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Abstract. In this paper, an iterative method is proposed for solving ma-
trix equation

∑s
j=1AjXjBj = E. This method is based on the global least

squares (GL-LSQR) method for solving the linear system of equations with
the multiple right hand sides. For applying the GL-LSQR algorithm to
solve the above matrix equation, a new linear operator, its adjoint and a
new inner product are defined. It is proved that the new iterative method
obtains the least norm solution of the mentioned matrix equation within fi-
nite iteration steps in the exact arithmetic, when the above matrix equation
is consistent. Moreover, the optimal approximate solution (X∗1 , X

∗
2 , . . . , X

∗
s )

to a given multiple matrices (X̄1, X̄2, . . . , X̄s) can be derived by finding the
least norm solution of a new matrix equation. Finally, some numerical ex-
periments are given to illustrate the efficiency of the new method.

Keywords: Matrix equation, GL-LSQR algorithm, iterative method, linear opera-

tor, matrix nearness problem.
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1 Introduction

Matrix equations appear frequently in many areas of applied mathematics
and play vital roles in a many applications such as control theory, model re-
duction and image processing; see [1, 3, 4, 5, 6] and their references. Hence,
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many researches are performed on the various type of matrix equations; for
example see [1, 4, 7, 8, 11, 12, 14, 17, 18]. In [13, 15] a simple type of (4)
has been studied. The methods used in [15] and [13] include singular value
decomposition (SVD) and an iterative method, respectively. Throughout
this paper, Cn×m represents the set of all n ×m complex matrices. Also
the notations tr(A) and AH use to denote the trace and the transpose con-
jugate of the matrix A, respectively. For two matrices X and Y in Cn×m,
〈X,Y 〉F denotes the Frobenius inner product, e.g., 〈X,Y 〉F = tr(Y HX),
and associated Frobenius norm is denoted by ||.||F .

The following inner product is defined on < = Cp1×q1 × Cp2×q2 × . . .×
Cps×qs .

Definition 1. Let X = (X1, X2, . . . , Xs) and Y = (Y1, Y2, . . . , Ys) be in <.
Then

〈〈X ,Y〉〉 = tr(
s∑

j=1

Y H
j Xj),

and its associated norm is denoted by ]X ] =
√
〈〈X ,X〉〉.

It is easy to show that ]X ] =

√
s∑

j=1
||Xj ||2F .

The symbol ∗ stands for the following product:

V ∗ y :=
s∑

j=1

yjVj , (1)

where V = [V1,V2, . . . ,Vs], Vj ∈ < for 1 ≤ j ≤ s, and y ∈ Cs. By the same
way, it is defined

V ∗ T := [V ∗ T (:, 1),V ∗ T (:, 2), . . . ,V ∗ T (:, s)], (2)

where T is a s × s matrix and T (:, j) denotes the jth column of T . It is
easy to show that the following relations are satisfied

V ∗ (y + z) = V ∗ (y) + V ∗ (z), (V ∗ T ) ∗ y = V ∗ (Ty), (3)

where y and z are in Cs.
In this paper, the solution of the following matrix equation is considered

s∑
j=1

AjXjBj = E, (4)
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where Aj ∈ Cn×pj , Bj ∈ Cqj×m, j = 1, 2, . . . , s and E ∈ Cn×m. Also, the
solution of the following matrix nearness problem is considered

min
X∈SX

]X − X̄ ]2, (5)

where X̄ is a given multiple matrices of < and SX is the solution set of
the linear equation (4). Matrix nearness problem (5) occurs frequently in
experimental design. For more details on the matrix nearness problem, one
can refer to References [2, 10, 9].

Recently, Toutounian et al. [16] proposed the GL-LSQR algorithm for
obtaining the approximate solution of matrix equation AX = B, where
A ∈ Cn×n, B ∈ Rn×s. The GL-LSQR method generates two set matrices
V1, V2, . . . , Vk and U1, U2, . . . , Uk which form an F -orthonormal basis for
block Krylov subspaces Kk(ATA;V1) and Kk(AAT ;U1), respectively.

