (WMD). For the case p =
2, they presented O(n2) and O(n3) time algorithms for MWD and WMD,
respectively. Benkoczia et al. [3] improved the time complexity of MWD
to O(nlogn). Burkard and Fathali [5] extended the results for WMD in
the case p = 3. Burkard et al. [6] presented a linear time algorithm for
p-maxian problem with a first kind of objective function.

The problem of finding a core of a tree with pos/neg weights is consid-
ered in [27] by Zaferanieh and Fathali. They proved that, when the sum
of the weights of vertices is negative, the core must be a single vertex and
that, when the sum of the weights of vertices is zero, there exists a core that
is a vertex. They also showed that the algorithm of Morgan and Slater [19]
can be used to find a core of a tree with pos/neg weights.

In this paper, we consider the problem of finding a (k, l)-core of a tree
with pos/neg weights. In what follows first we discuss some properties
of the optimal solution for the (k, l)-core of a tree with pos/neg weights.
In the case which the weight of tree is negative we show that the (k, l)-
core is the solution of 1-median problem. Based on these observations a
modification of the algorithm of Beker et al. [2] is proposed to solve the
(k, l)-core problem with pos/neg weights on a tree. This algorithm has time
complexity of O(n2logn).

2 Problem definition

Let T = (V,E) be a tree, that |V | = n, w(vi) be the weight of vertex vi ∈ V
(for simplicity we write wi) and a(i, j) be the length of edge (i, j). Then
w(T) =

∑n
i=1 wi is the weight of the tree T . Also let d(vi, vj) be the length

of path from vi to vj , then the length of shortest path between path p and
vertex v is given by

d(p, v) = min
u∈p

d(u, v).

The diameter dT of T is the maximum distance between two vertices of T
and any path whose length equals dT is a diameter path.

132 S. Motevalli, J. Fathali and M. Zaferanieh

Suppose T ′ = (V ′, E′) be a subtree of T. Let d(v, T ′) be the minimum
distance from v /∈ V ′ to a vertex in T ′. We show the sum of distances
from T ′ to all the vertices that they are not in V ′ by d(T ′), that is called
DISTSUM of T ′. A (k, l)-core of T is a subtree T ′ with at most k leaves
and with a diameter of at most l that the following function is minimized:

d(T ′) =
∑
v/∈V ′

d(v, T ′)

Applications of the semi-obnoxious (k, l)-core can found in the design
of high speed communication networks such as railroad lines, high ways,
subways, pipelines and transit routes, so that optimal subtree can be a
composition of some paths, that is number of leaves and because of ex-
its of negative and positive weights, lines are designed between the desir-
able(urban regions) and undesirable(military depots) vertices. The existing
facilities with negative weights may represent depots of obnoxious materi-
als. Clearly, the core should be located as far as possible from such facil-
ities with negative weights. The other facilities (e.g. population centers)
may have positive weights. The core should be located as close as pos-
sible to these facilities. For more information on and applications of the
semi-obnoxious problems the reader is referred to [4].

3 Some properties of the problem

In this section, we extend the results which obtained by Zaferanieh and
Fathali [27] for the core of a tree with pos/neg weight to the (k, l)-core
case. Suppose weight of the tree T is non-positive, that is w(T) ≤ 0. We
investigate two cases separately: w(T) < 0 and w(T) = 0.

Theorem 1. Let T be a tree with w(T) < 0. Then, the solution of 1-median
problem is a (k, l)-core of the tree T and vice versa.

Proof. Zaferanieh and Fathali [27] proved this theorem for the core of the
tree. With attention to the proof of Theorem 1 in [27], since in the (k, l)-
core problem we want to find a core with at most k leaves and with the
diameter of at most l, if we choose a 1-median as the core, then by adding
any other vertex to the core, The amount of objective function will be
increased. So the theorem holds.

