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Abstract. In this article, we propose an adaptive grid based on mesh
equidistribution principle for two-parameter convection-diffusion boundary-
value problems with continuous and discontinuous data. A numerical al-
gorithm based on an upwind finite difference operator and an appropriate
adaptive grid is constructed. Truncation errors are derived for both con-
tinuous and discontinuous problems. Parameter uniform error bounds for
the discrete solution are established. Numerical examples are carried out
to show the performance of the proposed method on the adaptive grids.
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1 Introduction

Boundary value problems in mathematical physics which often depend upon
small positive parameters 0 < ε, µ� 1 multiplied with highest order deriva-
tives are called singularly perturbed differential equations. Such equations
arise in semiconductor modelling, financial modelling, ion transport across
biological membranes, population dynamics and many other applications
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(see [3], [16], [18]) and the references therein. Typically, the solutions of
these equations exhibit steep gradient in narrow regions either inside or
near the boundaries of the domain; and these regions are known as interior
or boundary layers. To solve these kinds of problems numerically in an
efficient way, one has to use locally refined meshes that are fine in the layer
regions and coarse outside the layers. Hence, singularly perturbed prob-
lems (in short, SPPs) present an important challenge for adaptive mesh
techniques.

The numerical solution of two-parameter singularly perturbed boundary-
value problems with smooth data have been studied by many authors in-
cluding ([1], [8], [10], [11], [17]). Farrell et al. ([6], [7]) proposed numerical
schemes for singularly perturbed one parameter problems with non smooth
convective and source term. In [19], a robust numerical scheme is derived
for two parameter problem with non smooth source term. In all these arti-
cles, the numerical schemes are applied on the piecewise-uniform Shishkin
mesh. Though the Shishkin meshes are well-known for its simplicity and
produce error estimates easily, one should know the location and width
of the boundary or interior layers. In general, these information are not
available for several problems, especially for nonlinear ordinary differential
equations, and higher-dimensional partial differential equations.

To resolve the numerical difficulties arising from the boundary or inte-
rior layers, one should use more number of mesh points within the layers.
If one can be able to do this automatically from the numerical solution
calculated, then it is well and fine. Adaptive grids follow certain types of
idea. A commonly used technique for determining the grid points is that
they equidistribute a positive monitor function of the numerical solution
over the domain and an obvious choice for adaptivity criterion is therefore
the solution gradient (see [2], [12], [13]).

Recently, we derived a numerical scheme based on mesh equidistribution
technique for two-parameter SPPs with continuous data in [14]. Also, we
have obtained parameter-uniform error estimates. Here, in this article, we
apply the adaptive grids obtained viz. the mesh equidistribution principle
to two-parameter SPPs with continuous and discontinuous data. More
precisely, we apply the classical upwind finite difference schemes to the
SPPs on this adaptive grids. This approach has the advantage that it
can be applied using little or no a priori information about the location
and width of the boundary and interior layers. The proposed method is
applied to some test problems to verify its applicability and efficiency. The
numerical solution approximates the exact solution very well.

The structure of the paper is as follows. In Section 2, we state the
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model problem for both continuous and discontinuous coefficients and also
the comparison principle, stability result and some a priori estimates on
the solution and its derivatives. Section 3 presents generation of the non-
uniform grids through equidistribution principle, the upwind finite differ-
ence scheme and the corresponding bound of local truncation error for both
continuous and discontinuous coefficients are given in Section 4. The nu-
merical examples are presented in Section 5 to illustrate the applicability
of the method.

We use the following notation

∂Ω = {0, 1}, V (i) =
diV

dxi
, ‖u‖ = max

Ω
|u(x)|.

Throughout this article C (sometimes subscripted) will denote the generic
positive constant independent of nodal points, mesh size and the perturba-
tion parameters ε, µ and N (the dimension of the discrete problem), which
can take different values at different places, even in the same argument.

2 Properties of the exact solution

Here, we obtain the bounds on the continuous solution and its derivatives
of the two-parameter SPPs with both continuous and discontinuous data.

