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Abstract. Consider the following consistent Sylvester tensor equation

X×1 A+ X×2 B + X×3 C = D,

where the matrices A,B,C and the tensor D are given and X is the un-
known tensor. The current paper concerns with examining a simple and
neat framework for accelerating the speed of convergence of the gradient-
based iterative algorithm and its modified version for solving the mentioned
Sylvester tensor equation without setting the restriction of the existence of
a unique solution. Numerical experiments are reported which confirm the
validity of the presented results.
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1 Introduction and preliminaries

A tensor is a multidimensional array, for an extensive survey on the subject
of higher-order tensors and their decomposition one may refer to [10]. The
order of a tensor is the number of dimensions which is called by modes or
ways. Throughout this paper, matrices (tensors of order two) are signified
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by capital letters. Higher-order tensors (here order three) are indicated by
Euler script letters, e.g., X.

A fundamental operation for a tensor is the tensor-matrix multipli-
cation. The 1-mode tensor product of tensor X ∈ RI×J×K by a matrix
A ∈ RP×I is denoted by X×1A which is a P ×J ×K tensor and its entries
are given by

(X×1 A)(p, j, k) =
I∑
i=1

xijkapi.

Similarly, the elements of the 2-mode multiplication of X by a matrix B ∈
RQ×J are expounded by

(X×2 B)(i, q, k) =

J∑
j=1

xijkbqj .

In an analogous manner the 3-mode multiplication can be determined.

Definition 1. The inner product of two tensors X,Y ∈ RI×J×K is defined
by

〈X,Y〉 =
I∑
i=1

J∑
j=1

K∑
k=1

xijkyijk,

and the corresponding induced norm is given by

‖X‖2 = 〈X,X〉 .

In this paper we consider the Sylvester tensor equation

A(X) := X×1 A+ X×2 B + X×3 C = D, (1)

where the matrices A ∈ Rm×m, B ∈ Rn×n, C ∈ Rl×l and the tensor
D ∈ Rm×n×l are given. Note that (1) may appear from finite difference
discretization of a linear partial equation in three dimension; for further
details see [1, 3]. In addition, in the case that X is a simple 2-mode ten-
sor (X is matrix), the tensor equation (1) reduces to the Sylvester matrix
equation AX + XBT = D which has wide application in control theory,
signal processing and system identification; see [5, 6, 9] and the references
therein.

It is not difficult to verify that (1) is equivalent to the following linear
system of equations

Wx = b,
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with x = vec(X), b = vec(D) and

W = Il ⊗ In ⊗A+ Il ⊗B ⊗ Im + C ⊗ In ⊗ Im,

where ⊗ denotes the Kronecker product [4], In stands for the identity ma-
trix of order n and the “vec” operator stacks the column of a matrix (or a
tensor) to form a vector. For a square matrix X, its spectrum is denoted
by σ(X). It is not difficult to see that the set of all eigenvalues of W is
given by

σ(W) = {λi + µj + νk | λi ∈ σ(A), µj ∈ σ(B), σ(C) ∈ νk
i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , l} .

Evidently, the linear system Wx = b is consistent if b belongs to the range
of W and it has a unique solution if and only if 0 /∈ σ(W). It is well-known
that the linear system Wx = b is consistent if and only if (1) is consistent.
Evidently, the size of the linear system Wx = b would be huge even for
moderate values of l,m and n. Consequently, it is more desirable to apply
an iterative method based on tensor format for solving (1).

In the case that (1) has a unique solution, Chen and Lu [3] have devel-
oped a projection method on the tensor format for solving (1). In fact the
authors have examined the tensor form of the well-known GMRES method.
In [2], the gradient-based (GB) and modified gradient-based (MGB) meth-
ods have been proposed to determine the solution of (1) under the restric-
tion that (1) has a unique solution. We would like to comment here that
the GB and MGB algorithms rely on the fixed parameters µ and κ. It
has been established that if µ (κ) satisfies a sufficient condition, then the
proposed GB (MGB) algorithm converges to the unique solution of (1) for
an arbitrary given initial value tensor. In the current paper we aim to relax
the referred limitation on the hypophysis and ameliorate the speed of con-
vergence of the algorithms proposed by Chen and Lu [2]. More precisely,
we suppose that (1) is consistent and then improve the convergence rate of
the GB and MGB algorithms for solving (1) by exploiting the idea of an
oblique projection method; for further details in the topic of the projection
methods see Chapter 5 of [11].