For the case w(T) = 0 in [27] is shown that there exist a core which is a
1-median, but in this case we may not have a (k, l)-core which is 1-median.
In fact it may have more than one vertex, see Example 3.

Efficient algorithm for finding the semi-obnoxious (k,l)-core of a tree 133

Let u be a vertex of tree T and v be an adjacent vertex to it, then let
Tuv be the sub-tree of T obtained by deleting edge [u v] so that v ∈ Tuv.
In the case w(T) < 0, since both core and (k, l)-core are 1-median, then
similar to properties which proved in [27] for the core case, we can conclude
the following lemmas.

Lemma 1. Let T be a tree with a negative weight. Two cases may occur:

1. The (k, l)-core(1-median) is a leaf.

2. The (k, l)-core(1-median) is an inner vertex u so that w(u) ≥ 0 and
w(Tuv) ≤ 0 for each vertex v adjacent to u.

Lemma 2. Let T be a tree with w(T) ≤ 0. If u is a leaf such that w(T)−
2w(u) > 0, then u is not a (k, l)-core.

Proof. Suppose that v is a vertex adjacent to u, then d(v) = d(u)+(2w(u)−
w(T))d(u, v). So d(v) < d(u), and therefore u cannot be a (k, l)-core of the
tree T .

Now consider the tree with positive weight. Again since core is a special
case of (k, l)-core, the same as property of core in [27], the following lemma
can be stated.

Lemma 3. Let T be a tree with w(T) > 0 and u be a 1-median. If there
exists a vertex v adjacent to u such that w(Tuv) > 0 and d(u, v) ≤ l, then
each (k, l)-core has more than one vertex.

Proof. In the proof of Lemma 3 in [27] has been shown that the objective
function of core for edge [u, v] is less than the single vertex u. Therefore
since d(u, v) ≤ l then by adding v to the 1-median u the value of the
objective function for the (k, l)-core is decreased. So the (k, l)-core should
have more than one vertex.

Before express the next theorem we need some definitions. Let q be an
edge of tree and T1 and T2 be the two subtrees of T which obtained by
removing q. Also let Tc be a subtree in T2 and x the closest vertex of T1 to
Tc . We divide the vertices of T2 to three parts V21, V22 and Vc, so that V21

is the set of vertices of T2 that the shortest path from them to x does not
pass through Tc and V22 is the set of vertices of T2 that the shortest path
from them to x passes through Tc. Also let Vc be the set vertices of Tc (see
Fig. 1), and let s be the nearest vertex of Tc to x. We indicate by lvi the
length of path from vi in Tc to s and u(vi) the closest vertex in Tc to vi.

134 S. Motevalli, J. Fathali and M. Zaferanieh

Figure 1: Dividing tree T.

Theorem 2. Let T = (V,E) be a tree with W (T) > 0 and q be an edge
of T . Suppose by removing q two subtrees T1 and T2 are obtained so that
W (T1) > W (T2). If Tc be a subtree in T2 and x the nearest vertex of T1 to
Tc such that

d(x, Tc) ≥
∑

vi∈Tc
w(vi)lvi +

∑
vi∈V21

w(vi)lu(vi)

W (V1)−W (V22)−W (c)

and W (V21) > 0 then Tc is not a (k, l)-core of the tree T .

Proof. Let Tc be the (k, l)-core and x the nearest vertex of T1 to Tc, then

F (Tc) =
∑
vi∈V

w(vi)d(vi, Tc) =
∑
vi∈T1

w(vi)d(vi, Tc) +
∑
vi∈T2

w(vi)d(vi, Tc)

=
∑
vi∈T1

w(vi)[d(vi, x) + d(x, Tc)] +
∑
vi∈T2

w(vi)d(vi, Tc) = W (V1)d(x, Tc)

+
∑
vi∈T1

w(vi)d(vi, x) +
∑

vi∈V21

w(vi)d(vi, Tc) +
∑

vi∈V22

w(vi)d(vi, Tc)

and,

F (x) =
∑
vi∈V

w(vi)d(vi, x) =
∑
vi∈T1

w(vi)d(vi, x) +
∑
vi∈T2

w(vi)d(vi, x)