2.1 SPPs with continuous data

Consider the following singularly perturbed two-parameter boundary-value
problem:{
Lu(x) ≡ εu′′(x) + µp(x)u′(x)− q(x)u(x) = f(x), x ∈ Ω = (0, 1),

u(0) = A, u(1) = B.
(1)

where 0 < ε, µ � 1 and p, q, f are sufficiently smooth functions such that
0 < α ≤ p(x) and 0 < β ≤ q(x) on Ω = [0, 1] and A,B are given constants.
In general the BVP (1) possesses two boundary layer regions of different
widths at x = 0 and x = 1. It is significant to observe that the two-
parameter problem arises in the field of engineering, mathematical physics
and applied mathematics. Such equation plays a crucial role in semicon-
ductor modelling, financial modelling, population dynamics and in many
other applications ([15], [16]).

For µ = 1, the problem is one-dimensional convection diffusion problem
and the solution exhibits a boundary layer of width O(ε) at x = 0 and for
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µ = 0, we have one-dimensional reaction–diffusion problem and, in general
the solution possesses boundary layers of width O(

√
ε) at x = 0, 1. Here the

ratio of µ to
√
ε is significant (see O’Malley [15]). Hence the analysis for the

two parameter problem splits into two cases: µ ≤ C1
√
ε and µ ≥ C2

√
ε. In

the former case, the problem is close to single parameter reaction-diffusion
case, while the latter case is more intricate.

The operator L of (1) satisfies the following comparison principle on Ω.

Lemma 1. (Comparison Principle) Let v ∈ C2(Ω). If v(0) ≥ 0, v(1) ≥ 0
and Lv(x) ≤ 0 ∀x ∈ Ω, then v(x) ≥ 0, ∀x ∈ Ω.

An immediate consequence of this comparison principle is the following
parameter uniform bound on the solution u of (1).

Lemma 2. If u is the solution of the boundary value problem (1), then

‖u‖Ω ≤ max{|u(0)|, |u(1)|}+
1
β
‖f‖.

Proof. One can extend the proofs given in Doolan et al. [4] for two param-
eter problems.

Lemma 3. The derivatives u(k) of the solution u of (1) satisfy the following
bounds

‖u(k)‖Ω ≤ C

(
√
ε)k

(
1 +

(
µ√
ε

)k)
max{‖u‖, ‖f‖}, k = 1, 2 .

‖u(3)‖Ω ≤ C

(
√
ε)3

(
1 +

(
µ√
ε

)3)
max{‖u‖, ‖f‖, ‖f ′‖},

where C depends only on ‖p‖, ‖p′‖, ‖q‖, ‖q′‖.

Proof. The detailed proof is given in [14] and [17].

In order to obtain parameter-uniform error estimate, we will decompose
the solution into regular and singular components. We need to split the
analysis into two cases depending on the ratio of µ to

√
ε. Starting with

µ ≤ C1
√
ε, we consider the solution decomposition as follows:

u = v + wL + wR. (3)
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where the function v is called the regular component. wL and wR are the
left and right, layer components of the solution u satisfying the following
set of equations:

Lv = f, v(0), v(1) suitably chosen ,

LwL = 0, wL(0) = u(0)− v(0), wL(1) = 0,

LwR = 0, wR(0) = 0, wR(1) = u(1)− v(1).

(4)

The boundary conditions of v are suitably chosen so that it satisfies the
bounds:

‖v(i)‖ ≤ C i = 0, 1, 2 and ‖v(3)‖ ≤ C

ε
. (5)

The singular components wL and wR satisfy the bounds given in Lemma
3. However, one can also obtain the following sharper bounds on the expo-
nential character of the two components.

Lemma 4. The singular components wL and wR satisfy the bounds

|wL(x)| ≤ Ce−θ1x, (6)
|wR(x)| ≤ Ce−θ2(1−x), (7)

where

θ1 =
µα+

√
µ2α2 + 4εβ
2ε

, θ2 =
−µP +

√
µ2P 2 + 4εβ
2ε

,

(P = ‖p(x)‖ and θ1, θ2 are respectively the positive roots of the equations
εθ2

1 − µαθ1 − β = 0 and εθ2
2 + µPθ1 − β = 0)

Proof. Consider the barrier function ψ±(x) = Ce−θ1x ± wL(x). Choose C
large enough so that the function are non-negative at x = 0. Now it is easy
to calculate that Lψ±(x) ≤ 0 and applying the comparison principle Lemma
1, we obtain |wL(x)| < Ce−θ1x. The proof for wR(x) is also similar.