In this paper, a new iterative method is presented for solving the matrix
equation (4). This method is based on the GL-LSQR algorithm. It is proved
that the new method obtains the least norm solution with respect to the
Frobenius norm of (4). In addition, using the new iterative method, the
solution of the minimization problem (5) can be obtained by first finding
the least norm solution of a new matrix equation. Finally the numerical
results of this paper are compared to those of [13].

The rest of this paper is organized as follows. In the next section, a
short review of the GL-LSQR method is presented. Section 3 is devoted
to the new iterative method. In Section 4, numerical examples are given
to illustrate the efficiency of the new method. Finally, some concluding
remarks are given in Section 5.

2 The GL-LSQR method

In this section, some fundamental properties of the GL-LSQR method [16]
is reviewed for solving matrix equation AX = B. The GL-LSQR method
uses a process, namely Global-Bidiag process, to reduce the coefficient ma-
trix A to a global lower bidiagonal form. The Global-Bidiag process can be
described as follows.

Global-Bidiag (starting matrix B; reducing to global lower bidiagonal
form):

β1U1 = B, α1V1 = AHU1,

βi+1Ui+1 = AVi − αiUi

αi+1Vi+1 = AHUi+1 − βi+1Vi,

}
, i = 1, 2, . . . , (6)
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where Vi ∈ Cm×q, Ui ∈ Cn×q, i = 1, 2, . . .. The scalars αi ≥ 0 and βi ≥ 0
are chosen so that ‖Ui‖F = ‖Vi‖F = 1.

With the definitions

Uk ≡ [U1, U2, . . . , Uk],
Vk ≡ [V1, V2, . . . , Vk],

Tk ≡


α1

β2 α2

. . .
. . .

βk αk

βk+1

 ,

the recurrence relations (6) may be rewritten as:

Uk+1 ∗ (β1e1) = B, (7)

AVk = Uk+1 ∗ Tk, (8)

ATUk+1 = Vk ∗ T T
k + αk+1Vk+1 ∗ eTk+1. (9)

Proposition 1. ([16]) Suppose that k steps of the Global-Bidiag process
have been taken, then the n×s block vectors V1, V2, . . . , Vk and U1, U2, . . . ,
Uk, Uk+1 are F-orthonormal basis of the Krylov subspaces Kk(AHA, V1) and
Kk+1(AA

H , U1), respectively.

Proposition 2. ([16]) The Global-Bidiag process will be stopped at step m
if and only if m = min{µ, λ}, where µ and λ are the grades of V1 and U1

with respect to AHA and AAH , respectively.

Proposition 3. ([16]) Let Uk = [U1, U2, . . . , Uk], where the n× s matrices
Ui, i = 1, . . . , k, are generated by the Global-Bidiag process. Then

||Uk ∗ η||F = ||η||2,

where η ∈ Rk and ||.||2 is the `2-norm.

By using the Global-Bidiag process, the GL-LSQR algorithm constructs
an approximate solution of the form Xk = Vk ∗ yk, where yk ∈ Rk, which
solves the least squares problem

min
X
||B −AX||F .

The main steps of the GL-LSQR algorithm can be summarized as follows.

Algorithm 1. Gl-LSQR algorithm

1. Set X0 = 0

2. β1 = ||B||F , U1 = B/β1, α1 = ||AHU1||F , V1 = AHU1/α1.
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3. Set W1 = V1, φ̄1 = β1, ρ̄1 = α1

4. For i = 1, 2, . . . until convergence, Do:

5. W̄i = AVi − αiUi

6. βi+1 = ||W̄i||F
7. Ui+1 = W̄i/βi+1

8. S̄i = AHUi+1 − βi+1Vi

9. αi+1 = ||S̄i||F
10. Vi+1 = S̄i/αi+1

11. ρi = (ρ̄2i + β2i+1)
1/2

12. ci = ρ̄i/ρ

13. si = βi+1/ρi

14. θi+1 = siαi+1

15. ρ̄i+1 = ciαi+1

16. φi = aiφ̄i

17. φ̄i+1 = ciφ̄i

18. φi = ciφ̄i

19. φ̄i+1 = −siφi
20. Xi = Xi−1 + (φi/ρi)Wi

21. Wi+1 = Vi+1 − (θi+1/ρi)Wi

22. If |φ̄i+1| is small enough then stop

23. EndDo.

More details about the GL-LSQR algorithm can be found [16].