=
∑
vi∈T1

w(vi)d(vi, x) +
∑

vi∈V21

w(vi)d(vi, x) +
∑
vi∈Tc

w(vi)[lvi + d(Tc, x)]+

Efficient algorithm for finding the semi-obnoxious (k,l)-core of a tree 135

∑
vi∈V22

w(vi)[d(vi, Tc)+lu(vi)+d(Tc, x)] =
∑
vi∈T1

w(vi)d(vi, x)+
∑

vi∈V21

w(vi)d(vi, x)

+[W (c) + W (V22)]d(Tc, x) +
∑
vi∈Tc

w(vi)lvi +
∑

vi∈V22

w(vi)lu(vi)

Since

d(x, Tc) ≥
∑

vi∈Tc
w(vi)li +

∑
vi∈V21

w(vi)lu(vi)

W (V1)−W (V22)−W (c)

so,

[W (V1)−W (V22)−W (c)]d(x, Tc) ≥
∑
vi∈Tc

w(vi)li +
∑

vi∈V21

w(vi)lu(vi)

and

W (V1)d(x, Tc) ≥
∑
vi∈Tc

w(vi)lvi+
∑

vi∈V21

w(vi)lu(vi) +[W (V22)+W (c)]d(x, Pc).

Therefore F (Tc) ≥ F (x) which is in contradiction with the definition of the
subtree Tc as a (k,l)-core.

Note that since a core is a special case of a (k,l)-core, therefore Theorem
2 is also true for the core.

4 Algorithm

An algorithm with complexity of O(n2logn) for finding a (k, l)-core of a
tree with only positive weights is presented by Becker et al. [2]. We modify
their algorithm to make it applicable to the trees with pos/neg weights.

Let Puv be the path between vertices u and v in the tree T and T u be
the tree T rooted at u. We also denote by T u

v the rooted subtree of T u

containing v and all the descendants of v.
To find the (k, l)-core of a tree, as in the papers of Peng and Lo [20]

and Becker et al. [2], we use a recursive algorithm by starting a central
vertex. A central vertex v of the tree T is the centroid of the corresponding
unweighted tree of T , which is, a vertex that minimizes the maximum
number of vertices of the subtrees obtained by removing it.

After finding the central vertex v, the algorithm finds a (k, l)-core con-
taining v in the tree T v. If it is not the (k, l)-core of the tree T , then the
(k, l)-core must lie entirely in one of the subtrees rooted at the adjacent
vertices of v. The algorithm is recursively applied to these subtrees.

Note that if w(T) < 0 then according to the Theorem 1 the (k, l)-core
is a vertex. So the algorithm should find a vertex as a (k, l)-core. Also in

136 S. Motevalli, J. Fathali and M. Zaferanieh

this case, according to Lemma 1, the target vertex is either a leaf or an
inner vertex u so that w(u) ≥ 0 and w(Tuv) ≤ 0 for each vertex v adjacent
to u. Therefor in the algorithm after finding a central vertex, if central
vertex isn’t a leaf and w(u) ≥ 0, subtrees that are adjacent to it should
be checked. If all of them had negative weight, so the central vertex is the
(k, l)-core too. Otherwise, the central vertex is removed and the subtrees
obtained by deleting them one by one so checked.

Before introducing the algorithm, we give the following notations as
in [2].

let f(u) be the father of u. The distance saving sav(v, Pvu) obtained
by adding Pvu to the root v in T c

v , is given by

sav(v, Pvu) = sav(v, Pvf(u)) + a(f(u), u)sumc(u)

where if v = f(u) then sav(v, Pvf(u)) = sav(v, v) = 0 and sumc(u) is
calculated by

sumc(v) =

w(v) if v is a leaf of Tc

w(v) +
∑

u a child of v

sumc(u) Otherwise
(1)

Let the path P = Pvu be given and let B be the set of children of v.
We denote by T v

b̄
with b 6= b̄, the subtree in which P lies. In the algorithm,

the tree T v is pruned as follows:

1. Prune the paths that belong to subtrees T v
b , with b 6= b̄, in order to

obtain paths with length at most min{l − L(P), L(P)}.