2.2 SPPs with discontinuous data

A singularly perturbed reaction-convection-diffusion equation in one dimen-
sion with a discontinuous coefficient of the first derivative term is considered
on the unit interval Ω = (0, 1). A single discontinuity in the coefficient is as-
sumed to occur at a point d ∈ Ω. It is convenient to introduce the notation
Ω− = (0, d) and Ω+ = (d, 1) and to denote the jump at d in any function
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with [w](d) = w(d+) − w(d−). The corresponding two point boundary
value problem is as follows,
Find u ∈ C0(Ω) ∩ C1(Ω) ∩ C2(Ω− ∪ Ω+) such that

Ldu(x) ≡ εu′′(x) + µp(x)u′(x)− q(x)u(x) = f(x), x ∈ Ω = (0, 1),

u(0) = A, u(1) = B,

(8)

where 0 < ε� 1 , 0 ≤ µ� 1, q(x) ≥ β > 0 sufficiently smooth function in
Ω and p, f are sufficiently smooth function in Ω− ∪Ω+ where they satisfy

α∗1 > p(x) > α1 > 0, x < d,

−α∗2 < p(x) < −α2 < 0, x > d,

|[p](d)| ≤ C, |[f ](d)| ≤ C.

(9)

The BVP (8)-(9) has a solution u ∈ C0(Ω) ∩ C1(Ω) ∩ C2(Ω− ∪ Ω+) (see [6],
[19]).

Let Ld denotes the differential operator given in (8) which satisfies the
following comparison principle on Ω.

Lemma 5. (Comparison Principle) Suppose a function w ∈ C0(Ω)∩C2(Ω−∪
Ω+) satisfies w(0) ≥ 0, w(1) ≥ 0, Ldw(x) ≤ 0, ∀x ∈ Ω−∪Ω+ and [w]′(d) ≤
0, then w(x) ≥ 0 ,∀ x ∈ Ω .

From Lemma 5, one can obtain the following stability results.

Lemma 6. Let u be the solution of (8), then

‖u‖Ω ≤ max
{
|u0|, |u1|,

1
β
‖f‖Ω\{d}

}
.

Lemma 7. Let u be the solution of (8) where |u(0)| ≤ C, |u(1)| ≤ C, then
for all 0 ≤ k ≤ 3,

‖uk‖Ω\{d} ≤
C
√
ε
k

{
1 +

( µ√
ε

)k}
.

Proof. Using the arguments as given in Farrell et al. [5] and in Shanthi et
al. [19], one can prove the above Lemmas.

We first consider the case µ ≤ C1
√
ε. Define v0, v1, v2 are the solutions

of the following problems:
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− q(x)v0 = f(x), x ∈ Ω− ∪ Ω+,

−q(x)v1 =
−µ√
ε
p(x)v′0 −

√
εv′′0 , x ∈ Ω− ∪ Ω+, (10)

−q(x)v2 =
−µ√
ε
p(x)v′1 −

√
εv′′1 , x ∈ Ω− ∪ Ω+.

Choose v3 ∈ C0(Ω) ∩ C1(Ω) ∩ C2(Ω− ∪ Ω+) such that Lv3 =
−µ√
ε
p(x)v′2 −

√
εv′′2 , x ∈ Ω− ∪ Ω+,

v3(0) = v3(1) = 0.
(11)

Let v = v0 +
√
εv1 + εv2 +

√
ε
3
v3. It is easy to verify that v satisfies

Lv = f(x), x ∈ Ω− ∪ Ω+,

v(0) = v0(0) +
√
εv1(0) + εv2(0),

v(d−) = v0(d−) +
√
εv1(d−) + εv2(d−) +

√
ε
3
v3(d−),

v(d+) = v0(d+) +
√
εv1(d+) + εv2(d+) +

√
ε
3
v3(d+),

v(1) = v0(1) +
√
εv1(1) + εv2(1).

(12)

Similarly define the singular components wL and wR as the solution of the
following equations respectively

LwL = 0, x ∈ Ω− ∪ Ω+, wL(0) = u(0)− v(0), wL(1) = 0,

LwR = 0, x ∈ Ω− ∪ Ω+, wR(0) = 0, wR(1) = u(1)− v(1),

[wL(d)] = −[v(d)]− [wR(d)], [w′
L(d)] = −[v′(d)]− [w′

R(d)].

(13)

One can refer [8] for more details for the above decompositions.

Lemma 8. The smooth component v satisfies the following bounds:

‖vk‖Ω\{d} ≤ C

(
1 +

1
(
√
ε)k−3

)
, 0 ≤ k ≤ 4.

