Vol. -, No. -, 2026, pp. -. Research Article

Generalized Reynolds operators and extensions of Lie-Yamaguti algebra bundle

Saikat Goswami †, Goutam Mukherjee^{‡*}

† Institute for Advancing Intelligence, Tcg crest, Kolkata, India
† Department of Mathematics, Ramakrishna Mission Vivekananda Educational and Research
Institute, Howrah, India

‡Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
Emails: saikatgoswami.math@gmail.com, goutam.mukherjee@tcgcrest.org
(qmukherjee.isi@qmail.com)

Abstract. A Lie-Yamaguti algebra bundle is a type of algebra bundles with fibres being Lie-Yamaguti algebras, and appears naturally from geometric considerations in the work of M. Kikkawa. The aim of the present paper is to introduce the notion of generalized Reynolds operators, \mathcal{O} -operators and Nijenhuis operators in the context of Lie-Yamaguti algebra bundle and find their applications. We also study abelian extensions of Lie-Yamaguti algebra bundles and investigate its relationship with its cohomology.

Keywords: Vector bundle, Lie-Yamaguti algebra, Non-associative algebra, Cohomology. AMS Subject Classification 2010: 53B05, 58A05, 16E99, 17A30, 17A40.

1 Introduction

Algebra bundles are vector bundles with fibres a type of algebras, and they play a crucial role in geometry and physics. For example, associative algebra bundles [6], Lie algebra bundles [14,16], etc. A Lie-Yamaguti algebra bundle is a type of algebra bundles with fibres being Lie-Yamaguti algebras, and appears naturally from geometric considerations in the work of M. Kikkawa. In [10] we introduced Lie-Yamaguti algebra bundles and defined cohomology groups of a Lie-Yamaguti algebra bundle with coefficients in a representation.

Various notions of operators, like, Rota-Baxter operators, \mathcal{O} -operators and generalized Reynolds operators have been studied on a large class of algebras in order to address problems arising from mathematical physics. In 1960, G. Baxter first introduced the notion of Rota-Baxter operators

Received: 29 February 2024/ Revised: 27 May 2024 / Accepted: 07 July 2024

DOI: 10.22124/JART.2025.32090.1871

^{*}Corresponding author

for associative algebras. A. Das [8] studied deformations of associative Rota-Baxter operators. The Rota-Baxter operators have several applications in probability [1], combinatorics [2,11,19] and quantum field theory [5]. In the 1980s, the notion of Rota-Baxter operator of weight 0 was introduced in terms of the classical Yang-Baxter equation for Lie algebras. Later on, B. A. Kupershmidt [15] defined the notion of O-operators as generalized Rota-Baxter operators to understand classical Yang-Baxter equations and related integrable systems. In [17], the authors studied O-operators on hom-Lie algebras. Recently, in [4], the authors studied deformations of O-operators on Lie triple systems. See [20], for Lie-Yamaguti algebra case. Reynolds numbers were introduced by O. Reynolds [18] in his study of fluctuation theory in fluid dynamics to classify fluid flow. In [13], Kampé de Fériet and S. I. Pai coined the concept of the Reynolds operator as a mathematical object in general. Generalized Reynolds operators (also called twisted Rota-Baxter operators) are algebraic analogue of twisted Poisson structure and was introduced by K. Uchino [23] in the context of associative algebras (see [7] for the Lie algebra case). The notion of a Nijenhuis operator on a Lie algebra was used in [9] to characterize infinitesimal deformations which are trivial. We refer [21, 22], for similar study in the context of Lie-Yamaguti algebras. It is then natural to investigate such operators in the context of Lie-Yamaguti algebra bundles.

In the present article, we introduce generalized Reynolds operators, \mathcal{O} -operators and Nijenhuis operators on Lie-Yamaguti algebra bundle and discuss their utility. We also introduce abelian extensions of Lie-Yamaguti algebra bundles, and investigate their relationship with suitable cohomology group, generalizing the work of M. Kikkawa for Lie-Yamaguti algebras.

Organization of the paper: In $\S2$, we set up notations, recall some known definitions and results. In $\S3$, we introduce the notion of \mathcal{O} -operator, generalized Reynolds operator and Nijenhuis operator on a Lie-Yamaguti algebra bundle and show that they give rise to new Lie-Yamaguti algebra bundle out of the given one. Finally, in $\S4$, we study (abelian) extensions of Lie-Yamaguti algebra bundles and establish its connection to cohomology.

2 Preliminaries

The aim of this section is to recall some basic definitions and set up notations to be followed throughout the paper. Let \mathbb{K} be a given field.

Definition 1. A Lie-Yamaguti Algebra $(\mathfrak{g}, [\ ,\], \{\ ,\ ,\ \})$ is a vector space \mathfrak{g} equipped with a \mathbb{K} -bilinear and a trilinear operation

$$[\ ,\]:\mathfrak{g} imes\mathfrak{g} o\mathfrak{g}\quad and\quad \{\ ,\ ,\ \}:\mathfrak{g} imes\mathfrak{g} imes\mathfrak{g} o\mathfrak{g}$$

such that for all $x, y, z, u, v, w \in \mathfrak{g}$ the following relations hold:

$$[x,y] = -[y,x]; (LY1)$$

$$\{x, y, z\} = -\{y, x, z\};$$
 (LY2)

$$\Sigma_{\circlearrowleft(x,y,z)}([[x,y],z] + \{x,y,z\}) = 0;$$
 (LY3)

$$\Sigma_{(x,u,z)}\{[x,y],z,u\} = 0; \tag{LY4}$$

$$\{x, y, [u, v]\} = [\{x, y, u\}, v] + [u, \{x, y, v\}];$$
(LY5)

$$\{x, y, \{u, v, w\}\} = \{\{x, y, u\}, v, w\} + \{u, \{x, y, v\}, w\} + \{u, v, \{x, y, w\}\}.$$
 (LY6)

Here, $\Sigma_{\circlearrowleft(x,y,z)}$ denotes the sum over cyclic permutations of x, y, and z.

Let M be a smooth manifold (Hausdorff and second countable, hence, paracompact). Let $C^{\infty}(M)$ be the algebra of smooth functions on M. For a (smooth) vector bundle $p:L\to M$, often denoted by $\xi=(L,p,M)$, we denote the space of smooth sections of L by ΓL . It is well-known that ΓL is a $C^{\infty}(M)$ -module. For any $m\in M$, we denote the fibre of the vector bundle ξ over m by L_m or sometimes by ξ_m . Henceforth, we will work in the smooth category and with $\mathbb{K}=\mathbb{R}$.

Next, we recall the notion of a Lie-Yamaguti algebra bundle, and its associated cohomology groups.

Definition 2. Let $\xi = (L, p, M)$ be a (real) vector bundle and $Hom(\xi^{\otimes k}, \xi)$ be the real vector space of vector bundle maps from $\xi^{\otimes k}$ to the vector bundle $\xi, k \geq 1$. Observe that $Hom(\xi^{\otimes k}, \xi)$ is a vector bundle over M. Let $\langle \cdot, \cdots, \cdot \rangle$ be a section of the bundle $Hom(\xi^{\otimes k}, \xi)$. We call such a section a k-field of (\mathbb{K} -multilinear) brackets in ξ . Thus, a k-field of brackets in ξ is a smooth assignment

$$m \mapsto (\langle , \cdots, \rangle_m : \xi_m \times \cdots \times \xi_m \to \xi_m)$$

of multilinear operation on ξ_m , $m \in M$.

Definition 3. A Lie-Yamaguti algebra bundle is a vector bundle $\xi = (L, p, M)$ together with a 2-field and a 3-field of brackets

$$m\mapsto [\ ,\]_m\quad and\quad m\mapsto \{\ ,\ ,\ \}_m,\ m\in M$$

which make each fibre ξ_m , $m \in M$ a Lie-Yamaguti algebra.

Definition 4. Let $(\mathfrak{g}, [\ ,\]_{\mathfrak{g}}, \{\ ,\ ,\ \}_{\mathfrak{g}})$ be a given Lie-Yamaguti algebra. A locally trivial Lie-Yamaguti algebra bundle is a vector bundle $\xi = (L, p, M)$ together with a 2-field and a 3-field of brackets

$$m \mapsto [\ ,\]_m \quad and \quad m \mapsto \{\ ,\ ,\ \}_m, \quad m \in M$$

such that M admits an open covering $\{U_i\}$ equipped with local trivializations $\{\psi_i: U_i \times \mathfrak{g} \to p^{(-1)}(U_i)\}$ for which each $\psi_{i,m}$, $m \in M$ (ψ_i restricted to each fibre ξ_m) is a Lie-Yamaguti algebra isomorphism.

Remark 1. Thus, for a Lie-Yamaguti algebra bundle as defined above each fibre $\xi_m = p^{-1}(m)$, $m \in M$, together with the binary operation $[\ ,\]_m$ and the ternary operation $\{\ ,\ ,\ \}_m$ is a Lie-Yamaguti algebra isomorphic to \mathfrak{g} , and the assignments

$$m\mapsto [\ ,\]_m,\ m\mapsto \{\ ,\ ,\ \}_m$$

varies smoothly over M.