The remainder of this paper is organized as follows. In Section 2, we
momentarily review the GB and MGB algorithms for solving (1) and men-
tion the disadvantages of the algorithms which motivate us to improve these
algorithms. In Section 3, it reveals that how the speed of convergence of
the GB and MGB algorithms can be accelerated without setting the re-
striction of the existence of a unique solution. Some numerical experiments
are presented in Section 4 to illustrate the applicability and feasibly of the
proposed methods. Finally a brief conclusion is a subject of Section 5.
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2 The GB and MGB methods for the Sylvester
tensor equation

In the literature, the gradient-based (GB) iterative algorithm is a common
approach for solving matrix equations. For instance, Ding and Chen [7, 8]
have presented various iterative methods based on the hierarchical identifi-
cation principle to solve different kinds of matrix equations. Lately, Zhou et
al. [12, 13, 14, 15] have offered the gradient-based algorithms to solve some
kinds of (coupled) matrix equations. The examined algorithms depend on
a fixed parameter denoted by µ. In each of these works, Zhou et al. have
assumed that their considered problem has a unique solution and estab-
lished a necessary and sufficient condition for the parameter µ under which
the proposed algorithm is convergent. Furthermore, the optimum value for
the fixed parameter µ has been derived which is not easy to compute in
practice.

More recently, Chen and Lu [2] have developed the next algorithm to
determine the unique solution of (1).

Algorithm 1: The gradient-based (GB) algorithm [2] for solving (1).

Data: A,B,C,D and µ.
Result: X.
Initialize X0.
begin

R0 = D− X0 ×1 A− X0 ×2 B − X0 ×3 C;
for k = 1, 2, . . . , kmax do

Xk1 = Xk−1 + µRk−1 ×1 A
T ;

Xk2 = Xk−1 + µRk−1 ×2 B
T ;

Xk3 = Xk−1 + µRk−1 ×3 C
T ;

Xk =
(
Xk1 + Xk2 + Xk3

)
/3;

Rk = D− Xk ×1 A− Xk ×2 B − Xk ×3 C;

end

end

It has been proved that if

0 < µ < 2/(‖A‖22 + ‖B‖22 + ‖C‖22), (2)

then Algorithm 1 is convergent to the unique solution of (1) for any initial
value X0. Nevertheless, checking the condition (2) is difficult in general
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circumstances. Meanwhile, the inequality (2) is a sufficient condition for
the convergence of Algorithm 1 and the optimum value for µ has not been
derived. In order to improve the convergence speed of the GB algorithm,
a modified algorithm (Algorithm 2) has been handled which depends on a
fixed parameter κ.

Algorithm 2: The modified gradient based (MGB) algorithm [2] for
solving (1).

Data: A,B,C,D and κ.
Result: X.
Initialize X0.
begin

for k = 1, 2, . . . , kmax do

Xk1 = Xk−1+κ(D−Xk−1×1A−Xk−1×2B−Xk−1×3C)×1A
T ;

Xk−1 =
(
Xk1 + Xk−12 + Xk−13

)
/3;

Xk2 = Xk−1+κ(D−Xk−1×1A−Xk−1×2B−Xk−1×3C)×2B
T ;

Xk−1 =
(
Xk1 + Xk2 + Xk−13

)
/3,

Xk3 = Xk−1+κ(D−Xk−1×1A−Xk−1×2B−Xk−1×3C)×3C
T ;

Xk =
(
Xk1 + Xk2 + Xk3

)
/3;

end

end

Analogous to the GB method, the convergence of Algorithm 2 has been
proved under the restriction that (1) has unique solution where the param-
eter κ satisfies the following condition

0 < κ < min{1/‖A‖22, 1/‖B‖22, 1/‖C‖22}. (3)

We would like to comment that condition (3) for the parameter κ in Al-
gorithm 2 is a sufficient condition which guarantees the convergence of the
algorithm for arbitrary initial value X0. Whereas its optimum value has
not been obtained.