3 The new iterative method

Consider the linear operator

L : < → Cn×m,

L(X ) =
s∑

j=1
AjXjBj ,

(10)

where Aj ∈ Cn×pj , Bj ∈ Cqj×m, j = 1, 2, . . . , s and X = (X1, . . . , Xs).
Therefore, the matrix equation (4) can be written as

L(X ) = E. (11)
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Definition 2. Let L be the linear operator given in equation (11). Then
linear operator

L∗ : Cn×m → <,

that satisfies
〈L(X ), Y 〉F = 〈〈X ,L∗(Y )〉〉,

for all X ∈ <, Y ∈ Rn×m, is called the adjoint of L.

It is easy to prove the following remark.

Remark 1. Let L be linear operator (11). Then

L∗(Y ) = (AH
1 Y B

H
1 , A

H
2 Y B

H
2 , . . . , A

H
s Y B

H
s ).

Similar to the block Krylov subspace Kk(A;R), the following block
Krylov subspace is defined for L.

Definition 3. Let L be linear operator (11). Then

Kk(L;R) = span{R,L(R),L2(R), . . . ,Lk−1(R)},

where Li =

i times︷ ︸︸ ︷
L ◦ L ◦ · · · ◦ L and ◦ is the combination of two operators.

Definition 4. Let L be linear operator (11) and Vk = [V1,V2, . . . ,Vk],
where Vj ∈ <, j = 1, 2, . . . , k. Then

L(Vk) = [L(V1),L(V2), . . . ,L(Vk)] ∈ Rn×km.

To approximate the solution of the operator equation (11), a new al-
gorithm is presented, will be referred by L-GLS. Same as the GL-LSQR
algorithm, the L-GLS algorithm uses a global bidiagonal process, will be
referred to L-Bidiag. The L-Bidiag process reduces the linear operator L to
the lower bidiagonal matrix form. The L-Bidiag process can be described
as follows.

L-Bidiag (starting matrix E; reduction to lower bidiagonal matrix form):

β1U1 = E, α1V1 = L∗(U1)

βi+1Ui+1 = L(Vi)− αiUi

αi+1Vi+1 = L∗(Ui+1)− βi+1Vi

}
, i = 1, 2, ..., (12)

where Ui ∈ Cn×m and Vi ∈ <. The scalars αi ≥ 0 and βi ≥ 0 are chosen so
that ||Ui||F = 1 and ]Vi] = 1.
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With the definitions

Uk ≡ [U1, U2, ..., Uk],
Vk ≡ [V1,V2, . . . ,Vk],

Tk ≡


α1

β2 α2

. . .
. . .

βk αk

βk+1

 ,

and using the notation ∗ and Definition 4, the recurrence relations (6) can
be rewritten as:

Uk+1 ∗ (β1e1) = E, (13)

L(Vk) = Uk+1 ∗ Tk. (14)

Proposition 4. Suppose that k steps of the L-Bidiag process have been
taken, then V1,V2, . . . ,Vk and U1, . . . , Uk+1 are the orthonormal basis of
the Krylov subspaces Kk(L∗L;V1) and Kk+1(LL∗;U1), respectively.

Proof. The proof is similar to Proposition 1 and is omitted.

Proposition 5. Let Vk = [V1,V2, . . . ,Vk], where Vi, i = 1, . . . , k, are
generated by the L-Bidiag process. Then

]Vk ∗ η] = ||η||2,

where η ∈ Rk.

Proof. We have

]Vk ∗ η]2 = 〈〈
s∑

i=1

ηiVi,
s∑

i=1

ηiVi〉〉,

since V1,V2, . . . ,Vk are orthonormal with respect to norm ].], it results that

]Vk ∗ η]2 =
s∑

i=1

η2i 〈〈Vi,Vi〉〉 =
s∑

i=1

η2i ,

and this proves the proposition.