In other words, a locally trivial Lie-Yamaguti algebra bundle over M is a vector bundle over M such that each fibre of the bundle has a Lie-Yamaguti algebra structure isomorphic to \mathfrak{g} . For more details about Lie-Yamaguti algebra bundles and examples, we refer the readers to [10].

Definition 5. Let $\xi = (L, p, M)$ and $\xi' = (L', p', M')$ be two Lie-Yamaguti algebra bundles. A homomorphism $\phi : \xi \to \xi'$ is a vector bundle morphism $(\tilde{\phi}, \phi)$, where $\tilde{\phi} : L \to L'$ is the morphism between total spaces and $\phi : M \to M'$ is a morphism between base spaces such that $\tilde{\phi}|_{L_m} : L_m \to L'_{\phi(m)}$ is a Lie-Yamaguti algebra homomorphism for any $m \in M$.

A homomorphism $\phi: \xi \to \xi'$ of two Lie-Yamaguti algebra bundles over the same base space M is a vector bundle morphism $\phi: \xi \to \xi'$ such that $\phi|_{\xi_m}: \xi_m \to \xi'_m$ is a Lie-Yamaguti algebra morphism for all $m \in M$. Moreover, if $\phi|_{\xi_m}$ is a linear bijection then $\xi = (L, p, M)$ is said to be isomorphic to $\xi' = (L', p', M)$.

Definition 6. A Lie-Yamaguti algebra bundle ξ is said to be trivial if it is isomorphic to a product Lie-Yamaguti algebra bundle.

Next, we recall from [10, Definition 4.1, pg 16] the notion of representation of Lie-Yamaguti algebra bundles.

Definition 7. Let $\xi = (L, p, M)$ be a Lie-Yamaguti algebra bundle and $\eta = (E, q, M)$ be a vector bundle. A representation of ξ on the vector bundle η consists of vector bundle morphisms

$$\rho: \xi \to End(\eta), \quad D, \ \theta: \xi \otimes \xi \to End(\eta)$$

such that these maps restricted to each fibre

$$\rho_m = \rho|_{\xi_m} : \xi_m \to End(\eta_m), \ D_m = D|_{\xi_m}, \ \theta_m = \theta|_{\xi_m} : \xi_m \times \xi_m \to End(\eta_m),$$

satisfy the conditions

$$D_m(a,b) + \theta_m(a,b) - \theta_m(b,a) = [\rho_m(a), \rho_m(b)]_m - \rho_m([a,b]);$$
 (RLYB1)

$$\theta_m(a, [b, c]_m) - \rho_m(b)\theta_m(a, c) + \rho_m(c)\theta_m(a, b) = 0; \tag{RLYB2}$$

$$\theta_m([a,b]_m,c) - \theta_m(a,c)\rho_m(b) + \theta_m(b,c)\rho_m(a) = 0;$$
(RLYB3)

$$\theta_m(c,d)\theta_m(a,b) - \theta_m(b,d)\theta_m(a,c) - \theta_m(a,\{b,c,d\}_m) + D_m(b,c)\theta_m(a,d) = 0;$$
 (RLYB4)

$$[D_m(a,b), \rho_m(c)]_m = \rho_m(\{a,b,c\}_m);$$
 (RLYB5)

$$[D_m(a,b), \theta_m(c,d)]_m = \theta_m(\{a,b,c\}_m,d) + \theta_m(c,\{a,b,d\}_m);$$
(RLYB6)

for any $m \in M$ and $a, b, c, d \in \xi_m$.

We shall denote a representation of a Lie-Yamaguti algebra bundle ξ on a vector bundle η as described above by $(\eta; \rho, D, \theta)$. A representation $(\eta; \rho, D, \theta)$ of a Lie-Yamaguti algebra bundle ξ is also called a ξ -module.

Remark 2. Like a representation of a Lie-Yamaguti algebra [24], given a representation $(\eta; \rho, D, \theta)$ of a Lie-Yamaguti algebra bundle ξ , we have for every $m \in M$

$$D_m([a,b]_m,c) + D_m([b,c]_m,a) + D_m([c,a]_m,b) = 0,$$
(RLYB7)

for any $a, b, c \in \xi_m$.

Example 1. Given a Lie-Yamaguti algebra bundle ξ over M, we may consider ξ as a ξ -module which gives us the adjoint representation of ξ on itself. Explicitly, for each $m \in M$, ρ_m , D_m , θ_m are given by

$$\rho_m(a): b \mapsto [a,b]_m; \quad D_m(a,b): c \mapsto \{a,b,c\}_m; \quad \theta_m(a,b): c \mapsto \{c,a,b\}_m,$$

for any $a, b, c \in \xi_m$.

Given a Lie-Yamaguti algebra bundle together with a representation we construct a new Lie-Yamaguti algebra bundle as follows.

Example 2. Let $\xi = (L, p, M)$ be a given Lie-Yamaguti algebra bundle and let $(\eta; \rho, D, \theta)$ be a representation of ξ . Then, $\xi \oplus \eta$ becomes a Lie-Yamaguti algebra bundle with respect to the following 2 and 3-fields of brackets

$$[x + u, y + v]_m^{\kappa} := [x, y]_m + \rho_m(x)v - \rho_m(y)u \tag{1}$$

$$\{x + u, y + v, z + w\}_{m}^{\kappa} := \{x, y, z\}_{m} + D_{m}(x, y)w - \theta_{m}(y, z)u$$
(2)

for all $x, y, z \in \xi_m$ and $u, v, w \in \eta_m$. This bundle is called the semi-direct product bundle of ξ and η and is denoted by $\xi \ltimes \eta$.

Moreover, a representation of η of a Lie-Yamaguti algebra bundle ξ is characterized by the semi-direct product construction in the following sense.

Proposition 1. Let $\xi = (L, p, M)$ be a given Lie-Yamaguti algebra bundle and $\eta = (E, q, M)$ be a vector bundle together with vector bundle morphisms $\rho : \xi \to End(\eta)$, D, $\theta : \xi \otimes \xi \to End(\eta)$. Then, $(\eta; \rho, D, \theta)$ is a representation of ξ if and only if the Whitney sum bundle $\xi \oplus \eta$ becomes a Lie-Yamaguti algebra bundle with respect to the following 2-fields and 3-fields of brackets

$$[x+u, y+v]_m^{\ltimes} := [x, y]_m + \rho_m(x)v - \rho_m(y)u$$
 (3)

$$\{x + u, y + v, z + w\}_{m}^{\kappa} := \{x, y, z\}_{m} + D_{m}(x, y)w - \theta_{m}(y, z)u$$
(4)

for all $x, y, z \in \xi_m$ and $u, v, w \in \eta_m$.

We now briefly recall from [10] the definition of cohomology groups of a Lie-Yamaguti algebra bundle with coefficients in a given representation.

Definition 8. Let $\xi = (L, p, M)$ be a Lie-Yamaguti algebra bundle and $(\eta; \rho, D, \theta)$ be a ξ -module. Let $C^n(\xi; \eta)$ be the space of all vector bundle morphisms $f : \xi^{\otimes n} \to \eta$ such that for each $m \in M$ it satisfies $f_m(x_1, \ldots, x_{2i-1}, x_{2i}, \ldots, x_n) = 0$ whenever $x_{2i-1} = x_{2i}$, where $i = 1, \ldots, \lfloor n/2 \rfloor$. Let $C^0(\xi; \eta)$ be the subspace spanned by the diagonal elements $(f, f) \in C^1(\xi; \eta) \times C^1(\xi, \eta)$ and for $p \geq 1$, set

$$C^{(2p,2p+1)}(\xi;\eta) := C^{2p}(\xi;\eta) \times C^{2p+1}(\xi;\eta).$$

Any element $(f,g) \in C^{(2p,2p+1)}(\xi;\eta)$ is called a (2p,2p+1)-cochain. For $p \geq 1$, we have a coboundary operator

$$\delta = (\delta_I, \delta_{II}) : C^{(2p,2p+1)}(\xi; \eta) \longrightarrow C^{(2p+2,2p+3)}(\xi; \eta).$$

Additionally, for p = 1 we have another operator

$$\delta^* = (\delta_I^*, \delta_{II}^*) : C^{(2,3)}(\xi; \eta) \longrightarrow C^{(3,4)}(\xi; \eta).$$

Furthermore, there also exist an operator $\delta: C^0(\xi;\eta) \to C^{(2,3)}(\xi;\eta)$. For an explicit description of the operators δ and δ^* we refer the readers to [10, Definition 5.1, pg 18]. Thus, we obtain a cochain complex depicted as follows (cf [10]):

$$C^{0}(\xi;\eta) \xrightarrow{\delta} C^{(2,3)}(\xi;\eta) \xrightarrow{\delta} C^{(4,5)}(\xi;\eta) \xrightarrow{\delta} \cdots$$

$$\downarrow^{\delta^{*}}$$

$$C^{(3,4)}(\xi;\eta)$$

Definition 9. Let ξ be a Lie-Yamaguti algebra bundle and η be a representation of ξ . For $p \geq 2$, define the (2p, 2p + 1)-cohomology group of ξ with coefficients in η as follows:

$$H^{(2p,2p+1)}(\xi;\eta) := \frac{Z^{(2p,2p+1)}(\xi;\eta)}{B^{(2p,2p+1)}(\xi;\eta)},$$

where $Z^{(2p,2p+1)}(\xi;\eta) = \text{Ker}(\delta)$ and $B^{(2p,2p+1)}(\xi;\eta) = \text{Im}(\delta)$. For p = 1

$$H^{(2,3)}(\xi;\eta) = \frac{Z^{(2,3)}(\xi;\eta)}{B^{(2,3)}(\xi;\eta)},$$

where $Z^{(2,3)}(\xi;\eta) := \text{Ker}(\delta) \cap \text{Ker}(\delta^*)$ and $B^{(2,3)}(\xi;\eta) = \{\delta(f,f) | f \in C^1(\xi;\eta)\}.$

Let $\xi = (L, p, M)$ be a Lie-Yamaguti algebra bundle and $(\eta; \rho, D, \theta)$ be a ξ -module. Also, let $\tau = (f, g) \in Z^{(2,3)}(\xi; \eta)$ be a given (2,3)-cocycle. Then, one can construct a new Lie-Yamaguti algebra bundle as described below.