2. For the paths that lie in the same subtree as P = Pvu (i.e.,in T v
b̄

),
prune those paths Pxw, with x ∈ P , x 6= v and w ∈ T v

b̄
\P , such that

L(Pxw) > min{L(P)− L(Pvx), l − L(Pxu)}

The pruned tree is called T̂ v, and the weights of tree T̂ v is calculated
by the following function:

w′(u) =

w(u) for each vertex u of T̂ v that is not a leaf

sumv(u)a(u, f(u)) for each vertex u that is a leaf of T̂ v

(2)
Algorithm (Beker et al. [2])
Input: a tree T with pos/neg weight

Efficient algorithm for finding the semi-obnoxious (k,l)-core of a tree 137

Output: a (k, l)-core S∗ of T and its DISTSUM d∗

begin
d∗ := +∞
SUBTREE(T)

end

Procedure SUBTREE(T ′)
Input: a subtree T ′ = (V ′, E′) of T with | V ′ |= n′ and the best current
DISTSUM d∗

Output: if the best subtree in T ′ has DISTSUM less than the previous
value of d∗, the best subtree S∗ in T ′ , having at most k leaves and with a
diameter of at most l and its DISTSUM as the new value of d∗

begin
if T ′ consists of one vertex then

S′ = T ′ and let d(S′) be its DISTSUM
else

find a central vertex v of T ′

if w(T) < 0
if v be an inner vertex and w(v) ≥ 0 and for each vertex u adja-

cent to v, w(Tvu) ≤ 0
then v is the (k, l)-core
let S′ = v and let d(S′) be its DISTSUM

else let S′ := BEST-TREE(T ′, v)
if d(S′) < d∗

d∗ := d(S′)
S∗ := S′

for each subtre T i obtained from T ′ by removing v
do
SUBTREE(T i)

end

Procedure BEST − TREE(T ′, v) (Beker et al. [2])
Input: a subtree T ′ = (V ′, E′) of T with n′ vertices rooted at the central
vertex v
Output: the best subtree S′ containing v in T ′v having at most k leaves
and

a diameter of at most l and its DISTSUM d(S′)
begin

find the paths starting from v with length at most l
for each path P starting from v with length at most l

138 S. Motevalli, J. Fathali and M. Zaferanieh

do
prune the tree T ′v and let T̂ ′v be the new tree (see Prune)
find the distance savings of the paths from v to each vertex u 6= v

in T̂ ′v

if deg(v) ≥ 2 then
find the path P ′

find P ′′=p∪p′

else
P ′′ = P
find the set LS with respect to P ′′

if T̂ ′vhas more than k leaves then
select in LS the k − 2 paths to be added to P ′′

let S′ be the best subtree containing v and d(S′) be its DISTSUM
else

select all the paths in LS
let S′ = T̂ ′v and let d(S′) be its DISTSUM

end for
end

Note that the main difference between our algorithm and algorithm with
positive weight is the case that W (T) < 0. However the time complexity
for this case is no more than the other cases therefore the time complexity
will be the same as Beker et al. [2] algorithm and we can state the following
theorem.

Theorem 3. The time complexity of presented algorithm is O(n2logn).

5 Numerical examples

In this section we use the algorithm for a different case of the total weight
of a tree.

Example 1. Consider the tree depicted in Fig. 2. The edge lengths are
written on the edges. Let the weights of vertices be as showed in the Table
1. The total weight of tree is w(T) = 1 > 0. Let we want to find the
(3,4)-core on this tree. According to algorithm we should find a central
vertex. We start with v12 as a central vertex. Then we should find all of
the paths starting from v12 with length at most 4, this paths are showed in
Fig. 3.

