

On non-closure degree for finite groups

Aliyu Suleiman † *, Nor Muhainiah Mohd Ali ‡ , Aliyu Ibrahim Kiri §

† Department of Mathematics, Air Force Institute of Technology, Kaduna, Nigeria ‡ Department of Mathematical Sciences, Universiti Teknologi Malaysia, Johor, Malaysia § Department of Mathematical Sciences, Bayero University, Kano, Nigeria Emails: aliyusuleiman804@gmail.com, a.suleiman@afit.edu.ng, normuhainiah@utm.my, aikiri.mth@buk.edu.ng

Abstract. The non-closure degree for a finite group G has to do with obtaining a probability of selecting any pair of elements $x, y \in G$ such that $xy \notin H$, where H is normal in G. It is shown in the paper that, the probability lies in the interval $[0, \frac{|G|-1}{|G|})$, with the result as 0 if and only if H = G. Illustrations were done using both abelian and non-abelian groups relative to their normal subgroups.

Keywords: Finite group, Normal Subgroup, closure property of a group, Quotient Group. AMS Subject Classification 2020: 05C25, 20P05.

1 Introduction

A lot of researchers worked on probabilities defined for finite groups i.e (P(G)); the stage was set ready for such concept by the works of Miller [7] in 1944, Erdos et al. [5] in 1968 and Gustafson [6] in 1973 where they presented most of the first results in probability group theory. The notion was on the probability of two distinct elements of a group commuting, which was termed as commutativity degree of non-abelian groups. Since then there have been a lot of generalizations and forms of the commutativity degree of groups; just like the n-th commutativity degree of a group and relative n-th commutativity degree of a group by Erfanian et al. [4], n-th power commutativity degree [2] and the work of Abdul Hamid et al. [1] on the productivity degree of subgroups. Other types of probabilities include the cyclic degree of a finite group [8] which has to do with the probability of selecting two distinct elements $x, y \in G$ such that the subgroup $\langle x, y \rangle$ is cyclic, the nilpotency degree of a finite group [3] that has to do with selecting $x, y \in G$ such that the subgroup $\langle x, y \rangle$ is nilpotent.

Received: 03 March 2024/ Revised: 29 November 2024/ Accepted: 02 July 2025

DOI: 10.22124/JART.2025.26910.1639

^{*}Corresponding author

The non-closure degree entails selecting a pair of elements (x, y) from a finite group G, where $xy \notin H$ with H a normal subgroup of G. The selection can be made easier by considering elements of the quotient group of G by H(G/H). Quotient group consists of cosets, some cosets exhibits some features as can be seen in the definition of lone coset [9]. A lone coset is a set $X \in G/H$ such that $X \neq H$ and for all $x \in X$ the inverse $x^{-1} \in X$. It is also shown in [9] that a quotient group of even order consists of a lone coset.

In this paper, the upper and lower bounds for the non-closure degree of finite groups are given; the work showed that the probability of selecting two distinct elements $x,y \in G$ relative to its normal subgroup H such that $xy \notin H$ lies in the interval $[0,\frac{|G|-1}{|G|}]$. Illustrations were done using both abelian and non-abelian groups.

2 Results and discussion

The non-closure degree for a finite group G shows the probability of selecting any pair $x, y \in G$ with $xy \notin H$, where $H \triangleleft G$. It is denoted by $P_{xy\notin H}(G)$ as can be seen in the following definition.

Definition 1. Let H be a normal subgroup of a finite group G, then the non-closure degree of G is defined as $P_{xy\notin H}(G) = \frac{|\{(x,y) \in G \times G : xy \notin H\}|}{|G|^2}$.

Besides the lone coset we have cosets in G/H which are also useful in determining the non-closure degree for finite groups, as such we give a new definition below.

Definition 2. Related Pair of Cosets: The quotient group of G by H has a pair of cosets say A and B which are related pair if for every $x \in A$ the inverse x^{-1} belongs to set B.

Remark 1. Note that:

• We have a lone coset when

```
i. xH = x^{-1}H.
```

ii. xH = yH with x and y each a self inverse element.

• For related pair of cosets A and B, xH gives set A while $x^{-1}H$ gives the other set B.

The following examples show how lone cosets and related pair of cosets look like.

Example 1. Let $G = D_6$ with a normal subgroup $H = \{e, a^3\}$, we have the following lone cosets and related pair of cosets.

The lone cosets are: $bH = \{b, a^3b\} = a^3bH$, $abH = \{ab, a^4b\} = a^4bH$, and $a^2bH = \{a^2b, a^5b\} = a^5bH$. We have the related pair of cosets as: $aH = \{a, a^4\}$ and $a^5H = \{a^2, a^5\}$, $a^2H = \{a^2, a^5\}$ and $a^4H = \{a, a^4\}$.

Example 2. The group \mathbb{Z}_{15} with its subgroup $H = \{0, 5, 10\}$ has pairs of related cosets but no lone coset. $A = \{1, 6, 11\}$ and $D = \{4, 9, 14\}$, $B = \{2, 7, 12\}$ and $C = \{3, 8, 13\}$.