Example 3. Consider the vector bundle $\xi \oplus \eta$ and define a 2-field of brackets and a 3-field of brackets as follows: For any $m \in M$

$$[x+u,y+v]_m^{\tau} := [x,y]_m + \rho_m(x)v - \rho_m(y)u + f_m(x,y)$$
(5)

$$\{x+u, y+v, z+w\}^{\tau} := \{x, y, z\}_m + D_m(x, y)w - \theta_m(y, z)u + g_m(x, y, z)$$
 (6)

for all $x,y,z\in \xi_m$ and $u,v,w\in \eta_m$. Then, using the fact that τ is a cocycle it can be checked that equipped with these fields of brackets the bundle $\xi\oplus\eta$ becomes a Lie-Yamaguti algebra bundle. We call this new Lie-Yamaguti algebra bundle the twisted semi-direct product of ξ and η with respect to $\tau=(f,g)$, and is denoted by $\xi\ltimes_{\tau}\eta$.

3 Generalized Reynolds operators on Lie-Yamaguti algebra bundle

The aim of this section is to introduce generalized Reynolds operators on a Lie-Yamaguti algebra bundle and show that they are connected to the twisted semi-direct product bundle as defined in Example 3. We obtain few special classes of generalized Reynolds operators on a Lie-Yamaguti algebra bundle which are provided by Reynolds operators, \mathcal{O} -operators and Rota-Baxter operators on a Lie-Yamaguti algebra bundle. The results of this section generalize existing results related to such operators in the context of a type of algebra, for example, Lie algebra, Lie triple system or Lie-Yamaguti algebra.

Let $\xi = (L, p, M)$ be a Lie-Yamaguti algebra bundle and $(\eta; \rho, D, \theta)$ be a ξ -module. Also, let $\tau = (f, g) \in Z^{(2,3)}(\xi; \eta)$ be a given (2, 3)-cocycle.

Definition 10. A vector bundle morphism $R: \eta \to \xi$ is said to be a generalized Reynolds operator if for each $m \in M$ the restriction $R_m: \eta_m \to \xi_m$ of R satisfies the following:

$$[R_m u, R_m v]_m = R_m \Big(\rho_m(R_m u)(v) - \rho_m(R_m v)(u) + f_m(R_m u, R_m v) \Big)$$

$$\{R_m u, R_m v, R_m w\}_m = R_m \Big(D_m(R_m u, R_m v) w + \theta_m(R_m v, R_m w) u$$
$$-\theta_m(R_m u, R_m w) v + g_m(R_m u, R_m v, R_m w) \Big)$$

for all $u, v, w \in \eta_m$.

Remark 3. In the above definition if we take η as the adjoint representation ξ (cf. Example 1) and $\tau = (-[\ ,\], -\{\ ,\ ,\ \})$ then, we obtain the definition of a Reynolds operator on ξ . as defined below.

Definition 11. A vector bundle morphism $R: \xi \to \xi$ is called a Reynolds operator if R restricted to each fiber, $R_m: \xi_m \to \xi_m$, $m \in M$ satisfies the following: for all $u, v, w \in \xi_m$

$$[R_m u, R_m v]_m = R_m \Big([R_m u, v]_m + [u, R_m v]_m - [R_m u, R_m v]_m \Big)$$

$$\{R_m u, R_m v, R_m w\}_m = R_m \Big(\{R_m u, R_m v, w\}_m + \{u, R_m v, R_m w\}_m + \{R_m u, v, R_m w\}_m - \{R_m u, R_m v, R_m w\}_m \Big).$$

Next, in absence of any twisting by a (2,3)-cocycle (that is, taking τ to be 0) in the definition of generalized Reynolds operator, we obtain the definition of an \mathcal{O} -operator on a Lie-Yamaguti algebra bundle ξ .

Definition 12. A vector bundle morphism $R: \eta \to \xi$ is said to be a \mathcal{O} -operator if for each $m \in M$ the restriction $R_m: \eta_m \to \xi_m$ of R satisfies the following: for all $u, v, w \in \eta_m$

$$[R_m u, R_m v]_m = R_m \Big(\rho_m(R_m u)(v) - \rho_m(R_m v)(u) \Big)$$

$$\{R_m u, R_m v, R_m w\}_m = R_m \Big(D_m (R_m u, R_m v) w + \theta_m (R_m v, R_m w) u - \theta_m (R_m u, R_m w) v \Big).$$

Remark 4. In the above definition if we take η as the adjoint representation ξ (cf. Example 1), then we obtain the definition of a Rota-Baxter operator on ξ . Thus, O-operators are the generalization of Rota-Baxter operators.

Next, we prove a characterization of a generalized Reynolds operator on a locally trivial Lie-Yamaguti algebra bundle. Let $\xi=(L,p,M)$ be a locally trivial Lie-Yamaguti algebra bundle and $(\eta;\rho,D,\theta)$ be a ξ -module. Let $\tau=(f,g)\in Z^{(2,3)}(\xi;\eta)$ be a given (2,3)-cocycle and $R:\eta\to\xi$ be a vector bundle morphism. Define

Graph
$$(R) = \{R_m u + u \in \xi_m \oplus \eta_m : u \in \eta_m, \forall m \in M\} \subset \bigcup_m (\xi_m \oplus \eta_m).$$

Then, it is easy to see that Graph (R) is a sub-bundle of $\xi \oplus \eta$, called the graph of R.

Proposition 2. A vector bundle morphism $R: \eta \to \xi$ is a generalized Reynolds operator if and only if its graph Graph $(R) = \{R_m u + u : u \in \eta_m, \forall m \in M\}$ is a Lie-Yamaguti algebra sub-bundle of the twisted semi-direct product Lie-Yamaguti algebra bundle $\xi \ltimes_{\tau} \eta$ as defined in Example 3.

Proof. Let $(Ru, u), (Rv, v), (Rw, w) \in Graph (R)$. Since $\xi \ltimes_{\tau} \eta$ is a Lie-Yamaguti algebra bundle then, for each $m \in M$, R_m satisfies

$$[R_m u + u, R_m v + v]_m = [R_m u, R_m v]_m + \rho_m (R_m u) v - \rho_m (R_m v) u + f_m (R_m u, R_m v)$$

$$\{R_m u + u, R_m v + v, R_m w + w\} = \{R_m u, R_m v, R_m w\}_m + D_m (R_m u, R_m v) w - \theta_m (R_m v, R_m w) u + q_m (R_m u, R_m v, R_m w).$$

Assuming that Graph (R) is a sub-algebra bundle of $\xi \ltimes_{\tau} \eta$, we have:

$$[R_m u, R_m v]_m = R\Big(\rho_m(R_m u)v - \rho_m(R_m v)u + f_m(R_m u, R_m v)\Big)$$

$$\{R_m u + u, R_m v + v, R_m w + w\} = R_m \Big(D_m (R_m u, R_m v) w - \theta_m (R_m v, R_m w) u + g_m (R_m u, R_m v, R_m w) \Big).$$

It follows that R is a generalized Reynolds operator. Similarly, if R is a generalized Reynolds operator, a reverse computation shows that the sub-bundle Graph (R) of $\xi \ltimes_{\tau} \eta$ is a Lie-Yamaguti algebra bundle.

Finally, we introduce Nijenhuis operator on a Lie-Yamaguti algebra bundle. In [9], I. Dorfman used the notion of a Nijenhuis operator to characterize an infinitesimal deformation of a Lie algebra which is trivial. In [21,22], the authors studied infinitesimal deformations and extensions of Lie-Yamaguti algebras and used Nijenhuis operators on Lie-Yamaguti algebras to characterize trivial infinitesimal deformations. We introduce Nijenhuis operators on Lie-Yamaguti algebra bundles and show that they give rise to generalized Reynolds operators.