Lemma 9. The singular components wL and wR satisfy the following
bounds:

‖wk
L‖Ω\{d} ≤

C
√
ε
k
, 1 ≤ k ≤ 3,

‖wk
R‖Ω\{d} ≤

C
√
ε
k
, 1 ≤ k ≤ 3,
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where

|wL(x)| ≤

{
Ce−θ1x, x ∈ Ω−,

Ce−θ1(x−d), x ∈ Ω+,

|wR(x)| ≤


Ce−θ2(d−x), x ∈ Ω−,

Ce−θ2(1−x), x ∈ Ω+, θ1 =
C1√
ε
, θ2 =

C2√
ε
.

Proof. Using the arguments as given in Farrell et al. [5] and in Shanthi et
al. [19], one can prove the above lemmas.

It can be verified that v+wl +wR satisfies the BVP (8). Consequently
by the uniqueness, the solution of the BVP (8) can be written as

u(x) =


v−(x) + w−

L (x) + w−
R(x), x ∈ Ω−,

v−(d) + w−
L (d) + w−

R(x) = v+(d+) + w+
L (d+) + w+

R(d+),

v+(x) + w+
L (x) + w+

R(x), x ∈ Ω+.

3 Grid equidistribution

The idea of adaptive grid generation is based on the equidistribution prin-
ciple. A grid ΩN is said to be equidistributing if∫ xj

xj−1

M
(
u(s), s

)
ds =

∫ xj+1

xj

M
(
u(s), s

)
ds, j = 1, 2, . . . , N − 1. (14)

where M
(
u(x), x

)
> 0 is called a monitor function. Equidistribution gives

rise to a mapping x = x(ξ) relating a computational coordinate ξ ∈ [0, 1]
to the physical coordinate x ∈ [0, 1] defined by∫ x(ξ)

0
M
(
u(s), s

)
ds = ξ

∫ 1

0
M
(
u(s), s

)
ds. (15)

The optimal choice of monitor function depends on the problem being
solved, the numerical discretization being used. In practice, the moni-
tor function is often based on a simple function of the derivatives of the
unknown solution. Here we consider the monitor function as

M
(
u(x), x

)
=
∣∣∣∣dudx

∣∣∣∣ 1
m

, m ≥ 2 . (16)

The effect of increasing m is to smooth the monitor function, which in turn
leads to a smoother distribution of meshes.
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3.1 SPPs with continuous data

3.1.1 Discrete problem

We will consider difference approximations of (1) on a non-uniform partition

ΩN = {0 = x0 < x1 < x2 < · · · < xN−1 < xN = 1},

and denote hj = xj −xj−1. Without loss of generality, we will assume that
N is even. Given a mesh function Zj , we define the following difference
operators:

D+Zj =
Zj+1 − Zj

hj+1
, D−Zj =

Zj − Zj−1

hj
,

D+D−Zj =
2

hj + hj+1

(
Zj+1 − Zj

hj+1
− Zj − Zj−1

hj

)
.

The upwind finite difference discretization of (1) takes the following form:{ (
LNUj

)
≡ εD+D−Uj + µpj , D

+Uj − qjUj = fj , 1 ≤ j ≤ N − 1,

U0 = A, UN = B.
(17)

Here Uj denotes the approximation to u(xj), pj = p(xj) and qj , fj are
defined in a similar fashion.

Lemma 10. (Discrete comparison principle). The system LNVj = Fj with
V0 and VN specified has a unique solution. If LNVj < LNZj for 1 ≤ j ≤
N − 1 with V0 < Z0 and VN < ZN , then Vj < Zj for 1 ≤ j ≤ N.

Proof. It is easy to verify that the matrix associated with LN is an irre-
ducible M -matrix and therefore, has a positive inverse. Hence, the result
follows.

We have the following discrete decomposition

U = V +WL +WR, (18)

where the component are the solution of the following set of equations:
LNV = f(xi), V (0) = v(0), V (1) = v(1),

LNWL = 0, WL(0) = wL(0),WL(1) = 0,

LNWR = 0, WR(0) = 0,WR(1) = wR(1).