The quantities generated from the linear operator L and E by the L-
Bidiag process will now be used to solve the least squares problem,

min
X∈<
||E − L(X )||F .

Let the quantities
Xk = Vk ∗ yk, (15)
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Rk = E − L(Xk), (16)

be defined, where yk ∈ Rk. According to linearity of the operator L, it is
easy to show that

L(Xk) = L(Vk) ∗ yk.

Also, it readily follows from (15), (16) and properties of product ∗ that the
equation

Rk = E−L(Vk)∗yk = Uk+1∗(β1e1)−(Uk+1∗Tk)∗yk = Uk+1∗(β1e1−Tkyk),

holds to working accuracy.
To minimize the kth residual ||Rk||F , since Uk+1 is F-orthonormal and

by using the Proposition 5, we choose yk so that

||Rk||F = ||β1e1 − Tkyk||2, (17)

is minimum. This minimization problem is carried out by applying the QR
decomposition [16], where a unitary matrix Qk is determined so that

Qk

[
Tk β1e1

]
=

[
Rk fk
0 φ̄k+1

]
=



ρ1 θ1 φ1
ρ2 θ3 φ2

. . .
. . .

...
ρk−1 θk φk−1

ρk φk
0 φ̄k+1


,

where ρl, θl and φl are scalars. The above QR factorization is determined
by constructing the kth plane rotation Qk,k+1 to operate on rows k and
k + 1 of the transformed

[
Tk β1e1

]
to annihilate βk+1. This gives the

following simple recurrence relation:[
ck sk
−sk ck

] [
ρ̄k 0 φ̄k
βk+1 αk+1 0

]
=

[
ρk θk+1 φk
0 ρ̄k+1 φ̄k+1

]
,

where ρ̄1 ≡ α1, φ̄1 ≡ β1 and the scalars ck and sk are the nontrivial
elements of Qk,k+1. The quantity ρ̄k and φ̄k are intermediate scalars that
are subsequently replaced by ρk and φk.

By setting
yk = R−1k ∗ fk,

the approximate solution is given by

Xk = Vk ∗ (R−1k ∗ yk), (18)

= (Vk ∗ R−1k ) ∗ fk. (19)
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Letting
Pk ≡ Vk ∗ R−1k ≡ [P1,P2, . . . ,Pk],

then
Xk = Pk ∗ fk.

The last column of Pk, Pk, can be computed from the previous Pk−1 and
Vk, by the simple update

Pk = (Vk − θkPk−1)/ρk, (20)

also note that,

fk =

[
fk−1
φk

]
,

in which
φk = ckφ̄k.

Thus, Xk can be updated at each step, via the relation

Xk = Xk−1 + φkPk.

The residual norm ||Rk||F is computed directly from the quantity φ̄k+1 as

||Rk||F = |φ̄k+1|.

Some of the work in (20) can be eliminated by using matrices Wk = ρkPk
in place of Pk. The main steps of the L-GLS algorithm can be summarized
as follows.

Algorithm 2. L-GLS algorithm

1. Set X0 = 0 ∈ <
2. β1 = ||E||F , U1 = E/β1, α1 = ]L∗(U1)], V1 = L∗(U1)/α1.

3. Set W1 = V1, φ̄1 = β1, ρ̄1 = α1

4. For i = 1, 2, . . . , until convergence, Do:

5. Ŵi = L(Vi)− αiUi

6. βi+1 = ||Ŵi||F
7. Ui+1 = Ŵi/βi+1

8. Ŝi = L∗(Ui+1)− βi+1Vi
9. αi+1 = ]Ŝi]

10. Vi+1 = Ŝi/αi+1

11. ρi = (ρ̄2i + β2i+1)
1/2

12. ci = ρ̄i/ρ
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13. si = βi+1/ρi
14. θi+1 = siαi+1

15. ρ̄i+1 = ciαi+1

16. φi = aiφ̄i
17. φ̄i+1 = ciφ̄i
18. φi = ciφ̄i
19. φ̄i+1 = −siφi
20. Xi = Xi−1 + (φi/ρi)Wi

21. Wi+1 = Vi+1 − (θi+1/ρi)Wi

22. If |φ̄i+1| is small enough then stop

23. EndDo.

In the following, it is proved that L-GLS gives the minimum norm
solution of (4). That is, it solves the optimization problem min ]X ] such
that satisfies (4). Let N(L) and R(L) denote the null space and range of
an operator L, respectively.

