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Abstract. In this paper, the two-dimensional triangular orthogonal func-
tions (2D-TFs) are applied for solving a class of nonlinear two-dimensional
Volterra integral equations. 2D-TFs method transforms these integral equa-
tions into a system of linear algebraic equations. The high accuracy of this
method is verified through a numerical example and comparison of the re-
sults with the other numerical methods.
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1 Introduction

Many problems in applied mathematics and physics give rise to nonlinear
two-dimensional Volterra integral equations of the second kind [10, 12]

u(x, y) = f(x, y) +
∫ x

0

∫ y

0
k(x, y, t, s)[u(t, s)]ndtds, (x, y) ∈ D, (1)
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where u(x, y) is the unknown function on D = [0, 1) × [0, 1) and f(x, y),
k(x, y, t, s) are given continuous functions defined on D and E = D × D,
respectively, and n ∈ N . While several numerical methods for approximat-
ing the solution of one-dimensional Volterra integral equations are known,
only a few of them have been applied in two-dimensional ones. It seems
that the numerical solution of these equations has been considered first
by Beltyukov and Kuznechikhina in [1] where they proposed an explicit
Rung-Kutta type method of order 3 without any convergence analysis. A
bivariate cubic spline functions method of full continuity was obtained by
Singh in [15]. Brunner et al. in [4] introduced collocation and iterated
collocation methods for two-dimensional linear Volterra integral equations.
An asymptotic error expansion of the iterated collocation solution for two-
dimensional linear and nonlinear Volterra integral equations was obtained
by Han and Zbang in [9] and Guoqiang et al. in [7], respectively. More
recently, Hadizadeh et al. in [8] have investigated a differential transforma-
tion approach for nonlinear two-dimensional Volterra integral equations.
Maleknejad et al. in [11] introduced two-dimensional block-pulse func-
tions (2D-BFs) for two-dimensional nonlinear Volterra integral equations.
In this paper, we are concerned with 2D-TFs method for nonlinear two-
dimensional Volterra integral equations of the form (1).

2 Brief review of 2D-TFs

An m.m = m2-set of 2D-BFs Φi,j(x, y) for each i, j = 0, 1, 2, . . . ,m − 1 is
defined in (x, y) ∈ D as follows

Φi,j(x, y) =

{ 1, ih1 ≤ x < (i + 1)h1 and jh2 ≤ y < (j + 1)h2,

0 , otherwise,

where m is an arbitrary positive integer, and h = h1 = h2 = 1
m [11]. Now,

we demonstrate the construction of 2D-TFs according to [13, 14]

Φi,j(x, y) = T1i,j(x, y) + T2i,j(x, y), (x, y) ∈ D,

where

T1i,j(x, y) =

{1− y−jh
h , ih ≤ x < (i + 1)h and jh ≤ y < (j + 1)h,

0 , otherwise,

T2i,j(x, y) =

{y−jh
h , ih ≤ x < (i + 1)h and jh ≤ y < (j + 1)h,

0, otherwise,
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We can generate two vectors of 2D-TFs, namely T1(x, y) and T2(x, y), such
that

Φ(x, y) = T1(x, y) + T2(x, y), (x, y) ∈ D.

It could be said that these two vectors are complementary to each other
as far as 2D-BFs are considered. We call T1(x, y) and T2(x, y) the left-
handed 2D-TFs (LH2D-TFs) and the right-handed 2D-TFs (RH2D-TFs),
respectively.

Now, if we divide the interval D into m.m = m2 equal parts, we have

T1(x, y) = [T10,0(x, y, ) . . . , T10,m−1(x, y), . . . , T1m−1,0(x, y),
. . . , T1m−1,m−1(x, y)]T ,

T2(x, y) = [T20,0(x, y, ) . . . , T20,m−1(x, y), . . . , T2m−1,0(x, y),
. . . , T2m−1,m−1(x, y)]T ,

(2)

for every (x, y) ∈ D. Let T (x, y) be a (2m2)-vector defined as

T (x, y) =
(

T1(x, y)
T2(x, y)

)
, (x, y) ∈ D,

where T1(x, y) and T2(x, y) have been defined in Eq. (2).
The orthogonality of LH2D-TFs set (similarly RH2D-TFs set) resulted

from mutual disjointness of LH2D-TFs (and RH2D-TFs), i.e., for i1, i2, j1,
j2 = 0, 1, . . . ,m− 1, we have∫ 1

0

∫ 1

0
T1i1,j1(x, y)T2i2,j2(x, y)dxdy =

{h2

3 , i1 = i2 and j1 = j2,

0, otherwise.