Definition 13. Let $\xi = (L, p, M)$ be a Lie-Yamaguti algebra bundle. A vector bundle morphism $N : \xi \to \xi$ is called a Nijenhuis operator on ξ if for all $m \in M$, $N|_{\xi_m} := N_m$ satisfies:

$$[N_{m}u, N_{m}v]_{m} = N_{m} \Big([N_{m}u, v]_{m} + [u, N_{m}v]_{m} - N_{m}[u, v]_{m} \Big),$$

$$\{N_{m}u, N_{m}v, N_{m}w\}_{m} = N_{m} \Big(\{N_{m}u, N_{m}v, w\}_{m} + \{N_{m}u, v, N_{m}w\}_{m} + \{u, N_{m}v, N_{m}w\}_{m} \Big) - N_{m}^{2} \Big(\{N_{m}u, v, w\}_{m} + \{u, N_{m}v, w\}_{m} + \{u, v, N_{m}w\}_{m} \Big)$$

$$+ N_{m}^{3} \{u, v, w\}_{m}$$

for all $u, v, w \in \xi_m$.

Now, we will show that a Nijenhuis operator on Lie-Yamaguti algebra bundle gives rise to a generalized Reynolds operator on a Lie-Yamaguti algebra bundle.

Let $\xi = (L, p, M)$ be a Lie-Yamaguti algebra bundle. We denote its 2-field of brackets and 3-field of brackets by

$$m \mapsto [\ ,\]_m, \ m \mapsto \{\ ,\ ,\ \}_m, m \in M.$$

Let $N: \xi \to \xi$ be a given Nijenhuis operator. On ξ define a new 2-field of brackets and a 3-field of brackets

$$m \mapsto [\ ,\]_m^N, \ m \mapsto \{\ ,\ ,\ \}_m^N$$

as follows. For any $m \in M$

$$[u,v]_{m}^{N} := [N_{m}u,v]_{m} + [u,N_{m}v]_{m} - N_{m}[u,v]_{m},$$

$$\{u,v,w\}_{m}^{N} := \{N_{m}u,N_{m}y,w\}_{m} + \{N_{m}u,v,N_{m}w\}_{m} + \{u,N_{m}v,N_{m}w\}_{m} + N_{m}(\{N_{m}u,v,w\}_{m} + \{u,N_{m}v,w\}_{m} + \{u,v,N_{m}w\}_{m}) + N_{m}^{2}\{u,v,w\}_{m}.$$

$$(7)$$

for all $u, v, w \in \xi_m$. Then, a routine verification shows that the bundle $(\xi, [,]^N, \{,,\}^N)$ is a Lie-Yamaguti algebra bundle which we call a deformed Lie-Yamaguti algebra bundle and denote it by ξ^N .

Lemma 1. Let N be a Nijenhuis operator on a Lie-Yamaguti algebra bundle $\xi = (L, p, M)$. We consider ξ as a vector bundle and define the vector bundle maps $\rho^N : \xi^N \to \operatorname{End}(\xi)$, and $D^N, \theta^N : \xi \otimes \xi \to \operatorname{End}(\xi)$ as follows. For each $m \in M$

$$\rho_m^N(u)a := [N_m u, a], \quad D_m^N(u, v)a := \{N_m u, N_m v, a\}, \tag{8}$$

$$\theta_m^N(u,v)a := \{a, N_m u, N_m v\} \tag{9}$$

for all $u, v \in \xi_m^N$ and $a \in \xi_m$. Then, the vector bundle ξ is a representation of the deformed Lie-Yamaguti algebra bundle ξ^N with the representation maps being (ρ^N, D^N, θ^N) .

Proof. We need to show that the vector bundle morphisms ρ^N , D^N , θ^N restricted to each fibres satisfy the relations (RLYB1)-(RLYB6). To check that the relation (RLYB1) and (RLYB2) holds, note that

$$\begin{split} D_m^N(u,v)a &- \theta_m^N(v,u)a + \theta_m^N(u,v)a \\ &+ \rho_m^N([u,v]_m^N)a - \rho_m^N(u)\rho_m^N(v)a + \rho_m^N(v)\rho_m^N(u)a \\ &= \{N_mu,N_mv,a\}_m - \{a,N_mv,N_mu\}_m + \{a,N_mu,N_mv\}_m \\ &+ [[N_mu,N_mv]_m,a]_m - [N_mu,[N_mv,a]_m]_m \\ &+ [N_mv,[N_mu,a]_m]_m \\ &= 0. \\ D_m^N([u,v]_m^N,w)a + D_m^N([v,w]_m^N,u)a + D_m^N([w,u]_m^N,v)a \\ &= [N_mu,N_mv]_m,N_mw,a_m + \{[N_mv,N_mw]_m,N_mu,a\}_m \\ &+ \{[N_mw,N_mu]_m,N_mv,a\}_m \\ &= 0. \end{split}$$

Verification of the remaining four relations are similar, so we omit the details. Hence, $(\xi, \rho^N, D^N, \theta^N)$ is a representation of the deformed Lie-Yamaguti algebra bundle ξ^N .

Next we show that Nijenhuis operators on Lie-Yamaguti algebra bundle can also be viewed as Reynolds operators on the deformed Lie-Yamaguti algebra bundle.

Theorem 1. Let N be a Nijenhuis operator on a Lie-Yamaguti algebra bundle $\xi = (L, p, M)$. Define vector bundle maps $f^N : \xi^N \otimes \xi^N \to \xi$ and $g^N : \xi^N \otimes \xi^N \otimes \xi^N \to \xi$ as follows. For any $m \in M$

$$f_m^N(u,v) := -N_m[u,v] (10)$$

$$g_m^N(u, v, w) := -N\Big(\{N_m u, v, w\}_m + \{u, N_m v, w\}_m + \{u, v, N_m w\}_m - N_m \{u, v, w\}_m\Big)$$
(11)

for all $u, v \in \xi_m^N$ and $w \in \xi$. Then $(f^N, g^N) \in Z^{(2,3)}(\xi^N, \xi)$, that is, (f^N, g^N) is a (2,3)-cocycle of ξ^N with coefficients in $(\xi, \rho^N, D^N, \theta^N)$. Moreover, the identity morphism $\xi \to \xi^N$ is a generalized Reynolds operator on ξ^N with respect to the representation $(\xi, \rho^N, D^N, \theta^N)$ and with $\tau = (f^N, g^N)$.

Proof. To show that $(f^N, g^N) \in C^{(2,3)}(\xi^N; \xi)$ is a (2,3)-cocycle, we need to verify that $\delta(f^N, g^N) = 0 = \delta^*(f^N, g^N)$. Let $m \in M$, then for any $a, b, c, d, e \in \xi_m^N$ we observe that

$$\delta_{I}(f_{m}^{N})(a,b,c,d) = \rho_{m}^{N}(c)g_{m}^{N}(a,b,d) + \rho_{m}^{N}(d)g_{m}^{N}(a,b,c) + g_{m}^{N}(a,b,[c,d]_{m}^{N}) + D^{N}(a,b)f_{m}^{N}(c,d) - f_{m}^{N}(\{a,b,c\}_{m}^{N},d) - f_{m}^{N}(c,\{a,b,d\}_{m}^{N}) = 0.$$

$$\delta_{I}I(g_{m}^{N})(a,b,c,d,e) = -\theta_{m}^{N}(d,e)g_{m}^{N}(a,b,c) + \theta_{m}^{N}(c,e)g_{m}^{N}(a,b,d) + D_{m}^{N}(a,b)g_{m}^{N}(c,d,e)$$

$$-D_m^N(c,d)g_m^N(a,b,e) - g_m^N(\{a,b,c\}_m^N,d,e) - g_m^N(c,\{a,b,d\}_m^N,e) - g_m^N(c,d,\{a,b,e\}_m^N) + g_m^N(a,b,\{c,d,e\}_m^N) = 0.$$

By a similar computation one can check that

$$\delta_I^*(f_m^N) = 0 = \delta_{II}^*(g_m^N).$$

As a result, we see that (f_m^N, g_m^N) is a (2,3)-cocycle. Moreover, it is straightforward to verify that the identity vector bundle map $Id: \xi \to \xi^N$ is a generalized Reynolds operator (cf. Definition 10) with respect to the representation $(\xi, \rho^N, D^N, \theta^N)$, and with $\tau = (f^N, g^N)$.

4 Extensions of Lie-Yamaguti algebra bundles

C. Chevally and S. Eilenberg [3] showed that extensions of algebras can be interpreted in terms of certain Hochschild cohomology group. Later, D. K. Harrison [12] showed that certain Harrison cohomology group of commutative algebras can be related to extensions of commutative algebras. In the same spirit, Yamaguti showed that that (2,3)-cohomology of a Lie-Yamaguti algebra with coefficients in a representation may be interpreted in terms of isomorphism classes of extensions of the Lie-Yamaguti algebra. The aim of this section is to introduce the notion of extension of Lie-Yamaguti algebra bundles and relate isomorphism classes of extensions in terms of (2,3)-cohomology of such bundle as introduced in the previous section. We begin with some definitions.