Now for each path prune the tree T and continue steps of algorithm.
For example consider the path number 2, new tree after prune is presented
in fig. 4.

Efficient algorithm for finding the semi-obnoxious (k,l)-core of a tree 139

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

-2 -1 4 1 3 -1 -2 1 -2 -3 2 1

Table 1: The weights of vertices of tree in Fig. 2 for Example 1.

Figure 2: A tree with 12 vertices.

The distance savings of p : v12 v10 and p : v12 v11 is sav(v12, pv12v10) =
−4/5 and sav(v12, pv12v11) = +3. Since deg(v12) = 2 we consider p′ =
v12 − v10 so p′′ = p ∪ p′ that is showed in Fig. 5. Also since T

∧′v has 2
leaves so we select all the paths in LS so S′ = T

∧′v and d(S′) = 6. After
performing the above steps for each path, we consider subtrees obtained by
removing of v12 one by one (see Fig. 6) and find a central vertex for each
subtree and continue above steps for each subtree.

Finally the subtree that is showed in Fig. 7, is (3,4)-core and its distsum
is equal to -26.5.

Example 2. Now consider the Fig. 2 with the weights of vertices are as
showed in Table 2. In this case we have w(T) = −1 < 0. Therefore the
(3,4)-core should be a vertex. We obtain that the vertex v4 is (3,4)-core
and d(v4) = −33.5.

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

-2 -2 3 1 3 -2 -3 2 1 -1 -2 1

Table 2: The weights of vertices of tree in Fig. 2 for Example 2.

Example 3. Again consider the Fig. 2, where the weights of vertices are
showed in the Table 3. The sum of weights of all vertices in this case is

140 S. Motevalli, J. Fathali and M. Zaferanieh

Figure 3: The paths starting from v12 with length at most 4.

Figure 4: The path number 2 af-
ter prune. Figure 5: The path p′′.

w(T) = 0. The (3,4)-core is the presented in Fig. 8. Its distsum is equal to
-12. Note that in this case the weight of tree is zero, however the (3,4)-core
is not a vertex.

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

-1 1 -1 -1 2 1 1 1 -3 1 1 -2

Table 3: The weights of vertices of tree in Fig. 2 for Example 3.

Efficient algorithm for finding the semi-obnoxious (k,l)-core of a tree 141

Figure 6: Subtrees obtained by removing of v12.

Figure 7: The (3,4)-core. Figure 8: The (3,4)-core.

6 Summary and conclusion

In this paper we considered the (k, l)-core problem on a tree with pos/neg
weights. We showed some properties for this problem and modified the
previously presented polynomial time algorithm to find the solutions of
this problem. The time complexity of modified algorithm is the same as
previous one, i.e. O(n2logn).

142 S. Motevalli, J. Fathali and M. Zaferanieh

References

[1] R. I. Becker, Inductive algorithms on finite trees, Quaest. Math. 13
(1990) 165–181.

[2] R. I. Becker and I. Lari and G. Storchi and A. Scozzari, Efficient
algorithms for finding the (k, l)-core of tree networks, Networks 40
(2002) 208–215.

[3] R. Benkoczia, B.K. Bhattacharya, D. Breton, Efficient computation of
2-medians in a tree network with positive/negative weights, Discrete
Math. 306 (2006) 1505–1516.

[4] R.E. Burkard, E. Çela, H. Dollani, 2-Median in trees with pos/neg
weights, Discrete Appl. Math. 105 (2000) 51–71.

[5] R.E. Burkard, J. Fathali, A polnomial method for the pos/neg weighted
3-median problem on a tree, Math. Meth. Oper. Res. 65 (2007) 229–
238.

[6] R.E. Burkard, J. Fathali, H.T. Kakhki, The p-maxian problem on a
tree, Oper. Res. Lett. 35 (2007) 331–335.