The following properties of the product of two 2D-TFs vectors will be used

T1(x, y)T1T (x, y) =



T10,0(x, y) 0 . . . 0

. . .
..
.

..

.
..
.

0 T10,m−1(x, y) . . . 0
...

. . .
...

...
0 0 T1m−1,0(x, y) 0
...

...
. . .

...
0 0 0 T1m−1,m−1(x, y)


, (3)

T2(x, y)T2T (x, y) =



T20,0(x, y) 0 . . . 0

. . .
..
.

..

.
..
.

0 T20,m−1(x, y) . . . 0
..
.

. . .
...

...
0 0 T2m−1,0(x, y) 0
.
..

.

..
. . .

...
0 0 0 T2m−1,m−1(x, y)


, (4)



Solving a class of nonlinear Volterra integral equations 31

where both of them are m2-by-m2 matrices, and

T1(x, y)T2T (x, y) = 0,
T2(x, y)T1T (x, y) = 0,

(5)

where 0 is the zero m2 ×m2 matrix [13].
We can approximate the function f(x, y) ∈ L2(D) by 2D-TFs as follows

f(x, y) =
m−1∑
i=0

m−1∑
j=0

ci,jT1i,j(x, y) +
m−1∑
i=0

m−1∑
j=0

ci,j+1T2i,j(x, y) , (6)

where { ci,j = f(ih, jh),

ci,j+1 = f(ih, (j + 1)h).
(7)

Hence, the expansion of f(x, y) with respect to 2D-TFs can be written as

f(x, y) = F1T T1(x, y) + F2T T2(x, y) = F T T (x, y) ,

where F1 and F2 are 2D-TFs coefficients with F1i,j = f(ih, jh) and F2i,j =
f(ih, (j + 1)h), for i, j = 0, 1, 2, . . . ,m − 1. Also, 2m2-vector F is defined
as

F =
(

F1
F2

)
.

Approximating function k(x, y, t, s) ∈ L2(D ×D) by 2D-TFs, as described
in Eq. (6), yields

k(x, y, t, s) = T1T (x, y)K11T1(t, s) + T1T (x, y)K12T2(t, s)
+T2T (x, y)K21T1(t, s) + T2T (x, y)K22T2(t, s), (8)

where K11, K12, K21, K22 in above-stated equation, were previously
defined in [13, 14]. It is apparent from Eqs. (7) and (8) that the represen-
tation by 2D-TFs does not need any integration to evaluate the coefficients,
therefore a lot of computational efforts is reduced.

3 Main results

Let X be a (2m2)-vector which can be written as XT = (X1T X2T ) such
that X1 and X2 are m2-vectors. Now, it can be concluded from Eqs.
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(3)-(8) that

T (x, y)T T (x, y)X =

T1(x, y)

T2(x, y)

 (T1T (x, y) T2T (x, y))

X1

X2


=

diag(T1(x, y)) 0m2×m2

0m2×m2 diag(T2(x, y))


2m2×2m2

X1

X2


= diag(T (x, y))X = diag(X)T (x, y).

Therefore,
T (x, y)T T (x, y)X = X̂T (x, y), (9)

where X̂ = diag(X) is a 2m2 × 2m2 diagonal matrix. Now, let B be a
2m2 × 2m2 matrix as

B =
(

B11m2×m2 B12m2×m2

B21m2×m2 B22m2×m2

)
.

So, it can be similarly concluded from Eqs. (3)-(5) that

T (x, y)BT T (x, y) = (T1T (x, y) T2T (x, y))
(

B11 B12
B21 B22

) (
T1(x, y)
T2(x, y)

)
= T1T (x, y)B11T1(x, y) + T2T (x, y)B22T2(x, y) (10)
= B̂11T T1(x, y) + B̂22T T2(x, y),

in which B̂11 and B̂22 are m2-vectors with elements equal to the diagonal
entries of matrices B11 and B22, respectively [2]. Therefore,

T (x, y)BT T (x, y) = B̂T T (x, y) ,

where B̂ is a 2m2-vector with elements equal to the diagonal entries of
matrix B.