(19)
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3.1.2 Generation of grid

Considering the constant coefficient case for (1), using (16) in (15) we can
get a relation between the non-uniform grid in physical space {xj}N

j=0, to
the evenly distributed nodes ξj = j/N, j = 0, 1, . . . , N in the computational
space. This yields the mapping

xj = −mε
αµ

ln
(

1− L̂j

N

)
, j = 0, 1, . . . , N, (20)

where L̂ = 1 − exp(1 − αµ/mε). Now we state some conditions that are
assumed through out the rest of the paper.
Assumptions

(i) Since we are interested in the limiting case that is as ε → 0 and
µ = O(

√
ε), we assume there exists a constant k such that

mε

αµ
< k � 1, (21)

where a is defined as before and hence there exist C1 for which 1 >
L̂ > C1 = 1− exp(−1/k).

(ii) We assume that
Nε� 1. (22)

As we are interested in adaptive approach to the solution, the above as-
sumptions are sensible.

Lemma 11. We have the following bound:

hj <
mε

αµ
, j = 1, 2, . . . , N − 1.

Proof. From (20) and using mean value theorem, we have for j = 1, 2, . . . , N−
1,

hj = xj − xj−1 = −mε
αµ

[
ln(1− L̂ξj)− ln(1− L̂ξj−1)

]
=

mεL

αµN

[
1

1− L̂ηj

]
, where ηj ∈ (ξj−1, ξj).

Similarly ,

hj+1 =
mεL̂

αµN

[
1

1− L̂ηj+1

]
, where ηj+1 ∈ (ξj , ξj+1).
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and since
1

1− L̂ηj

<
1

1− L̂ηj+1

,

it follows that hj < hj+1, j = 1, 2, . . . , N − 1. Also,
1

1− L̂ηj

<
1

1− L̂ξj
.

Using the assumptions (21) and (22), we have

hj <
mεL̂

αµN

[
1

1− L̂j/N

]
=
mε

αµ

[
1

N/L̂− j

]
<
mε

αµ

[
1

N − j

]
.

Thus hj < mε/αµ and we got the desired result.

3.2 SPPs with discontinuous data

3.2.1 Discrete problem

Similarly the upwind finite difference discretization for the discontinuous
case (8) takes the form

(
LN

d Uj

)
≡ εD+D−Uj + pjD

∗Uj − qjUj = fj , 1 ≤ j ≤ N − 1,

U0 = A, UN = B,

D−UNk
= D+UNk

, where xNk
= d,

(23)

and

D∗Zi =

{
D+Zi, i < Nk,

D−Zi, i > Nk.

Let us define V as

V (xj) =

{
V −(xj), 1 ≤ j ≤ Nk,

V +(xj), Nk + 1 ≤ j ≤ N − 1.

where the mesh functions V − and V + which approximate v at left and
right hand sides of the point of discontinuity x = d. Now V − and V + are
respectively the solutions of the following discrete problem:{

LN
d V

−(xj) = f(xj) ∀xj ∈ Ω−
N ∪ Ω+

N ,

V −(0) = v(0), V −(d) = v(d−),
(26)

and {
LN

d V
+(xj) = f(xj) ∀xj ∈ Ω−

N ∪ Ω+
N ,

V +(d) = v(d+), V (1) = v(1).
(27)
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Similarly, we can define W−
L , W+

L , W−
R and W+

R which are respectively
the solutions of the following problems:

LN
d W

−
L (xj) = 0 on 1 ≤ j ≤ Nk, W−

L (0) = wL(0),

LN
d W

+
L (xj) = 0 on Nk + 1 ≤ j ≤ N − 1, W+

L (1) = wL(1), (28)

LN
d W

−
R (xj) = 0 on 1 ≤ j ≤ Nk, W−

R (0) = wR(0),

LN
d W

+
R (xj) = 0 on Nk + 1 ≤ j ≤ N − 1, W+

R (1) = wR(1).

3.2.2 Generation of grid

To generate the grids, we can apply the same technique in the domain Ω−∪
Ω+ as used in the case of smooth coefficients. But due to the discontinuous
convective term, there is a jump discontinuity at the point x = d and also
µ = O(

√
ε), which results two boundary layers at both the end points of

the domain. In view of these restrictions, we can form the grids with the
help of the following relation.

xj = −mε
αµ

ln
(

1− L̂j

N

)
, j = 0, 1, . . . , Nk − 1, Nk + 1, . . . , N, (29)

where L̂ has been defined earlier. In order to make the point discontinuity
x = d as a grid point, we can take the weighted average of its neighboring

points as xNk
=

(Hk − θ)xNk−1
+ θxNk+1

Hk
where 0 < θ < Hk = xNk+1

−
xNk−1

.

