| تعداد نشریات | 32 |
| تعداد شمارهها | 830 |
| تعداد مقالات | 7,999 |
| تعداد مشاهده مقاله | 44,167,928 |
| تعداد دریافت فایل اصل مقاله | 8,574,628 |
Novel Legendre-Jaiswal functions for solving time-space fractional partial differential equations | ||
| Journal of Mathematical Modeling | ||
| مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 30 آذر 1404 اصل مقاله (1012.05 K) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.22124/jmm.2025.31438.2827 | ||
| نویسندگان | ||
| Santoshi Tarei1؛ Ankur Kanaujiya* 2 | ||
| 1Department of Mathematics National Institute of Technology Rourkela | ||
| 2Department of Mathematics, NIT Rourkela, Odisha, India | ||
| چکیده | ||
| This paper examines a new fractional function based on Legendre and Jaiswal polynomials to solve linear and nonlinear time-space fractional partial differential equations of linear and nonlinear class. The Caputo sense is applied while using the fractional derivative. These problems can be solved using the collocation method, operational, and pseudo-operational matrices of integer and fractional-order integration. Using operational matrices, pseudo-operational matrices, and the collocation method, the problem is transformed into a system of algebraic equations. An upper bound on the error of the fractional-order integral operational matrix is computed. Furthermore, a detailed stability and convergence analysis of the collocation scheme presented to validate the robustness of the numerical approach. The applicability and effectiveness of the approach are demonstrated through several benchmark examples, including linear and non-linear fractional convection-diffusion, convection-diffusion-reaction, and nonlinear Fisher's equation. The numerical results confirm that the proposed method is stable, rapidly convergent, and highly accurate, outperforming several existing techniques in both efficiency and precision. | ||
| کلیدواژهها | ||
| Legendre polynomial؛ Jaiswal polynomial؛ Fractional partial differential equation؛ Error analysis | ||
|
آمار تعداد مشاهده مقاله: 4 تعداد دریافت فایل اصل مقاله: 9 |
||