3.1 Operational matrix of integration

The integration of the vectors T1(τ1, τ2) and T2(τ1, τ2) defined in Eq. (2)
can be approximately obtained as∫ x

0

∫ y

0
T1(τ1, τ2)dτ1dτ2 = P1T1(x, y) + P2T2(x, y)

= (E1⊗ E)T1(x, y) + (E2⊗ E)T2(x, y), (11)
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for (x, y) ∈ D and∫ x

0

∫ y

0
T2(τ1, τ2)dτ1dτ2 = P1T1(x, y) + P2T2(x, y)

= (E1⊗ E)T1(x, y) + (E2⊗ E)T2(x, y), (12)

for (x, y) ∈ D where P1 and P2 are the operational matrix of integration for
2D-TFs and E, E1 and E2 are the operational matrix of one-dimensional
triangular orthogonal functions defined over [0, 1) with h = 1

m as follows

E =
h

2


1 2 2 · · · 2
0 1 2 · · · 2
0 0 1 · · · 2
...

...
...

. . .
...

0 0 0 · · · 1


m×m

,

E1 =
h

2


0 1 1 · · · 1
0 0 1 · · · 1
0 0 0 · · · 1
...

...
...

. . .
...

0 0 0 · · · 0


m×m

,

E2 =
h

2


1 1 1 · · · 1
0 1 1 · · · 1
0 0 1 · · · 1
...

...
...

. . .
...

0 0 0 · · · 1


m×m

.

In Eqs. (11) and (12), ⊗ denotes the Kronecker product defined which is
defined as

A⊗B = (aijB) .

3.2 Operational matrix

Expressing
∫ x

0

∫ y

0
T (τ1, τ2)dτ1dτ2 in terms of T (x, y), and from Eqs. (11),

(12), we can write∫ x

0

∫ y

0
T (τ1, τ2)dτ1dτ2 =

∫ x

0

∫ y

0

(
T1(τ1, τ2)
T2(τ1, τ2)

)
dτ1dτ2

=
(

P1T1(x, y) + P2T2(x, y)
P1T1(x, y) + P2T2(x, y)

)
=

(
P1 P2
P1 P2

) (
T1(x, y)
T2(x, y)

)
,
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and hence ∫ x

0

∫ y

0
T (τ1, τ2) = PT (x, y), (13)

where P2m2×2m2 , operational matrix of T (x, y), is

P =
(

P1 P2
P1 P2

)
, (14)

where P1 and P2 are given by Eq. (10). So, for every function f(τ1, τ2) we
have∫ x

0

∫ y

0
f(τ1, τ2)dτ1dτ2 =

∫ x

0

∫ y

0
F T T (τ1, τ2)dτ1dτ2 = F T PT (x, y) .

4 Nonlinear two-dimensional Volterra integral
equations

In this section, we present a 2D-TFs method for solving Eq. (1). Let
us expand f(x, y) and u(x, y) by 2D-TFs (LH2D-TFs and RH2D-TFs) as
follows

f(x, y) = F T T (x, y) = T T (x, y)F ,
u(x, y) = UT T (x, y) = T T (x, y)U , (15)

where 2m2-vectors F and U are 2D-TFs coefficients of f(x, y) and u(x, y),
respectively.

As described in Section 2, we can expand k(x, y, t, s) ∈ L2(D ×D) by
2D-TFs. Suppose that this approximation is as follows

k(x, y, t, s) = T1T (x, y)K11T1(t, s) + T1T (x, y)K12T2(t, s)
+T2T (x, y)K21T1(t, s) + T2T (x, y)K22T2(t, s).

Therefore
K(x, y, t, s) = T T (x, y)KT (t, s), (16)

where K is a 2m2 × 2m2 2D-TFs coefficient matrix and can be written as

K =
(

K11 K12
K13 K14

)
.