Remark 1. Now let us summery the drawback regarding applying the GB
and MGB algorithms for solving (1) as follows:

• The convergence of the algorithms have not been studied without set-
ting the restriction of the existence of the unique solution.
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• Each of the proposed algorithms relies on a fixed parameter which
satisfies a sufficient condition which is not easy to check out in general
situations.

• The optimum values for the fixed parameters exploited in Algorithms
1 and 2 have not been derived.

In order to overcome the disadvantages which are mentioned in Remark
1, we offer using an oblique projection processes. To this end, we propose
two new algorithms by choosing the fixed parameters in a progressive man-
ner. As a matter of fact, we use the idea of a projection technique to select
these parameters such that at each step the residual tensor corresponding
to the new approximation satisfies an optimality property at each step of
the algorithms. As seen the convergence of the algorithms can be stud-
ied without assuming the curtailment in hypophysis that (1) has a unique
solution. That is we only suppose that (1) is consistent.

3 Main results

In this section we exploit the idea of a projection technique to improve the
speed of converges of Algorithms 1 and 2. In fact, at each iterate say kth
iterate, we derive the parameter such that the norm of the residual tensor

Rk+1 = D− Xk+1 ×1 A− Xk+1 ×2 B − Xk+1 ×3 C,

corresponding to the new approximation Xk+1 is minimized over

Sk = {X | X = Xk + αPk for α > 0},

where

Pk = Rk ×1 A
T + Rk ×2 B

T + Rk ×3 C
T .

For the basic concepts of the projection techniques for solving the linear
system of equations, one can refer to Chapter 5 of [11]. In fact our goal is to
find α∗ such that the residual tensor Rk+1 associated with Xk+1 = Xk+α∗Pk

satisfies

‖Rk+1‖ = min
X∈Sk

‖D− X×1 A− X×2 B − X×3 C‖.

To this end, it is sufficient to determine α∗ such that〈
Rk+1,A(Pk)

〉
= 0,
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where
A(Pk) = Pk ×1 A+ Pk ×2 B + Pk ×3 C.

Or equivalently, we may set

α∗ =

〈
Rk,A(Pk)

〉
〈A(Pk),A(Pk)〉

,

where 〈
A(Pk),A(Pk)

〉
6= 0. (4)

Evidently Sk incorporates the (k + 1)th approximate solution obtained by
Algorithm 1 for α = µ

3 . In the proof Theorem 2, we demonstrate that if the
left-hand side of (4) become zero, i.e.

〈
A(Pk),A(Pk)

〉
= 0, then Xk is an

exact solution of (1). Now we present the following useful theorem which
turns out that Pk = 0 implies that Rk = 0, i.e., Xk satisfies (1).

Theorem 1. Suppose that (1) is consistent. Presume that X∗ is an arbi-
trary solution of (1). Then,〈

Pk,X∗ − Xk
〉

=
〈
Rk,Rk

〉
.

Proof. It is not difficult to see that i-mode (i = 1, 2, 3) multiplication com-
mutes with respect to the inner product. That is for an arbitrary tensors
X,Y ∈ RI×J×K and a given matrix A with suitable dimension, we have

〈X,Y×i A〉 =
〈
X×i AT ,Y

〉
.

Invoking the above equality, it can be easily seen that〈
Pk,X∗ − Xk

〉
=

〈
Rk ×1 A

T + Rk ×2 B
T +Rk ×3 C

T ,X∗ − Xk
〉

=
〈
Rk,D−

(
Xk ×1 A +Xk ×2 B + Xk ×3 C

)〉
=

〈
Rk,Rk

〉
,

which completes the proof.

Now we may present our offered algorithm, Algorithm 3, which out-
performs the GB algorithm. As seen in our proposed manner the fixed
parameter µ is chosen in a progressive way. The algorithm an the extended
form of the Residual Norm Steepest Descent (RNSD) [11] method.

The following theorem shows that Algorithm 3 converges to a solution
of the (1).
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Theorem 2. Presume that the Sylvester tensor equation (1) is consistent.
Then for k = 1, 2, . . . , the next statements hold.
a. If

〈
A(Pk),A(Pk)

〉
6= 0 then ‖Rk‖ < ‖Rk−1‖.

b. If
〈
A(Pk),A(Pk)

〉
= 0 then Xk is a solution of (1).