3.3 Adaptive algorithm

For practical point of view, the monitoring function has to be approximated
from the numerical solution. Approximating (14) numerically results in the
set of nonlinear algebraic equations

Mj+ 1
2

(
xj+1 − xj

)
= Mj− 1

2

(
xj − xj−1

)
, (30)

where Mj+ 1
2

is an approximation of M(u(xj+ 1
2
), xj+ 1

2
). For M given by

(16), an obvious choice is

Mj+ 1
2

=
(
Uj+1 − Uj

xj+1 − xj

) 1
m

, j = 0, 1, . . . , N − 1.

The equations (17) and (23) with (30) should be solved simultaneously to
obtain the solution Uj and the grids xj .
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4 Error analysis

Define the error as e(xj) = |Uj − u(xj)|. Here in this section, we wish
to analyze the bounds on the error between the continuous and discrete
solution.

4.1 SPPs with Continuous Data

4.1.1 Local truncation error

The local truncation error at the node xj of (1) is given by

τj = LNUj − (Lu)(xj).

Using Peano-kernel theorem, the truncation error can be expressed as

τj =
ε

hj + hj+1

[
1

hj+1

∫ xj+1

xj

(s− xj+1)2u′′′(s)ds

+
1
hj

∫ xj

xj−1

(s− xj−1)2u′′′(s)ds
]

+
µpj

hj+1

∫ xj+1

xj

(s− xj+1)u′′(s)ds. (31)

Using the techniques used in [14] and [9], the local truncation error is given
by

|τj | <
C

εN
exp(−αµxj/mε), j = 1, 2, . . . , N − 1. (32)

4.1.2 Bound on maximum point-wise error

Theorem 1. Let u(x) be the exact solution of (1) and let Uj be the discrete
solution of (17) on the grid defined by (20). Then there exists a constant
C, independent of N , ε and µ such that

max
0≤j≤N

|u(xj)− Uj | ≤ CN−1, j = 0, 1, . . . , N. (33)

Proof. The detailed proof is given in [14].

4.2 SPPs with discontinuous data

4.2.1 Local truncation error

The truncation error at the interior mesh points xj ∈ ΩN can be given by
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LN
d e(xj) = LN

d (U − u)(xj) = f(xj)− LN
d u(xj)

=
[
ε
( d2

dx2
−D+D−)+ µp(xj)

( d
dx

−D∗)]u(xj)

=
[
ε
( d2

dx2
−D+D−)+ µp(xj)

( d
dx

−D∗)](v(xj) + w(xj)
)
.

Lemma 12. The regular component of the truncation error τNk
satisfies

the following error estimate

|LN
d (V − v)(xj)| ≤ CN−1.

Proof. It can be shown as

|LN
d (V − v)(xj)| = |(LN

d − L)v(xj)| = C(xj+1 − xj−1)(ε‖v3‖+ µ‖v2‖)

= Cε(xj+1 − xj−1) ≤ CN−1 (34)

Using the bounds given in Lemma 8, one can obtain the above bounds.

Again since U(d) ≤ C, easy to check that WR(d) ≤ C and WL(d) ≤ C.
So, for xj ∈ Ω− we get |WL(xj)| ≤ |WL(d)|N−1 ≤ CN−1 and hence,

|WL(xj)− wL(xj)| ≤ |WL(xj)|+ |wL(xj)|
≤ |WL(d)|N−1 + Ce−θ1x

≤ CN−1. (35)

Similarly, one can also prove that

|WR(xj)− wR(xj)| ≤ CN−1, xi ∈ Ω+. (36)

All the above results as well as inequalities hold for both case µ ≤ C
√
ε

and µ ≥ C
√
ε. The following lemma establishes the truncation error at the

jump discontinuity at x = d.

Lemma 13. At the point of discontinuity d, the error e(d) satisfies the
following estimate

|(D+ −D−)e(d)| ≤


Cm

αµ
, if µ ≤ C1

√
ε,

Cmµ

αε
, if µ ≥ C2

√
ε .