Now, we require the following lemma.
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Lemma 1. Let 2m2 vectors U and Un be 2D-TFs coefficients of u(x, y)
and [u(x, y)]n, respectively. If

U = (U1T UT
2 ) = (U10,0, . . . , U10,m−1, . . . , U1m−1,0, . . . , U1m−1,m−1,

U20,0, . . . , U20,m−1, . . . , U2m−1,0, . . . , U2m−1,m−1)T ,

then

Un = (U1n
0,0, . . . , U1n

0,m−1, . . . , U1n
m−1,0, . . . , U1n

m−1,m−1,

U2n
0,0, . . . , U2n

0,m−1, . . . , U2n
m−1,0, . . . , U2n

m−1,m−1)
T ,

where n ≥ 1, is a positive integer.

Proof. See [14].

For solving Eq. (1), we substitute Eqs. (15) and (16) into equation (1).
Therefore,

UT T (x, y) = F T T (x, y) +
∫ x

0

∫ y

0
T T (x, y)KT (t, s)T T (t, s)Undtds

= F T T (x, y) + T T (x, y)K
∫ x

0

∫ y

0
T (t, s)T T (t, s)Undtds .

By using Eq. (9) it follows that

UT T (x, y) = F T T (x, y) + T T (x, y)K
∫ x

0

∫ y

0
ŨnT (t, s)dtds

= F T T (x, y) + T T (x, y)KŨn

∫ x

0

∫ y

0
T (t, s)dtds,

and using Eq. (13) gives

UT T (x, y) = F T T (x, y) + T T (x, y)KŨnPT (x, y), (17)

in which KŨnP is a 2m2 × 2m2 matrix. By using Eq. (10) we have

T T (x, y)KŨnPT (x, y) = V̂nT (x, y), (18)

where V̂n is a 2m2-vector with components equal to the diagonal entries of
the matrix. Combining Eqs. (17) and (18) gives

UT T (x, y) = F T T (x, y) + V̂ T
n T (x, y). (19)
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Eq. (19) is a nonlinear system of 2m2 algebraic equations for the 2m2

unknowns

U10,0, . . . , U10,m−1, . . . , U1m−1,0, . . . , U1m−1,m−1, . . . ,

U20,0, . . . , U20,m−1, . . . , U2m−1,0, . . . , U2m−1,m−1 .

The Newton’s iteration method is used to solve the nonlinear system.
Hence, an approximate solution u(x, y) = UT T (x, y), or

u(x, y) = U1T T1(x, y) + U2T T2(x, y),

can be computed for Eq. (1) without using any projection method.

5 Convergence analysis

Let (C[J ], ‖.‖) be the Banach space of all continuous functions on J = D
with norm ‖f(x, y)‖ = max

(x,y)∈J
|f(x, y)|. Let ∀x, y, t, s ∈ [0, 1), |k(x, y, t, s)| ≤

M . Suppose the nonlinear term [u(x, y)]n satisfies the Lipschitz condition

|[u(x, y)]n − [v(x, y)]n| ≤ L|u(x, y)− v(x, y)|.

We denote the error 2D-TFs by e2D−TFs = ||um(x, y) − u(x, y)||, where
um(x, y) and u(x, y) show the approximate and exact solutions of the two-
dimensional nonlinear Volterra integral equation, respectively. Note that
the coefficients ci,j ’s and ci,j+1’s in Eq. (7) are not optimal. By using the
optimal coefficients, the representational errors e2D−TFs can be reduced.

Theorem 1. The solution of the two-dimensional nonlinear Volterra in-
tegral equation by using 2D-TFs approximation converges if 0 < α < 1
where α = ML.

Proof. Let

||um(x, y)− u(x, y)||
= max

(x,y)∈J
|um(x, y)− u(x, y)|

= max |f(x, y) +
∫ x

0

∫ y

0
k(x, y, t, s)[um(t, s)]ndtds− f(x, y)

−
∫ x

0

∫ y

0
k(x, y, t, s)[u(t, s)]ndtds|

≤ max
∫ x

0

∫ y

0
|k(x, y, t, s)||[um(t, s)]n − [u(t, s)]n|dtds

≤ ML

∫ x

0

∫ y

0
max |um(t, s)− u(t, s)|dsdt = ML||um − u||.
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Therefore,

||um(x, y)− u(x, y)|| ≤ α||um(x, y)− u(x, y)||,

where α = ML. We get (1 − α)||um − u|| ≤ 0 and choose 0 < α < 1, by
increasing m, it implies ||um − u|| → 0 as m → ∞ and this completes the
proof.