Proof. Straightforward computations demonstrate that

〈
Rk+1,Rk+1

〉
=

〈
Rk,Rk

〉1−
〈
Rk,A(Pk))

〉2
〈A(Pk),A(Pk))〉 〈Rk,Rk〉

 .
From the Cauchy–Schwarz inequality, the above relation implies that ‖Rk+1‖ ≤
‖Rk‖. It can be easily seen that〈

Rk,A(Pk)
〉

=
〈
Pk,Pk

〉
. (5)

From (5), we may conclude that
〈
Rk,A(Pk)

〉
= 0 if and only if

〈
Pk,Pk

〉
= 0.

Therefore
〈
Rk,A(Pk)

〉
= 0 iff Pk = 0. Hence, the inequality holds strictly

in (5) if Pk 6= 0. Consequently without loss of generality we may assume
that 〈

Rk,A(Pk)
〉
6= 0,

because if Pk = 0 then Theorem 1 implies that Xk is an exact solution of (1)
and there would be no requirement to compute the new approximate solu-
tion. For proving the second statement, first note that

〈
A(Pk),A(Pk)

〉
= 0

implies that A(Pk) = 0. Now the validity of the second assertion can be
deduced from (5) immediately.

Here we would like to comment that in the case that (1) has a unique
solution, analogous to the above manner, the convergence of Algorithm
2 (MGB) can be improved by utilizing the projection technique which is
given in Algorithm 4 (called by MRNSD(1)). The convergence analysis of
the algorithm is similar to Algorithm 3 hence we omit the details. Consider
Lines 7, 13 and 19 of Algorithm 4 where the directions for updating the new
approximations are constructed. Note that the directions are not dependent
in general and this may lead to loosing the convergence in the case that
(1) has infinity number of solutions. In this case the modification should
be employed in an alternative scheme. For instance we suggest to split the
matrices A,B and C into the following forms

A = A1 +A2 +A3,

B = B1 +B2 +B3,

C = C1 + C2 + C3, (6)
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such that Ai ◦Aj = 0, Bi ◦Bj = 0 and Ci ◦Cj = 0 for i 6= j. Here ◦ stands
for the well-known Hadamard product. Note that there would be different
manners for choosing the splittings and further works can be focused on
the way of choosing these splittings. Nevertheless for an arbitrary choices
of theses splittings, the resulting approach surpasses both RNSD and GB
methods in the case that (1) is consistent and has infinity number of so-
lutions. The proposed algorithm is named MNRSD(2). In order to derive
MNRSD(2), we only need to change three lines of Algorithm 4, i.e., Lines
7, 13 and 19 are respectively replaced by

Line 7 ←− P = R×1 A
T
1 + R×2 B

T
1 + R×3 C

T
1 ,

Line 13 ←− P = R×1 A
T
2 + R×2 B

T
2 + R×3 C

T
2 ,

Line 19 ←− P = R×1 A
T
3 + R×2 B

T
3 + R×3 C

T
3 .

Algorithm 3: The RNSD method for solving (1).

Data: Input A,B,C,D and initialize X0.
Result: X.
begin

Set X1 = X2 = X3 = X0;
Choose the tolerance ε > 0;
R = D− X0 ×1 A− X0 ×2 B − X0 ×3 C;
X = X0;
while ‖R‖ > ε do

P = R×1 A
T + R×2 B

T + R×3 C
T ;

A(P) = P×1 A+ P×2 B + P×3 C;

α = 〈R,A(P)〉
〈A(P),A(P)〉 ,

X1 = X + αP;
X2 = X + αP;
X3 = X + αP;
X = (X1 + X2 + X3) /3;
R = D− X×1 A− X×2 B − X×3 C;

end

end

4 Numerical experiments

In this section we examine some numerical examples to illustrate the su-
periority of our proposed manners in comparison with Algorithms 1 and 2.
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Algorithm 4: The modified RNSD (MRNSD(1)) method for solv-
ing (1) with unique solution.