Definition 14. Let $\xi = (L, p, M)$ be a Lie-Yamaguti algebra bundle. An ideal of ξ is a sub-bundle η of the vector bundle ξ such that for all $m \in M$, $v \in \eta_m$, $a, b \in \xi_m$

$$[v, a]_m \in \eta_m \text{ and } \{v, a, b\}_m \in \eta_m, \{a, b, v\}_m \in \eta_m.$$

An ideal η of ξ is said to be **abelian** if for all $m \in M$, $u, v \in \eta_m$ and $a \in \xi_m$,

$$[u,a]_m = 0, \quad \{u,v,a\}_m = \{u,a,v\}_m = \{a,u,v\}_m = 0.$$

Definition 15. Let $\tilde{\xi} = (\tilde{L}, \tilde{p}, M)$ and $\eta = (E, q, M)$ be Lie-Yamaguti algebra bundles. An extension of Lie-Yamaguti algebra bundle over M is a short exact sequence in the category of Lie-Yamaguti algebra bundles over M

$$0 \longrightarrow \eta \stackrel{i}{\longrightarrow} \tilde{\xi} \stackrel{j}{\longrightarrow} \xi \longrightarrow 0.$$

We call $\tilde{\xi}$ an extension of ξ by η , and denote it by $Ext_{\tilde{\xi}}$. An extension as above is said to be abelian if η is an abelian ideal of $\tilde{\xi}$.

Throughout in this section, we will consider only abelian extensions.

A **section** of the vector bundle map $j: \tilde{\xi} \to \xi$ is a vector bundle map $\sigma: \xi \to \tilde{\xi}$ such that $j \circ \sigma = id_{\xi}$. Note that if σ is a splitting as above then $\tilde{\xi}$ may be viewed as as a Whitney sum of ξ and η . Here, we identify η with its image $i(\eta)$.

In other words, $\tilde{\xi} = \xi \oplus \eta$. Since we are concerned with smooth vector bundles over smooth manifolds (paracompact), any short exact sequence splits.

We now introduce the notion of equivalence of two extensions.

Definition 16. Two extensions of ξ by η , say $Ext_{\tilde{\xi}}: 0 \to \eta \xrightarrow{\hat{i}} \tilde{\xi} \xrightarrow{\hat{j}} \xi \to 0$ and $Ext_{\hat{\xi}}: 0 \to \eta \xrightarrow{\hat{i}} \hat{\xi} \xrightarrow{\hat{j}} \xi \to 0$, are said to be equivalent, if there exists a Lie-Yamaguti algebra bundle isomorphism $f: \tilde{\xi} \to \hat{\xi}$ such that the following diagram is commutative.

$$0 \longrightarrow \eta \xrightarrow{i} \tilde{\xi} \xrightarrow{j} \xi \longrightarrow 0$$

$$\downarrow id \qquad \downarrow id \qquad \downarrow id$$

$$0 \longrightarrow \eta \xrightarrow{\hat{i}} \hat{\xi} \xrightarrow{\hat{j}} \xi \longrightarrow 0$$

Note that, any extension $\tilde{\xi}$ of ξ by η , is isomorphic to $\xi \oplus \eta$ as vector bundles.

Next, we show that any given extension $Ext_{\tilde{\xi}}:0\to\eta\stackrel{i}{\to}\tilde{\xi}\stackrel{j}{\to}\xi\to0$ induces a representation of the Lie-Yamaguti algebra bundle on the vector bundle η . It turns out that equivalent extensions induce the same representation on η .

Let $Ext_{\tilde{\xi}}: 0 \to \eta \xrightarrow{i} \tilde{\xi} \xrightarrow{j} \xi \to 0$ be a given extension of ξ by η , that is,

$$0 \longrightarrow \eta \stackrel{i}{\longrightarrow} \tilde{\xi} \stackrel{j}{\longrightarrow} \xi \longrightarrow 0$$

and $\sigma: \xi \to \tilde{\xi}$ be a section of $j: \tilde{\xi} \to \xi$. Let us denote the associated 2-field and 3-field of brackets of the Lie-Yamaguti algebra bundle $\tilde{\xi}$ by

$$m \to [\ ,\]_m^{\sim} \text{ and } m \to \{\ ,\ ,\ \}_m^{\sim},\ m \in M,$$

respectively.

Define vector bundle morphisms $\rho: \xi \to \operatorname{End}(\eta)$ and $D, \theta: \xi \otimes \xi \to \operatorname{End}(\eta)$ fibre-wise as follows. Let $m \in M$. For any $a, b \in \xi_m$ and $v \in \eta_m$

$$\rho_m(a)(v) := [\sigma_m(a), v]_m^{\sim} \tag{12}$$

$$D_m(a,b)(v) := \{\sigma_m(a), \sigma_m(b), v\}_m^{\sim}$$
(13)

$$\theta_m(a,b)(v) := \{v, \sigma_m(a), \sigma_m(b)\}_m^{\sim}. \tag{14}$$

Proposition 3. The above data yield a representation $(\eta; \rho, D, \theta)$ of ξ . Furthermore,

1. The definition of ρ , D, and θ does not depend on the choice of the section σ , that is, given any two sections of j, say σ^1 , and σ^2 , we have

$$\begin{split} \sigma_m^1(a),v]^{\sim} &= [\sigma_m^2(a),v]^{\sim} \\ \{\sigma_m^1(a),\sigma_m^1(b),v\}^{\sim} &= \{\sigma_m^2(a),\sigma_m^2(b),v\}^{\sim} \\ \{v,\sigma_m^1(a),\sigma^1(b)\}^{\sim} &= \{v,\sigma_m^2(a),\sigma_m^2(b)\}^{\sim}. \end{split}$$

2. Equivalent extensions induce the same representation on η , that is, given any two equivalent extensions, say $Ext_{\tilde{\xi}}$ and $Ext_{\hat{\xi}}$ with induced representations being $(\eta; \rho, D, \theta)$ and $(\eta; \rho', D', \theta')$ respectively. Then $\rho = \rho', D = D', \theta = \theta'$.

Proof. Let $m \in M$, $a, b, c, d \in \xi_m$ and $v \in \eta_m$. Let $\sigma : \xi \to \tilde{\xi}$ be a given section of $j : \tilde{\xi} \to \xi$. Then from (LY3) of $\tilde{\xi}_m$ we get

$$\sum_{\circlearrowleft(\sigma_m(a),\sigma_m(b),v)} [[\sigma_m(a),\sigma_m(b)]^\sim,v]^\sim + \sum_{\circlearrowleft(\sigma_m(a),\sigma_m(b),v)} \{\sigma_m(a),\sigma_m(b),v\}^\sim = 0$$

which reduces to (RLYB1):

$$D_m(a,b) + \theta_m(a,b) - \theta_m(b,a) = [\rho_m(a), \rho_m(b)]_m - \rho_m([a,b]_m).$$

By (LY5) of $\tilde{\xi}$ we get the following equality

$$\begin{aligned}
&\{\sigma_m(a), v, [\sigma_m(b), \sigma_m(c)]_m^{\sim} \\
&= [\{\sigma_m(a), v, \sigma_m(b)\}_m^{\sim}, \sigma_m(c)]_m^{\sim} + [\sigma_m(b), \{\sigma_m(a), v, \sigma_m(c)\}_m^{\sim}]_m^{\sim}
\end{aligned}$$

which reduces to (RLYB2):

$$\theta_m(a, [b, c]_m) = \rho_m(b)\theta_m(a, c) - \rho_m(c)\theta_m(a, b).$$

By (LY4) of $\tilde{\xi}_m$ we get

$$\sum_{\substack{\circlearrowleft(\sigma_m(a),\sigma_m(b),v)}} \{ [\sigma_m(a),\sigma_m(b)]_m^\sim, v, \sigma_m(c) \}_m^\sim = 0$$

which reduces to (RLYB3):

$$\theta_m([a,b]_m,c) = \theta_m(a,c)\rho_m(b) - \theta_m(b,c)\rho_m(a).$$

By (LY6) of $\tilde{\xi}_m$ we get

$$\begin{aligned}
\{v, \sigma_{m}(a), \{\sigma_{m}(b), \sigma_{m}(c), \sigma_{m}(d)\}_{m}^{\sim}\}_{m}^{\sim} \\
&= \{\{v, \sigma_{m}(a), \sigma_{m}(b)\}_{m}^{\sim}, \sigma_{m}(c), \sigma_{m}(d)\}_{m}^{\sim} \\
&+ \{\sigma_{m}(b), \{v, \sigma_{m}(a), \sigma_{m}(c)_m^{\sim}, \sigma_{m}(d)\}_{m}^{\sim} \\
&+ \{\sigma_{m}(b), \sigma_{m}(c), \{v, \sigma_{m}(a), \sigma_{m}(d)\}_{m}^{\sim}\}_{m}^{\sim}
\end{aligned}$$

which reduces to (RLYB4):

$$\theta_m(a, \{b, c, d\}_m) = \theta_m(c, d)\theta_m(a, b) - \theta_m(b, d)\theta_m(a, c) + D_m(b, c)\theta_m(a, d).$$

By (LY5) of $\tilde{\xi}_m$ we get

$$\begin{aligned}
&\{\sigma_m(a), \sigma_m(b), [\sigma_m(c), v]_m^{\sim}\}_m^{\sim} \\
&= [\{\sigma_m(a), \sigma_m(b), \sigma_m(c)\}_m^{\sim}, v]_m^{\sim} + [\sigma_m(c), \{\sigma_m(a), \sigma_m(b), v\}_m^{\sim}]_m^{\sim}
\end{aligned}$$

which reduces to (RLYB5):

$$D_m(a,b)\rho_m(c) = \rho_m(c)D_m(a,b) + \rho_m(\{a,b,c\}_m).$$

By (LY6) of $\tilde{\xi}_m$ we get

$$\begin{aligned}
\{\sigma_{m}(a), \sigma_{m}(b), \{v, \sigma_{m}(c), \sigma_{m}(d)\}_{m}^{\sim}\}_{m}^{\sim} \\
&= \{\{\sigma_{m}(a), \sigma_{m}(b), v\}_{m}^{\sim}, \sigma_{m}(c), \sigma_{m}(d)\}_{m}^{\sim} \\
&+ \{v, \{\sigma_{m}(a), \sigma_{m}(b), \sigma_{m}(c)\}_{m}^{\sim}, \sigma_{m}(d)\}_{m}^{\sim} \\
&+ \{v, \sigma_{m}(c), \{\sigma_{m}(a), \sigma_{m}(b), \sigma_{m}(d)\}_{m}^{\sim}\}_{m}^{\sim}
\end{aligned}$$

which reduces to (RLYB6):

$$D_m(a,b)\theta_m(c,d) = \theta_m(c,d)D_m(a,b) + \theta_m(\{a,b,c\}_m,d) + \theta_m(c,\{a,b,d\}_m).$$

Therefore, $(\eta; \rho, D, \theta)$ is a representation of ξ . Hence any extension of ξ by η gives a representation of ξ on η .