(37)

Proof. The above estimate can be obtained by using the bounds given in
Lemma 11 and the techniques used in Shanthi et al. [19].
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4.2.2 Bound on maximum point-wise error

Theorem 2. Let u(x) be the exact solution of (8) and let Uj be the discrete
solution of (23) on the grid defined by (29). Then there exists a constant
C, independent of N , ε and µ such that

max
0≤j≤N

|u(xj)− Uj | ≤ CN−1, j = 0, 1, . . . , N. (38)

Proof. First we will prove the result for the case µ ≤ C
√
ε. From the equa-

tions (35),(36), Lemma 12 and applying the triangle inequality, it follows
that

|LN
d (U − u)(xj)| ≤ CN−1. (39)

Consider the barrier function φ±(xj) = CN−1 + C
h

ε
± e(xj) and using

discrete comparison principle, we get

e(xj) = |U(xj)− u(xj)| ≤ CN−1, if µ ≤ C1

√
ε (40)

Similarly for the case µ ≥ C2
√
ε, by suitably choosing a barrier function

and using the above idea, one can obtain the desired result.

5 Numerical results

To show the applicability and efficiency of the present method, it has been
implemented to the following test problems.

Example 1. Consider the singularly perturbed two parameter problem{
εu′′(x) + µu′(x)− u(x) = −x, x ∈ Ω ,
u(0) = 1, u(1) = 0.

(41)

The exact solution is given by u(x) = (x + µ) + C1 exp(−m1x/2ε) −
C2 exp((1− x)m2/2ε) where

m1,2 = µ±
√
µ2 + 4ε, C1 =

(1 + µ) exp(m2/2ε) + 1− µ

1− exp(−
√
µ2 + 4ε/ε)

.

C2 =
1 + µ+ (1− µ) exp(−m1/2ε)

1− exp(−
√
µ2 + 4ε/ε)

.

Figure 1(a) displays the numerical and exact solution of Example 1 for
ε = 1e − 3, µ = 1e − 7 and N = 256; and Figure 1(b) represents the
corresponding error. For any value of N , the maximum pointwise error



16 J. Mohapatra

EN
ε,µ is calculated by EN

ε,µ = ‖u(xj)−Uj‖, where u is the exact solution and
Uj is the numerical solution. We use the double mesh principle to compute
the rate of convergence as

pN = log2

(
EN

ε,µ

E2N
ε,µ

)
.

In Tables 1 and 2, we present the maximum pointwise error and the cor-
responding pN for µ = 1e− 2 and N = 32, 64, . . . , 2048. The results clearly
show that this method is uniform convergence of order one. To have a
proper visualization of the order of convergence, the loglog plots of the
maximum pointwise error EN

ε,µ are shown in Figure 2 for different values of
ε and µ.

Example 2. Consider the singularly perturbed two parameter problem with
discontinuous coefficient{

εu′′(x) + µp(x)u′(x)− u(x) = f(x), x ∈ Ω− ∪ Ω+,

u(0) = 0, u(1) = 0,
(42)

where

p(x) =

{
x+ 2, 0 ≤ x ≤ 0.5,
−(2x+ 3), 0.5 < x ≤ 1,

and

f(x) =

{
2x+ 1, 0 ≤ x ≤ 0.5,
−(3x+ 4), 0.5 < x ≤ 1.

The exact solution is not available for the BVP (2). In order to calculate
the maximum point-wise error GN

ε,µ and the rate of convergence qN , we use

interpolation. Define U10000 as the piecewise linear interpolation to UN in
ΩN . Define,

GN
ε,µ = max

xi ∈Ω
N
|UN − U

10000| and qN = log2

(
GN

ε,µ

G2N
ε,µ

)
.

Figure.3(a) displays the numerical solution and the interpolated solution
of Example 2 for ε = 1e − 3, µ = 1e − 7 and N = 256; and Figure 3(b)
represents the corresponding error. Tables 3 and 4 represent the maximum
pointwise error and the corresponding rate of convergence qN . The loglog
plots of the maximum pointwise error GN

ε, µ are shown in Figure 4.
The tables and loglog plots highlight the error estimates obtained in

Theorem 1 and Theorem 2. These results clearly show that the error esti-
mate is optimal.
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Figure 1: Numerical solution with exact solution and the error of the Ex-
ample 1 for ε = 1e− 3, µ = 1e− 7 and N = 256.
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Figure 2: Loglog plot of the maximum error for different values of µ and ε
for Example 1.
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Figure 3: Numerical solution with interpolated solution and the error of the
Example 2 for ε = 1e− 3, µ = 1e− 7 and N = 256.
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Figure 4: Loglog plot of the maximum error for different values of µ and ε
for the Example 2.