Data: Input A,B,C,D and initialize X0.
Result: X.

1 begin
2 Set X0

1 = X2 = X3 = X0;
3 Choose the tolerance ε > 0;
4 R = D− X0 ×1 A− X0 ×2 B − X0 ×3 C;
5 X = X0;
6 while ‖R‖ > ε do
7 P = R×1 A

T ;
8 A(P) = P×1 A+ P×2 B + P×3 C;

9 α = 〈R,A(P)〉
〈A(P),A(P)〉 ;

10 X1 = X + αP;
11 X = (X1 + X2 + X3) /3;
12 R = D− X×1 A− X×2 B − X×3 C;
13 P = R×2 B

T ;
14 A(P) = P×1 A+ P×2 B + P×3 C;

15 α = 〈R,A(P)〉
〈A(P),A(P)〉 ;

16 X2 = X + αP;
17 X = (X1 + X2 + X3) /3;
18 R = D− X×1 A− X×2 B − X×3 C;
19 P = R×3 C

T ;
20 A(P) = P×1 A+ P×2 B + P×3 C;

21 α = 〈R,A(P)〉
〈A(P),A(P)〉 ;

22 X3 = X + αP;
23 X = (X1 + X2 + X3) /3;
24 R = D− X×1 A− X×2 B − X×3 C;

25 end

26 end
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Table 1: Numerical results for Example 1.
GB (µ=0.2) MGB (κ=0.2747) RNSD MRNSD

Iteration 155 49 105 20

CPU time 0.4372 0.2781 0.3243 0.1658

‖X− X∗‖2 9.9241e-006 8.9563e-006 8.9716e-006 9.4045e-006

All of the reported experiments were performed on a Pentium 4 PC with a
2.99 GHz CPU and 4.00GB of RAM.

Example 1. ([2]) Consider the Sylvester tensor equation (1) where

A =

(
3 1
−1 2

)
, B =

(
1 1
−1 1

)
, C =

(
1 0
1 −2

)
,

D(:, :, 1) =

(
10 13
15 11

)
, D(:, :, 2) =

(
14 3
3 0

)
.

The exact solution of (1) is

X∗(:, :, 1) =

(
1 2
3 4

)
, X∗(:, :, 2) =

(
4 2
3 1

)
.

In this example we use X0 = 0 as the initial guess and ‖X− X∗‖ < 10−5, as
the stopping criterion. In this case the optimal value of parameters µ and
κ are chosen which have been derived experimentally and they are out of
the range established in [2].

As seen Table 1 demonstrates that Algorithms 3 and 4 outperform Al-
gorithms 1 and 2 for solving (1), respectively. For more clarification, we
exhibit the convergence curves of the methods in Figure 1.

Example 2. In this instance, we mention the Sylvester tensor equation (1)
such that

A = ones(30) + hilb(30) + eye(30),

B = ones(30) + diag(3 + diag(hilb(30))) + eye(30),

C = ones(30) + diag(50 + diag(hilb(30))) + 4eye(30).

The right hand sides D is chosen such that X∗ is exact solutions of (1),

X∗(:, :, i) = ones(30), i = 1, 2, . . . , 30.

We have applied the GB, MGB, RNSD and MRSND methods with X0 = 0
for solving the second example and as the exact solution is available the
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Figure 1: Convergence history for Example 1.

Table 2: Numerical results for Example 2.
GB MGB RNSD MRNSD

Iters 67 38 35 24

CPU time 0.3781 0.4399 0.2346 0.4274

‖X− X∗‖2 8.3037e-007 8.5157e-007 8.7649e-007 6.3880e-007

stopping criterion ‖X− X∗‖ < 10−6, is selected. In this case, the parame-
ters µ and κ are chosen in the following manner (see [2])

µ = 2.2/
(
‖A‖2 + ‖B‖2 + ‖C‖2

)
,

κ = 1.2 min
(

1/ ‖A‖2 , 1/ ‖B‖2 , 1/ ‖C‖2
)
.

The numerical results are reported in Table 2 which reveal that the RNSD
and MRSND methods work better than the GB and MGB methods.

For more elucidation, the convergence history of the methods are de-
picted in Figure 2.