Lemma 1. Let L be the linear operator (11) and X̃ = (X̃1, X̃2, . . . , X̃s) ∈ <
satisfies L∗(L(X̃ )) = 0, then X̃ ∈ N(L).

Proof. According to the definition of L∗ and since L∗(L(X̃ )) = 0, we have

〈〈X̃ ,L∗(L(X̃ ))〉〉 = 0⇒ 〈L(X̃ ),L(X̃ )〉F = 0.

So L(X̃ ) = 0 and this completes the proof.

Let L be the linear operator (10) and L-GLS applies to solve (11), then
the following theorem is presented.

Theorem 3. L-GLS returns the minimum norm solution.

Proof. The final L-GLS solution satisfies L∗(L(XGLS
k )) = L∗(E), and any

other solution X̂ satisfies L∗(L(X̂ )) = L∗(E). With X̃ = X̂ − XGLS
k , the

difference between the two normal equations gives L∗(L(X̃ )) = 0, so that
L(X̃ ) = 0 by Lemma 1. From α1V1 = L∗(U1) and αk+1Vk+1 = L∗(Uk+1)−
βk+1Vk, we see that V1,V2, . . . ,Vk ∈ R(L∗). From L(X̃ ) = 0, it follows that
X̃ is orthogonal to Vk, that is, X̃ ⊥ Vk. Therefore,

]X̂ ]2 − ]XGLS
k ]2 = ]XGLS

k + X̃ ]2 − ]XGLS
k ]2,

= 〈〈X̃ , X̃ 〉〉+ 2〈〈XGLS
k , X̃ 〉〉,

= ]X̃ ]2 + 2tr(X̃HVky
GLS
k )

= ]X̃ ]2 ≥ 0,

and this completes the proof.
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To solve the matrix nearness problem (5), let the linear operator equa-
tion (11) be consistent, then

L(X ) = E ⇔ L(X − X̄ ) = E − L(X̄ ), ∀X ∈ SX , X̄ ∈ <.

Let X̃ = X − X̄ and Ẽ = E −L(X̄ ), then the matrix nearness problem (5)
is equivalent to first finding the least norm solution( with respect to norm
].]) of the linear operator equation L(X̃ ) = Ẽ. Using L-GLS algorithm, the
unique least norm solution X̃ ∗ of the linear operator equation L(X̃ ) = Ẽ
can be obtained, then the unique solution X̂ of the matrix nearness problem
(5) can be computed as X̂ = X̃ ∗ + X̄ .

4 Numerical experiments

In this paper, some numerical examples are given to illustrate the feasibility
and effectiveness of the new method. The numerical results of the new
method are compared to the one that’s in [13]. In all examples, the initial
guess was taken the zero element of < and stopping criterion is ‖Ri‖F <
10−10, where Ri is the ith residual at the ith iteration. All the numerical
experiments were computed in double precision with some MATLAB codes.

Example 1. ([13]) Consider the linear equation

AXB + CY D = E,

where the matrices A,B,C,D and E are as follows:

A =


1 3 1 3 1
3 −7 3 −7 3
3 −2 3 −2 3
11 6 11 6 11
−5 5 −5 5 −5
9 4 9 4 9

 , B =


−1 4 −1 4 −1
5 −1 5 −1 5
−1 −2 −1 −2 −1
3 9 3 9 3
7 −8 7 −8 7

 ,

C =


3 −4 3 −4 1 6
−1 3 −1 3 −3 −1
3 −5 3 −5 2 5
3 −4 3 −4 1 6
−1 3 −1 3 −3 −1
3 −5 3 −5 2 5