Next we show that the definition of θ is independent of the choice of the section. The proofs that the definitions of ρ and D do not depend on the choice of the section σ are similar, hence, we omit the details.

Let $\sigma, \ \sigma': \xi \to \tilde{\xi}$ be two sections of $j: \tilde{\xi} \to \xi$. Let $m \in M$. Then, for any $a \in \xi_m$

$$j(\sigma_m(a) - \sigma'_m(a)) = 0.$$

Therefore, $\sigma_m(a) - \sigma'_m(a) \in \text{Ker}(j) = \eta_m$, so that $\sigma_m(a) = \sigma'_m(a) + v_a$ for some $v_a \in \eta_m$. Since we are considering abelian extension, for any $v \in \eta_m$, $a, b \in \xi_m$ we have

$$\{v, \sigma_m(a), \sigma_m(b)\}_m^{\sim} = \{v, \sigma'_m(a) + v_a, \sigma'_m(b) + v_b\}_m^{\sim}$$

$$= \{v, \sigma'_m(a), \sigma'_m(b) + v_b\}_m^{\sim} + \{v, v_a, \sigma'_m(b) + v_b\}_m^{\sim}$$

$$= \{v, \sigma'_m(a), \sigma'_m(b)\}_m^{\sim} + \{v, \sigma'_m(a), v_b\}_m^{\sim}$$

$$= \{v, \sigma'_m(a), \sigma'_m(b)\}_m^{\sim} .$$

Finally, we show that two equivalent extensions of ξ by η induce the same representation. Suppose that $Ext_{\tilde{\xi}}$ and $Ext_{\hat{\xi}}$ are two equivalent extensions of ξ . Let us denote the associated 2-field and 3-field of brackets of the Lie-Yamaguti algebra bundle $\hat{\xi}$ by

$$m \to [\ ,\]^{\wedge}_m \ \ {\rm and} \ \ m \to \{\ ,\ ,\ \}^{\wedge}_m, \ m \in M,$$

respectively. Let $f: \tilde{\xi} \to \hat{\xi}$ be a Lie-Yamaguti algebra isomorphism satisfying $f \circ i = \hat{i}$ and $\hat{j} \circ f = j$. Thus, the following diagram is commutative.

$$0 \longrightarrow \eta \xrightarrow{i} \tilde{\xi} \xrightarrow{j} \xi \longrightarrow 0$$

$$\downarrow id \qquad \qquad \downarrow id \qquad \qquad \downarrow id$$

$$0 \longrightarrow \eta \xrightarrow{\hat{i}} \hat{\xi} \xrightarrow{\hat{j}} \xi \longrightarrow 0$$

Let $\sigma: \xi \to \tilde{\xi}$ and $\sigma': \xi \to \hat{\xi}$ be sections of j and \hat{j} respectively. Then, for any $a \in \xi_m$, $m \in M$ we have

$$\hat{j} \circ f(\sigma_m(a)) = j \circ (\sigma_m(a)) = a = \hat{j} \circ (\sigma'_m(a))$$
$$\Rightarrow \hat{j}(f(\sigma_m(a)) - \sigma'_m(a)) = 0.$$

This implies $f(\sigma_m(a)) - \sigma'_m(a) \in \text{Ker}(\hat{j}_m) = \eta_m$, that is, $f(\sigma_m(a)) = \sigma'_m(a) + v_a$ for some $v_a \in \eta_m$. Thus, we have for any $a, b \in \xi_m$ and $v \in \eta_m$

$$f(\{v, \sigma_m(a), \sigma_m(b)\}_m^{\sim}) = \{f(v), f(\sigma_m(a)), f(\sigma_m(b))\}_m^{\wedge} = \{v, \sigma'_m(a), \sigma'_m(b)\}_m^{\wedge}.$$

Note that f(v) = v follows from the commutativity of first box in the diagram. Therefore, equivalent extensions induce the same θ . Similarly one can show that equivalent extensions induce the same D and ρ .

As of now, we have seen that any extension $Ext_{\tilde{\epsilon}}$

$$0 \longrightarrow \eta \xrightarrow{i} \tilde{\xi} \xrightarrow{j} \xi \longrightarrow 0$$

of ξ by η , induces a representation $(\eta; \rho, D, \theta)$ of ξ , where the vector bundle maps ρ, D , and θ are defined by (12)- (14) in terms of a section $\sigma : \xi \to \tilde{\xi}$ of $j : \tilde{\xi} \to \xi$. Therefore, we have a cochain complex of the Lie-Yamaguti algebra bundle ξ with coefficients in the induced representation $(\eta; \rho, D, \theta)$ of ξ as discussed in Section 2.

Our next goal is to attach a (2,3)-cocycle of this cochain complex to $Ext_{\tilde{\xi}}$. Fix a section $\sigma: \xi \to \tilde{\xi}$ of $j: \tilde{\xi} \to \xi$. Define two maps; $f: \xi \otimes \xi \to \eta$ and $g: \xi \otimes \xi \otimes \xi \to \eta$ in the following way. Let $m \in M$. Denote by f_m and g_m the resulting bilinear and trilinear maps obtained by restricting f and g to the fibres $(\xi \otimes \xi)_m$ and $(\xi \otimes \xi \otimes \xi)_m$ respectively. For all $a_1, a_2, a_3 \in \xi_m$, define

$$f_m(a_1, a_2) := [\sigma_m(a_1), \sigma_m(a_2)]_m^{\sim} - \sigma_m([a_1, a_2]_m)$$
(15)

$$g_m(a_1, a_2, a_3) := \{\sigma_m(a_1), \sigma_m(a_2), \sigma_m(a_3)\}_m^{\sim} - \sigma_m(\{a_1, a_2, a_3\}_m)$$
(16)

Note that $(f,g) \in C^{(2,3)}(\xi;\eta)$.

Proposition 4. For any given abelian extension $Ext_{\tilde{\xi}}$ of ξ by η , the cochain $(f,g) \in C^{(2,3)}(\xi;\eta)$ as defined above is a (2,3)-cocycle.

Proof. To show that (f,g) is a (2,3)-cocycle, we need to show

$$\delta(f,g)=0 \ \ \text{and} \ \ \delta^*(f,g)=0,$$

that is, $\delta_I f = 0$, $\delta_{II} g = 0$ and $\delta_I^* f = 0$, $\delta_{II}^* g = 0$. Recall that the representation induced by the given extension are given by the vector bundle morphisms ρ, D , and θ , where for $a, b \in \xi_m$ and $v \in \eta_m$, $m \in M$,

$$\rho_m(a)(v) = [\sigma_m(a), v]_m^{\sim}$$

$$D_m(a,b)(v) = \{\sigma_m(a), \sigma_m(b), v\}_m^{\sim}$$

$$\theta_m(a,b)(v) = \{v, \sigma_m(a), \sigma_m(b)\}_m^{\sim}$$

Let $a_i \in \xi_m$, $1 \le i \le 5$. By the definitions of δ and δ^* we obtain the following equality:

$$\begin{split} &(\delta_I)_m f_m(a_1, a_2, a_3, a_4) \\ &= -\rho_m(a_3) g_m(a_1, a_2, a_4) + \rho_m(a_4) g_m(a_1, a_2, a_3) + g_m(a_1, a_2, [a_3, a_4]_m) \\ &\quad + D_m(a_1, a_2) f_m(a_3, a_4) - f_m(\{a_1, a_2, a_3\}_m, a_4) - f(a_3, \{a_1, a_2, a_4\}_m) \\ &= 0, \end{split}$$

where we have used the definition of representation as given above and (LY5). Similarly, we obtain using (LY6)

$$\begin{split} (\delta_{II})_{m}g_{m}(a_{1},a_{2},a_{3},a_{4},a_{5}) \\ &= -\theta_{m}(a_{4},a_{5})g_{m}(a_{1},a_{2},a_{3}) + \theta_{m}(a_{3},a_{5})g_{m}(a_{1},a_{2},a_{4}) \\ &+ D_{m}(a_{1},a_{2})g_{m}(a_{3},a_{4},a_{5}) - D_{m}(a_{3},a_{4})g_{m}(a_{1},a_{2},a_{5}) \\ &- g_{m}(\{a_{1},a_{2},a_{3}\}_{m},a_{4},a_{5}) - g_{m}(a_{3},\{a_{1},a_{2},a_{4}\}_{m},a_{5}) \\ &- g_{m}(a_{3},a_{4},\{a_{1},a_{2},a_{5}\}_{m}) + g_{m}(a_{1},a_{2},\{a_{3},a_{4},a_{5}\}_{m}) \\ &= 0. \end{split}$$