Table 1: Maximum point-wise errors EN
ε,µ and the rate of convergence pN

generated for µ = 1e− 02, m = 2 for Example 1.

ε/µ2 Number of mesh points N

32 64 128 256 512 1024 2048

1e − 4 2.0046e-1 1.8242e-1 1.0660e-1 6.6273e-2 3.3539e-2 1.7419e-2 8.8884e-3

0.1361 0.7750 0.7663 0.9019 0.9452 0.9707

1e − 6 2.0047e-1 1.8244e-1 1.0662e-1 6.2687e-2 3.3548e-2 1.7424e-2 8.8909e-3

0.1359 0.7496 0.7622 0.9019 0.9452 0.9706

1e − 8 2.0047e-1 1.8244e-1 1.0662e-1 6.2687e-2 3.3548e-2 1.7424e-2 8.8909e-3

0.1359 0.7496 0.7622 0.9019 0.9452 0.9706

Table 2: Maximum point-wise errors EN
ε,µ and the rate of convergence pN

generated for µ = 1e− 02, m = 2 for Example 1.

µ2/ε Number of mesh points N

32 64 128 256 512 1024 2048

1e − 2 4.3072e-3 1.8261e-3 8.2919e-4 3.9345e-4 1.9142e-4 9.4386e-5 4.6861e-5

1.2380 1.1390 1.0755 1.0394 1.0201 1.0102

1e − 4 3.6557e-6 1.5357e-6 6.9522e-7 3.2928e-7 1.6007e-7 7.8881e-8 3.9159e-8

1.2513 1.1433 1.0781 1.0406 1.0210 1.0103

1e − 6 3.8689e-10 1.6261e-10 7.3679e-11 3.4404e-11 1.7062e-11 8.5225e-12 4.2495e-12

1.2505 1.1421 1.0987 1.0118 1.0014 1.0040

Table 3: Maximum point-wise errors GN
ε,µ and the rate of convergence qN

generated for µ = 1e− 02, m = 2 for Example 2.

ε/µ2 Number of mesh points N

32 64 128 256 512 1024 2048

1e − 4 6.6735e-1 4.1555e-1 2.3072e-1 1.2123e-1 6.1156e-2 2.9458e-2 1.3169e-2

0.6834 0.8488 0.9284 0.9871 1.0539 1.1615

1e − 6 6.6737e-1 4.1556e-1 2.3073e-1 1.2123e-1 6.1159e-2 2.9459e-2 1.3170e-2

0.6834 0.8488 0.9284 0.9871 1.0539 1.1615

1e − 8 6.6737e-1 4.1556e-1 2.3073e-1 1.2123e-1 6.1159e-2 2.9459e-2 1.3170e-2

0.6834 0.8488 0.9284 0.9871 1.0539 1.1615
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Table 4: Maximum point-wise errors GN
ε,µ and the rate of convergence qN

generated for µ = 1e− 02, m = 2 for Example 2.

µ2/ε Number of mesh points N

32 64 128 256 512 1024 2048

1e − 2 1.2495e-1 6.2067e-2 3.0756e-2 1.5165e-2 7.3770e-3 3.4877e-3 1.5445e-3

1.0095 1.0129 1.0201 1.0397 1.0807 1.1752

1e − 4 1.1321e-2 5.5732e-3 2.7514e-3 1.3536e-3 6.5799e-4 3.1100e-4 1.3770e-4

1.0225 1.0183 1.0234 1.0407 1.0812 1.1753

1e − 6 1.3803e-4 6.8285e-5 3.3796e-5 1.6648e-5 8.0977e-6 3.8286e-6 1.6955e-6

1.0153 1.0147 1.0215 1.0398 1.0807 1.1751

6 Conclusion

This article presents an adaptive grid technique viz. mesh equidistribu-
tion for two-parameter SPPs with continuous and discontinuous data. The
monitor function sends enough number of grids inside the boundary layers.
Indeed, the solution of the two-parameter SPPs possesses boundary lay-
ers of different widths at both the end points of the domain. The present
method is the most general step up to solve such types of problems. In
the discontinuous data case, there is an interior layer in addition to the
presence of boundary layers. This is also taken care by the adaptive mesh.
The efficiency and applicability of the proposed method can be easily seen
from the numerical results presented in the previous section.
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