 , D =


−5 4 −1 −5 4
−2 3 5 −2 3
3 5 −1 3 5
2 −6 3 2 −6
1 11 7 1 11
4 −1 4 −5 4

 ,

E =


−79 613 −172 126 424
245 479 317 612 128
124 975 −7 519 584
14 2099 −79 1612 517
−247 −969 −175 −836 −364

58 1791 −73 1335 518

 .
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By applying the L-GLS algorithm to this example, after 34 iterations while in [13]
after 40 iterations, the unique least norm solution is obtained as follows:

X34 =


1.2075 0.7524 −0.9367 3.8822 −1.3053
−0.1886 −0.9652 0.4140 −1.5433 −0.6884
1.2075 0.7524 −0.9367 3.8822 −1.3053
−0.1886 −0.9652 0.4140 −1.5433 −0.6884
1.2075 0.7524 −0.9367 3.8822 −1.3053

 ,

Y34 =


0.1461 −0.6742 1.5150 −1.3108 0.8278 −0.2846
0.2668 1.4287 −2.1160 1.5454 −0.3976 −0.4103
0.1461 −0.6742 1.5150 −1.3108 0.8278 −0.2846
0.2668 1.4287 −2.1160 1.5454 −0.3976 −0.4103
1.2104 1.0492 −2.5987 0.8949 −1.7203 1.0718
1.8359 0.3841 0.8009 −2.0708 1.5019 −1.1077

 ,

with a corresponding residual norm

||R34||F = ||E −AX34B − CY34D||F = 1.1079e− 011.

Let

X̄ =


−6 2 −3 2.5 −6
2 −1 3 −5.5 2
−3 3 −3 3 −2
2.5 −5 3 2 2
−6 2 −2 2 −1

 ,

Ȳ =


−1 1.5 1 0 0.5 3
1.5 3 −1 2 0 0
1 −1 2 −2 0.5 −1
0 2 −2 2 1.5 −1.5

0.5 0 0.5 1.5 −3 1.5
3 0 −1 −1.5 1.5 −1

 ,
then using L-GLS algorithm and iterating 33 steps, while [13] iterating 39 steps,
the unique least norm solution on the new equation is obtained as follows:

X̃∗33 =


0.5177 0.1722 −0.3541 1.4982 −0.7179
0.4025 −0.0617 −0.2136 0.9487 −0.7641
0.5177 0.1722 −0.3541 1.4982 −0.7179
0.4025 −0.0617 −0.2136 0.9487 −0.7641
0.5177 0.1722 −0.3541 1.4982 −0.7179

 ,

Ỹ ∗33 =


−0.2792 −0.1855 0.5667 −0.1688 0.4475 −0.4077
−0.2792 −0.7427 0.0062 0.0340 −1.1861 0.7051
−0.2792 −0.1855 0.5667 −0.1688 0.4475 −0.4077
−0.2792 −0.7427 0.0062 0.0340 −1.1861 0.7051
1.3686 1.8617 −1.6553 0.3741 0.8100 −0.1359
−0.6697 −0.7386 1.1736 −0.3693 0.3534 −0.5462

 ,

with a corresponding residual norm

||R̃∗33||F = ||Ẽ −AX̃∗33B − CỸ ∗33D||F = 9.4622e− 011,



Global least squares solution for matrix equations 182

where Ẽ = E −AX̃B − CỸ D. Hence, the optimal solution (5) is

X̂∗33 = X̃∗33 + X̄

=


−5.4823 2.1722 −3.3541 3.9982 −6.7179
2.4025 −1.0617 2.7864 −4.5513 1.2359
−2.4823 3.1722 −3.3541 4.4982 −2.7179
2.9025 −5.0617 2.7864 2.9487 1.2359
−5.4823 2.1722 −2.3541 3.4982 −1.7179

 ,
Ŷ ∗33 = Ỹ ∗33 + Ȳ

=


−1.2792 1.3145 1.5667 −0.1688 0.9475 2.5923
1.2208 2.2573 −0.9938 2.0340 −1.1861 0.7051
0.7208 −1.1855 2.5667 −2.1688 0.9475 −1.4077
−0.2792 1.2573 −1.9938 2.0340 0.3139 −0.7949
1.8686 1.8617 −1.1553 1.8741 −2.1900 1.3641
2.3303 −0.7386 0.1736 −1.8693 1.8534 −1.5462

 ,

and the minimum is

min
SX,Y

(||X − X̄||2F + ||Y − Ȳ ||2F ) ≈ ||X̄∗33 − X̄||2F + ||Ȳ ∗33 − Ȳ ||2F = 31.4902.