[7] R.E. Burkard, J. Krarup, A linear algorithm for the pos/neg-weighted
1-median problem on a cactus, Computing 60 (1998) 193–215.

[8] R.L. Church, R.S. Garfinkel, Locating an obnoxious facility on a net-
work, Transport. Sci. 12 (1978) 107–118.

[9] J. Fathali, N. Jafari-Rad, S. R. Sherbaf, The p-median and p-center
problems on bipartite graphs, Iranian Journal of Mathematical Sciences
and Informatics 9 (2014) 37–43.

[10] B. Gavish, S. Sridhar, Computing the 2-median on tree networks is
O(n log n) time, Networks 26 (1995) 305–317.

[11] A.J. Goldman, Optimal center location in simple networks, Transport.
Sci. 5 (1971) 212–221.

[12] S.L. Hakimi, E.F. Schmeichel and M. Labbe, On locating path-or tree-
shaped facilities on networks, Networks 23 (1993) 543–555.

[13] R. Hassin and A. Tamir, Improved complexity bounds for location prob-
lems on the real line, Oper. Res. Lett. 10 (1991) 395–402.

Efficient algorithm for finding the semi-obnoxious (k,l)-core of a tree 143

[14] S.M. Hedetniemi, E.J. Cockaine, S.T. Hedetniemi, Linear algorithms
for finding the jordan center and path center of a tree, Transport. Sci.
15 (1981) 98–114.

[15] O. Kariv, S.L. Hakimi, An algorithmic approach to network location
problems. Part II: p-medians, SIAM J. Appl. Math. 37 (1979) 539–560.

[16] H. R. Maimani, Median and center of zero-divisor graph of commuta-
tive semigroups, Iranian Journal of Mathematical Sciences and Infor-
matics 3 (2008) 69–76.

[17] E. Minieka and N.H. Patel, On finding the core of a tree with a specified
length, J. Algorithms 4 (1983) 345–352.

[18] P.B. Mirchandani, R. Francis, Discrete Location Theory, J.Wiley, 1990.

[19] C.A. Morgan, P.J. Slater, A linear algorithm for a core of a tree, J.
Algorithms 1 (1980) 247–258.

[20] S. Peng, W. Lo , Efficient algorithms for finding a core of a tree with
a specified length, J. Algorithms 20 (1996) 445–458.

[21] S. Peng, A.B. Stephens, and Y. Yesha, Algorithms for a core and a
k-tree core of a tree, J. Algorithms 15 (1993) 143–159.

[22] A. Shioura and T. Uno, A linear time algorithm for finding a k-tree
core, J. Algorithms 23 (1997) 281–290.

[23] PJ. Slater , Locating central paths in a graph, Transport. Sci. 16 (1982)
1–18.

[24] A. Tamir, Obnoxious facility location on graphs, SIAM J. Discrete
Math. 4 (1991) 550–567.

[25] A. Tamir, An O(pn2) algorithm for the p-median and related problems
on tree graphs, Oper. Res. Lett. 19 (1996) 59–64.

[26] S.S. Ting, A linear-time algorithm for maxisum facility location on tree
networks, Transport. Sci. 18 (1984) 76–84.

[27] M. Zaferanieh and J. Fathali, Finding a core of a tree with pos/neg
weight, Math. Meth. Oper. Res. 26 (2012) 147–160.

[28] M. Zaferanieh and J. Fathali, Ant colony and simulated annealing al-
gorithms for finding the core of a graph, World. Appl. Sci. J. 7 (2009)
1335–1341.

144 S. Motevalli, J. Fathali and M. Zaferanieh

[29] B. Zelinka, Medians and peripherians of trees, Archvium Mathe-
maticum 4 (1968) 87–95.

	1 Introduction
	2 Problem definition
	3 Some properties of the problem
	4 Algorithm
	5 Numerical examples
	6 Summary and conclusion