Moreover, from the above definition of representation, (LY3), and (LY4) we get

$$(\delta_I^*)_m f_m(a_1, a_2, a_3) = -\sum_{\substack{\circlearrowleft (a_1, a_2, a_3)}} \rho_m(a_1) f_m(a_2, a_3) + \sum_{\substack{\circlearrowleft (a_1, a_2, a_3)}} f_m([a_1, a_2]_m, a_3)$$

$$+ \sum_{\substack{\circlearrowleft (a_1, a_2, a_3)}} g_m(a_1, a_2, a_3)$$

$$= 0.$$

$$\begin{split} (\delta_{II}^*)_m g_m(a_1, a_2, a_3, a_4) &= \theta_m(a_1, a_4) f_m(a_2, a_3) + \theta_m(a_2, a_4) f_m(a_3, a_4) \\ &+ \theta_m(a_3, a_4) f_m(a_1, a_2) + g_m([a_1, a_2]_m, a_3, a_4) \\ &+ g_m([a_2, a_3]_m, a_1, a_4) + g_m([a_3, a_1]_m, a_2, a_4) \\ &= 0. \end{split}$$

Thus, $(f,g) \in C^{(2,3)}(\xi;\eta)$ is a (2,3)-cocycle.

By a routine calculation we obtain the following result.

Corollary 1. If $\sigma, \sigma' : \xi \to \tilde{\xi}$ are any two chosen sections of $j : \tilde{\xi} \to \xi$ and (f,g), (f',g') are the corresponding cocycles as obtained in Proposition 4, then (f,g) and (f',g') are cohomologous. Hence, the extension $Ext_{\tilde{\xi}}$ of ξ by η determines uniquely an element of $H^{(2,3)}(\xi;\eta)$.

On the other hand, given a Lie-Yamaguti algebra bundle ξ equipped with a representation $(\eta; \rho, D, \theta)$, any (2,3)-cocycle in $Z^{(2,3)}(\xi; \eta)$ determines an abelian extension of ξ by η which is unique up to equivalence.

Let $\xi = (L, p, M)$ be a given Lie-Yamaguti algebra bundle and $(\eta; \rho, D, \theta)$ be a representation of ξ . Also, let $(f, g) \in Z^{(2,3)}(\xi; \eta)$. Then, we have the following result.

Lemma 2. The vector bundle $\tilde{\xi} = \xi \oplus \eta$ becomes a Lie-Yamaguti algebra bundle, where the associated 2-field and 3-field

$$m \mapsto [\ ,\]_m^{\sim}, \quad m \mapsto \{\ ,\ ,\ \}_m^{\sim}, \quad m \in M$$

are given by

$$[a_1 + w_1, a_2 + w_2]_m^{\sim} := [a_1, a_2]_m + f_m(a_1, a_2) + \rho_m(a_1)(w_2) - \rho_m(a_2)(w_1)$$

$$\begin{aligned}
\{a_1 + w_1, a_2 + w_2, a_3 + w_3\}_m^{\sim} \\
&:= \{a_1, a_2, a_3\}_m + g_m(a_1, a_2, a_3) + D_m(a_1, a_2)(w_3) \\
&- \theta_m(a_1, a_3)(w_2) + \theta_m(a_2, a_3)(w_1)
\end{aligned}$$

where $a_1, a_2, a_3 \in \xi_m$ and $w_1, w_2, w_3 \in \eta_m$. It is convenient to denote this Lie-Yamaguti algebra bundle by $\xi \oplus_{(f,g)} \eta$ to emphasize that it is induced by the given cocycle.

Proof. Clearly the assignments

$$m \mapsto [\ ,\]_m^{\sim}, \ m \mapsto \{\ ,\ ,\ \}_m^{\sim}, \ m \in M$$

as defined in the statement are smooth. So, it is enough to show that for any $m \in M$, $\tilde{\xi}_m$ is a Lie-Yamaguti algebra. Let $m \in M$. It is easy to see that (LY1) and (LY2) holds for $[\ ,\]_m^{\sim}$ and $\{\ ,\ ,\ \}_m^{\sim}$ defined above. To verify (LY6) proceed as follows.

$$\begin{aligned} \left\{a_1+w_1,a_2+w_2,\left\{b_1+v_1,b_2+v_2,b_3+v_3\right\}_m^{\sim}\right\}_m^{\sim} \\ &=\left\{a_1+w_1,\ a_2+w_2,\ \left\{b_1,b_2,b_3\right\}_m+g_m(b_1,b_2,b_3)\right. \\ &+D_m(b_1,b_2)(v_3)-\theta_m(b_1,b_3)(v_2)+\theta_m(b_2,b_3)(v_1)\right\}_m^{\sim} \\ &=\left\{a_1,a_2,\left\{b_1,b_2,b_3\right\}_m\right\}_m+g_m(a_1,a_2,\left\{b_1,b_2,b_3\right\})\right. \\ &+D_m(a_1,a_2)g_m(b_1,b_2,b_3)+D_m(a_1,a_2)D_m(b_1,b_2)(v_3) \\ &-D_m(a_1,a_2)\theta_m(b_1,b_3)(v_2)+D_m(a_1,a_2)\theta_m(b_2,b_3)(v_1) \\ &-\theta_m(a_1,\left\{b_1,b_2,b_3\right\}_m)(w_2)+\theta_m(a_2,\left\{b_1,b_2,b_3\right\}_m)(w_1) \end{aligned}$$

$$\begin{aligned}
&\left\{\{a_1 + w_1, a_2 + w_2, b_1 + v_1\}_m^{\sim}, b_2 + v_2, b_3 + v_3\right\}_m^{\sim} \\
&= \left\{\{a_1, a_2, b_1\}_m + g_m(a_1, a_2, b_1) + D_m(a_1, a_2)(v_1) \right. \\
&\left. - \theta_m(a_1, b_1)(w_2) + \theta_m(a_2, b_1)(w_1), \ b_2 + v_2, \ b_3 + v_3\right\}_m^{\sim} \\
&= \left\{\{a_1, a_2, b_1\}_m, b_2, b_3\right\}_m + g_m(\{a_1, a_2, b_1\}_m, b_2, b_3)
\end{aligned}$$

+
$$D_m(\{a_1, a_2, b_1\}_m, b_2)(v_3) - \theta_m(\{a_1, a_2, b_1\}_m, b_3)(v_2)$$

+ $\theta_m(b_2, b_3)g_m(a_1, a_2, b_1) + \theta_m(b_2, b_3)D_m(a_1, a_2)(v_1)$
- $\theta_m(b_2, b_3)\theta_m(a_1, b_1)(w_2) + \theta_m(b_2, b_3)\theta_m(a_2, b_1)(w_1)$

$$\begin{split} \left\{b_1+v_1, \{a_1+w_1, a_2+w_2, b_2+v_2\}_m^\sim, b_3+v_3\}_m^\sim \\ &= \left\{b_1+v_1, \ \{a_1, a_2, b_2\}_m + g_m(a_1, a_2, b_2) + D_m(a_1, a_2)(v_2) \right. \\ &- \theta_m(a_1, b_2)(w_2) + \theta_m(a_2, b_2)(w_1), b_3+v_3\}_m^\sim \\ &= \left\{b_1, \{a_1, a_2, b_2\}_m, b_3\}_m + g_m(b_1, \{a_1, a_2, b_2\}_m, b_3) \right. \\ &+ D_m(b_1, \{a_1, a_2, b_2\}_m)(v_3) + \theta_m(\{a_1, a_2, b_2\}_m, b_3)(v_1) \\ &- \theta_m(b_1, b_3)g_m(a_1, a_2, b_2) - \theta_m(b_1, b_3)D_m(a_1, a_2)(v_2) \\ &+ \theta_m(b_1, b_3)\theta_m(a_1, b_2)(w_2) - \theta_m(b_1, b_3)\theta_m(a_2, b_2)(w_1) \end{split}$$

$$\begin{aligned} \left\{b_1+v_1,b_2+v_2,\left\{a_1+w_1,a_2+w_2,b_3+v_3\right\}_m^{\sim}\right\}_m^{\sim} \\ &=\left\{b_1+v_1,\ b_2+v_2,\ \left\{a_1,a_2,b_3\right\}_m+g_m(a_1,a_2,b_3)\right. \\ &+D_m(a_1,a_2)(v_3)-\theta_m(a_1,a_3)(w_2)+\theta_m(a_2,a_3)(w_1)\right\}_m^{\sim} \\ &=\left\{b_1,b_2,\left\{a_1,a_2,b_3\right\}_m\right\}_m+g_m(b_1,b_2,\left\{a_1,a_2,b_3\right\}_m) \\ &+D_m(b_1,b_2)g_m(a_1,a_2,b_3)+D_m(b_1,b_2)D_m(a_1,a_2)(v_3) \\ &-D_m(b_1,b_2)\theta_m(a_1,a_3)(w_2)+D_m(b_1,b_2)\theta_m(a_2,a_3)(w_1) \\ &-\theta_m(b_1,\left\{a_1,a_2,b_3\right\})(v_2)+\theta_m(b_2,\left\{a_1,a_2,b_3\right\})(v_1) \end{aligned}$$