Example 2. Let A,B,C and D be, respectively, a 100×100 complex sym-
metric Toeplitz matrix with the first row (1, 12 , . . . ,

1
100) + i(1, 1, . . . , 1), a

100×100 complex Hankel matrix with the entry in position (k, l), −1
k+l−1− i

(k, l = 1, 2, . . . , 100), a 100× 100 complex tridiagonal matrix with diagonal
elements equal to 2 + 2i and off-diagonal elements to (−1,−1

2 , . . . ,−
1
99) +

i(1, 1, . . . , 1) and (1, 12 , . . . ,
1
99) + i(1, 1, . . . , 1), and a 100× 100 upper trian-

gular part matrix of the matrix A, where i =
√
−1. Let E = AX̌B+CY̌ D,

where X̌ and Y̌ be 100×100 matrices with all elements 1. Then linear ma-
trix equation AXB+CY D = E is consistent and the L-GLS algorithm and
Algorithm 2.1 [13] can be applied to obtain its least norm solution. Figure
1 shows the convergence history of this example. As is shown from Figure
1, the L-GLS algorithm monotonically converges faster than Algorithm 2.1.
This fact causes a decreasing on run time when we use L-GLS algorithm
(17.98 in seconds) substitute of Algorithm 2.1 [13] (23.18 in seconds).

Example 3. Consider the following matrix linear equation

AXB + CY D + EZF = G,

where

A =

[
hilb(4) zeros(4, 3)
eye(4) ones(4, 3)

]
, B =

[
ones(5, 5) zeros(5, 4)
zeros(4, 5) pasc(4)

]
,

C =

[
magic(4)
ones(4, 4)

]
,
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Figure 1: Convergence history of the Frobenius norm of the residual matrix
for Example 2.

D =

[
hank(1 : 4) zeros(4, 5)
zeros(5, 4) zeros(5, 5)

]
, E =

[
ones(5, 2) zeros(5, 3)
zeros(3, 2) eye(3)

]
,

F =
[

toep(1 : 5) ones(5, 4)
]
,

where hilb(n), pasc(n) and magic(n) denote Hilbert matrix, Pascal matrix
and Magic matrix of order n, respectively; and toep(1 : n) and hank(1 : n)
denote Toeplitz matrix and Hankel matrix of order n, respectively, with
their first rows being (1, 2, . . . , n), also ones(m,n) and zeros(m,n) denote
m × n matrices with all components are 1 and 0, respectively. Let G =
AX̂B + CŶ D + EẐF , where X̂, Ŷ and Ẑ are ones(7, 9), ones(4, 9) and
ones(5, 5), respectively.

The L-GLS algorithm was applied to this example and its convergence
history has been shown in Figure 2.

Example 4. Consider the Example 2 in [13]. We applied L-GLS algorithm
and Algorithm 2.1 [13] for solving this example and the numerical results
are given in the Table 1. In this table, notations “It” and “RN” denote
the iteration number and residual norm. As is seen from this table, the
iteration number and CPU time (in seconds) of two algorithms are close
together but L-GLS algorithm shows the relative superiority.
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Table 1: Iteration number and CPU time of the L-GLS algorithm and
Algorithm 2.1 for Example 4.

It CPU-time RN

L-GLS 101 0.12 8.10e-11

Algorithm 2.1 107 0.17 8.56e-11
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Figure 2: Convergence history of the Frobenius norm of the residual matrix
for Example 3.

5 Conclusion

In this paper, an iterative method was proposed for obtaining the approx-
imate solution of matrix equation (4). It was proved that the new iterative
method obtains the least-norm solution of this equation. As an application,
the new method was applied for solving the matrix nearness problem (5).
Numerical results showed that the new method is more efficient than the
one that’s in [13].
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