6 Numerical experiments

In this section, the theoretical results of the previous sections are used for
one numerical example. The numerical experiments are carried out for the
selected grid points that are proposed as 2−l, l = 1, 2, 3, 4, 5, 6 and m terms
of the 2D-TFs and 2D-BFs series.

Example 1. Consider the two-dimensional nonlinear Volterra integral equa-
tion [7, 8, 11]

u(x, y) = f(x, y) +
∫ x

0

∫ y

0
u2(t, s)dtds, (20)

where (x, y) ∈ D and

f(x, y) = x2 + y2 − 1
45

xy(9x4 + 10x2y2 + 9y4),

that the exact solution is u(x, y) = x2 + y2.
Table 1 shows the numerical results for m = 16 and m = 32 and com-

parison with the exact solution. Table 2 gives the comparison of the results
of the error functions obtained by the present method and those of the
2D-TFs method for m = 8, 16, 32.

7 Conclusion

In this paper, we have worked out a computational method for the ap-
proximate solution of a class of nonlinear Volterra integral equation of the
second kind, based on the expansion of the solution as series of 2D-TFs.
Some advantage of the considered method (compared with methods based
on basis set of different kinds) are:
1) Using 2D-TFs does not need any integration to evaluate the coefficients,
therefore a lot of computational efforts have been reduced;
2) The matrices P1 and P2 introduced in Eq. (14) contain a large per-
centage of zero entries, which keeps computational effort within reasonable
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Table 1: Numerical results for Example 1 by 2D-TFs method.

Presented method Error
(x, y) ————————— ————————— Exact solution

m = 16 m = 32 m = 16 m = 32

(0.0,0.0) 0 0 0 0 0
(0.1,0.1) 1.4844e-02 1.8945e-02 5.1560e-03 1.0550e-03 2.0000e-02
(0.2,0.2) 7.5792e-02 7.5393e-02 4.2080e-03 4.6070e-03 8.0000e-02
(0.3,0.3) 1.5315e-01 1.6935e-01 2.6850e-02 1.0650e-02 1.8000e-01
(0.4,0.4) 3.0173e-01 3.0083e-01 1.8270e-02 1.9170e-02 3.2000e-01
(0.5,0.5) 5.0060e-01 5.0019e-01 6.0000e-04 1.9000e-04 5.0000e-01
(0.6,0.6) 6.7821e-01 7.1310e-01 4.1790e-02 6.9000e-03 7.2000e-01
(0.7,0.7) 9.6562e-01 9.6368e-01 1.4380e-02 1.6320e-02 9.8000e-01
(0.8,0.8) 1.2061e-00 1.2520e-00 7.3900e-02 2.8000e-02 1.2800e-00
(0.9,0.9) 1.5183e-00 1.5782e-00 1.0170e-01 4.1800e-02 1.6200e-00

Table 2: Numerical results of the error functions of Eq. (20)
(x, y) = Presented method Method of [11]

(2−l, 2−l) m = 8 m = 16 m = 32 m = 8 m = 16 m = 32

l = 1 6.0e-02 2.7e-02 6.5e-03 1.3e-01 6.3e-02 3.1e-02
l = 2 1.2e-02 1.5e-02 6.7e-03 6.5e-02 3.2e-02 1.6e-02
1 = 3 4.6e-03 3.0e-03 3.8e-03 3.4e-02 1.6e-02 8.0e-03
1 = 4 1.6e-03 1.1e-03 7.4e-04 1.0e-03 8.5e-03 4.1e-03
1 = 5 1.4e-03 4.0e-04 7.0e-04 4.8e-03 2.5e-04 2.1e-03
1 = 6 1.2e-03 4.5e-04 1.5e-05 6.3e-03 1.2e-03 6.4e-05

limits.
An example with satisfactory results are used to demonstrate the applica-
tion of this method.
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