Using (RLYB6), (RLYB4) and the definition of coboundary maps we can show

$$\begin{aligned} \left\{a_{1}+w_{1},a_{2}+w_{2},\left\{b_{1}+v_{1},b_{2}+v_{2},b_{3}+v_{3}\right\}_{m}^{\sim}\right\}_{m}^{\sim} \\ &=\left\{\left\{a_{1}+w_{1},a_{2}+w_{2},b_{1}+v_{1}\right\}_{m}^{\sim},b_{2}+v_{2},b_{3}+v_{3}\right\}_{m}^{\sim} \\ &+\left\{b_{1}+v_{1},\left\{a_{1}+w_{1},a_{2}+w_{2},b_{2}+v_{2}\right\}_{m}^{\sim},b_{3}+v_{3}\right\}_{m}^{\sim} \\ &+\left\{b_{1}+v_{1},b_{2}+v_{2},\left\{a_{1}+w_{1},a_{2}+w_{2},b_{3}+v_{3}\right\}_{m}^{\sim}\right\}_{m}^{\sim} \end{aligned}$$

giving us (LY6). Other relations, (LY3), (LY4), (LY5) can also be obtained in the same way. Thus making $\xi \oplus_{(f,g)} \eta$ a Lie-Yamaguti algebra bundle.

Observe that the Lie-Yamaguti algebra brackets of the fibres of $\xi \oplus_{(f,g)} \eta$ makes η an abelian ideal in $\xi \oplus_{(f,g)} \eta$ and we have the following extension of ξ by η :

$$0 \longrightarrow \eta \stackrel{i}{\longrightarrow} \xi \oplus_{(f,g)} \eta \stackrel{j}{\longrightarrow} \xi \longrightarrow 0$$

where i is the inclusion map and j is the projection map. Furthermore, if $(h, k) \in Z^{(2,3)}(\xi; \eta)$ is another cocycle. Then, we have the following result.

Lemma 3. Two extensions $0 \to \eta \to \xi \oplus_{(f,g)} \eta \to \xi \to 0$ and $0 \to \eta \to \xi \oplus_{(h,k)} \to \xi \to 0$ are equivalent iff $(f,g), (h,k) \in Z^{(2,3)}(\xi;\eta)$ are cohomologous.

Proof. Let the two extensions $0 \to \eta \xrightarrow{i} \xi \oplus_{(f,g)} \eta \xrightarrow{p} \xi \to 0$ and $0 \to \eta \xrightarrow{i} \xi \oplus_{(h,k)} \eta \xrightarrow{p} \xi \to 0$ be equivalent through a Lie-Yamaguti algebra isomorphism

$$\gamma: \xi \oplus_{(f,q)} \eta \to \xi \oplus_{(h,k)} \eta$$

Then for each $m \in M$ we have the following equivalence of abelian extension.

$$0 \longrightarrow \eta_m \longrightarrow \xi_m \oplus_{(f_m, g_m)} \eta_m \longrightarrow \xi_m \longrightarrow 0$$

$$\downarrow^{id} \qquad \qquad \downarrow^{id} \qquad \qquad \downarrow^{id}$$

$$0 \longrightarrow \eta_m \longrightarrow \xi_m \oplus_{(h_m, k_m)} \eta_m \longrightarrow \xi_m \longrightarrow 0$$

To show that (f, g) and (h, k) are cohomologous it is enough to show for each $m \in M$, (f_m, g_m) and (h_m, k_m) are cohomologous, that is,

$$(f_m, g_m) - (h_m, k_m) \in B^{(2,3)}(\xi_m; \eta_m)$$

We define a map $\lambda_m: \xi_m \to \eta_m$ by $\lambda_m(a) = \gamma_m(a) - a$ by which one can show

$$f_m - h_m = (\delta_I)_m(\lambda_m)$$
 and $g_m - k_m = (\delta_{II})_m(\lambda_m)$

Conversely, assume that for each $m \in M$, (f_m, g_m) and (h_m, k_m) are in the same cohomology class, that is, $(f_m, g_m) - (h_m, k_m) = (\delta)_m(\lambda_m)$. Then, $\gamma_m : \xi_m \oplus_{(f,g)} \eta_m \to \xi_m \oplus_{(h,k)} \eta_m$ defined by

$$\gamma_m(a+v) = a + \lambda_m(a) + v$$

gives the required isomorphism.

By summarizing the above observations we have the following theorem.

Theorem 2. To each equivalence class of abelian extensions of ξ by η there corresponds an element of $H^{(2,3)}(\xi;\eta)$. Suppose ξ is a given Lie-Yamaguti algebra bundle over M equipped with a representation $(\eta;\rho, D,\theta)$. To each cohomology class $[(f,g)] \in H^{(2,3)}(\xi;\eta)$, there is an extension of ξ by η

$$0 \longrightarrow \eta \stackrel{i}{\longrightarrow} \xi \oplus_{(f,g)} \eta \stackrel{j}{\longrightarrow} \xi \longrightarrow 0$$

which is unique up to equivalence of extensions.

Acknowledgments

The authors would like to thank the referee for careful reading.

References

- [1] G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math., **10** (1960), 731–742.
- [2] P. Cartier, On the structure of free Baxter algebras, Advances in Math., 9 (1972), 253–265.
- [3] C. Chevalley and S. Eilenber, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., **63** (1948), 85–124.
- [4] Taoufik Chtioui, Atef Hajjaji, Sami Mabrouk and Abdenacer Makhlouf, Cohomologies and deformations of O-operators on Lie triple systems, J. Math. Phys., **64** (2023).
- [5] A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem I. The Hopf algebra structure of graphs and the main theorem, Comm. Math. Phys., (1) **210** (2000), 249–273.
- [6] A. Douady and M. Lazard, Espace fibrés algebrès de Lie et en groupes, Invent. Math., 1 (1966), 133–151.
- [7] A. Das, Twisted Rota-Baxter operators and Reynolds operators on Lie algebras and NS-Lie algebras, J. Math. Phys., **62** (2021).
- [8] A. Das, Deformations of associative Rota-Baxter operators, J. Algebra, **560** (2020), 144–180.
- [9] I. Dorfman, Dirac Structures and Integrability of non-linear evolution equations, John Wiley Sons. Ltd., Chichester, 1993.
- [10] S. Goswami and G. Mukherjee, *Lie-Yamaguti Algebra Bundle*, https://arxiv.org/abs/2309.05508.
- [11] L. Guo and W. Keigher, Baxter algebras and shuffle products, Adv. Math., (1) **150** (2000), 117–149.
- [12] D. K. Harrison, Commutative Algebras and Cohomology, Trans. Amer. Math. Soc., **104** (1962), 191–204.
- [13] K. Fériet and S. I. Pai, Introduction to the Statistical Theory of Turbulence. I, J. Soc. Indust. Appl. Math., (1) 2 (1954), 1–9.
- [14] B. S. Kiranagi, Lie algebra bundles, Bull. Sci. Math., (2) 102 (1978), 57–62.
- [15] B. Kupershmidt, What a classical r-matrix really is?, Journal of Nonlinear Mathematical Physics, (4) 6 (1999), 448–488.
- [16] K. C. H. Mackenzie, General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, Cambridge, 2005.
- [17] S. K. Mishra and A. Naolekar, *O-operators* on hom-Lie algebras, J. Math. Phys., **61** (2020).

- [18] O. Reynolds, On the dynamical theory of incompressible viscous fluids and the determination of the criterion, Philos. Trans. Roy. Soc. A, **136** (1895), 123–164.
- [19] G. C. Rota, Baxter algebras and combinatorial identities, I, II, Bull. Amer. Math. Soc., **75** (1969), 330–334.
- [20] Y. Sheng and J. Zhao, Relative Rota-Baxter operators and symplectic structures on Lie-Yamaguti algebras, Communications in Algebra, **50** (2022).
- [21] Y. Sheng, J. Zhao, and Y. Zhau, Nijenhuis operators, product structures and complex structures on Lie-Yamaguti algebras, Journal of Algebra and Its Applications, **20** (2021).
- [22] T. Zhang and J. Li, Deformations and extensions of Lie-Yamaguti algebras, Linear and Multilinear Algebra, **63** (2015), 2212–2231.
- [23] K. Uchino, Quantum analogy of Poisson geometry, related dendriform algebras and Rota-Baxter operators, Lett. Math. Phys., **85** (2008), 91–109.
- [24] K. Yamaguti, On the Lie triple system and its generalization, J. Sci. Hiroshima Univ., 21 (1958), 155–160.