All the presented theorems in [2] such as the sufficient conditions to
guarantee the convergence of GB and MGB methods are proved in the case
that the Sylvester tensor equation (1) has a unique solution. Hence the
application the GB and MGB methods for the Sylvester tensor equation
(1) without setting the assumption of the existence of a unique solution
has not been studied. In the two later examples, we consider the situations
that the consistent Sylvester tensor equation (1) has not a unique solution.
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Figure 2: Convergence history for Example 2.

Example 3. Consider the Sylvester tensor equation (1) with

A =

(
1 0
10 3

)
, B =

(
10 0
11 31

)
, C =

(
−11 0

1 −34

)
,

D(:, :, 1) =

(
0 53
16 145

)
, D(:, :, 2) =

(
−91 42
−20 57

)
.

Evidently σ(A) = {1, 3}, σ(B) = {10, 31} and σ(C) = {−11,−34} and one
solution of the Sylvester tensor equation (1) is

X∗(:, :, 1) =

(
1 2
3 4

)
, X∗(:, :, 2) =

(
4 2
3 1

)
. (7)

where norm(X∗) = 7.7460. Hence the mentioned problem has not a unique
solution. In this case the parameters κ and µ are chosen in a similar
manner applied in the previous example. The convergence curves of the
methods are depicted in Figure 3 which reveal the slow convergence of
GB and MGB methods and the efficiency of our proposed algorithm. By
choosing X(0)(:, :, 1) = 0, X(0)(:, :, 2) = 0, as an initial guess and using
RNSD algorithm after 100 iteration we obtain the following approximate
solution

X(100)(:, :, 1) =

(
1.1535 1.9196
2.2323 4.4021

)
,

X(100)(:, :, 2) =

(
4.0067 1.9965
2.9666 −1.9752e− 018

)
,

where norm(X(100)) = 7.6557 and

norm
(
D− X(100)×1A− X(100)×2B − X(100)×3C

)
= 1.2413e− 007.
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Figure 3: Convergence history for Example 3.

Also by choosing

X(0)(:, :, 1) =

(
1 −1
1 0

)
, X(0)(:, :, 2) =

(
2 0
1 0

)
,

as an initial guess and using RNSD algorithm after 100 iteration we obtain
the following approximate solution

X(100)(:, :, 1) =

(
1.0449 1.9765
2.7757 4.1175

)
,

X(100)(:, :, 2) =

(
4.0020 1.9990
2.9902 −8.0760e− 017

)
,

where norm(X(100)) = 7.6557 and

norm
(
D− X(100)×1A− X(100)×2B − X(100)×3C

)
= 1.2413e− 007.

Example 4. Let us consider the Sylvester tensor equation (1) with

A =

(
31 0
−1 2

)
, B =

(
11 0
−1 −1

)
, C =

(
2 0
1 −42

)
,

D(:, :, 1) =

(
44 63
44 7

)
,D(:, :, 2) =

(
1 −26
−88 −42

)
.

As seen σ(A) = {31, 2}, σ(B) = {11,−1} and σ(C) = {2,−42} and X∗(:
, :, 1) and X∗(:, :, 2), given in (7), satisfies the Sylvester tensor equation (1)
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Figure 4: Convergence history for Example 4.

which implies that the above problem has not a unique solution. In this
example we aim to illustrate the applicability of MRNSD(2). To this end
we consider specific splittings for the matrices A,B and C as defined by
(6) where

A1 =

(
0 0
0 2

)
, A2 =

(
0 0
−1 0

)
, A3 =

(
31 0
0 0

)
,

B1 =

(
11 0
0 0

)
, B2 =

(
0 0
−1 0

)
, B3 =

(
0 0
0 −1

)
,

C1 =

(
0 0
1 0

)
, C2 =

(
2 0
0 0

)
, C3 =

(
0 0
0 −42

)
.

The convergence history of the methods are depicted in Figure 4.

5 Conclusion

We have concerned with developing projection based approaches for solv-
ing the Sylvester tensor equation without setting the assumption that the
mentioned problem has a unique solution. It has been both theoretically
and numerically demonstrated that the propounded algorithms outperform
the gradient-based iterative algorithm.
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