Example 3. Let $G = \mathbb{Z}_{16}$ and $H = \{0, 4, 8, 12\}$, then $G/H = \{H, A, B, C\}$, where $A = \{1, 5, 9, 13\}$, $B = \{2, 6, 10, 14\}$ and $C = \{3, 7, 11, 15\}$. Observe that B is a lone coset while A and C are related, B is obtained from 2H = 14H as well as 6H = 10H.

Depending on the order of H there could be a number of lone cosets in a quotient group of G by H. Below are some results on cosets in G/H.

Proposition 1. Let H be a normal subgroup of a finite group G, then each element of a coset in G/H generates the coset.

Proof. For a coset aH in G/H, $aH = \{ah : h \in H\} = \{ah_1, ah_2, ah_3, ., ., ., ah_n\}$, so $(ah_i)H = \{(ah_i)h : h \in H\} = \{ah_ih_1, ah_ih_2, ah_ih_3, ., ., ., ah_ih_n\} = \{ah_ih_j\} = \{ah_k\} = aH$ since $h_k = h_ih_j \in H$.

Lemma 1. Let H be a normal subgroup of a finite group G and P a lone coset in the quotient group G/H, then for all $x, y \in P$, xy belongs to H.

Proof. Let P be a lone coset in G/H, from Proposition 1 we can see that for every $x, y \in P$ we have xH = yH = P. And by the property of cosets if xH = yH then $x^{-1}y \in H$. Since P is a lone coset, if $x \in P$ the inverse $x^{-1} \in P$. Which means that $x^{-1}H = yH$. Hence, $xy \in H$. \square

Below are some corollaries to Lemma 1.

Corollary 1. Let A and B be related pair of cosets in the quotient group of a finite group G by its normal subgroup H, then for every $x, y \in A$, $xy \notin H$.

Proof. Let A and B be the related pair of cosets in the quotient group G/H for $H \triangleleft G$. Let $x,y \in A$, then from Proposition 1 above it is clear that xH = yH and $x^{-1}y \in H$. But A has B as a related coset making $x^{-1} \in B$, which indicates that $x^{-1}H \neq xH = yH$ and $x^{-1}H \neq yH$, leading to $(x^{-1})^{-1}y \notin H$ as such $xy \notin H$.

Note that for $x \in A$ and $y \in B$, xy results to an element of H.

Corollary 2. For two different lone cosets say P_1 and P_2 found in the quotient group of G by H, if $x \in P_1$ and $y \in P_2$, then $xy \notin H$.

Proof. Let $x \in P_1$ and $y \in P_2$, since $x^{-1} \in P_1$ it implies that $x^{-1}H \neq yH$ which makes $xy \notin H$.

Corollary 3. For two ordinary cosets say Q and R which are not pairwise related in the quotient group of a finite group G by its normal subgroup H, if $x \in Q$ and $y \in R$, then $xy \notin H$.

Proof. Since Q and R are distinct and not related, for $x \in Q$ and $y \in R$ we have $x^{-1}H \neq yH$ (as x^{-1} can not be in R) leading to $xy \notin H$.

Below are theorems and examples on the non-closure degree of G considering different forms of normal subgroups.

Theorem 1. For a finite group G and $H \triangleleft G$ with $|H| = \frac{|G|}{2}$, $P_{xy \notin H}(G) = 1/2$.

Proof. Since H satisfies the closure property and H is a normal subgroup of G, the set $P_1 = \{(x,y) \in H \times H : xy \in H\}$ is of order $|H \times H| = \frac{|G|^2}{4}$. Let L = G - H, then L in this case is a lone coset since $H \cup L = G$ and |L| = |H|.

Let $P_2 = \{(x, y) \in L \times L : xy \in H\}$, from Lemma 1 $x, y \in L$ implies $xy \in H$, then $|P_2| = \frac{|G|^2}{4}$. So, $P_{xy \notin H}(G) = \frac{|\{(x,y) \in G \times G : xy \notin H\}|}{|G|^2} = \frac{|G \times G| - (|P_1| + |P_2|)}{|G|^2} = \frac{|G|^2 - 2(\frac{|G|^2}{4})}{|G|^2} = 1/2.$

Theorem 1 above shows that the non-closure degree for a group of even order relative to its maximal normal subgroup is 0.5.

Example 4. Let $G = \mathbb{Z}_8$ and $H = \{0, 2, 4, 6\}, G/H = \{H, L\}$ with $L = \{1, 3, 5, 7\}$. The set $\{(x,y) \in G \times G : xy \notin H\}$ has the following elements; $\{(0,1),(0,3),(0,5),(0,7),(1,0),(3,0),$ (5,0), (7,0), (2,1), (2,3), (2,5), (2,7), (1,2), (3,2), (5,2), (7,2), (4,1), (4,3), (4,5), (4,7), (1,4), $(3,4),(5,4),(7,4),(6,1),(6,3),(6,5),(6,7),(1,6),(3,6),(5,6),(7,6)\}. \text{ So, } P_{xy \notin H}(G) = \frac{|\{(x,y) \in G \times G : xy \notin H\}|}{|G|^2} = \frac{32}{64} = 1/2.$

Example 5. For $G = D_6$ and $H = \{1, a, a^2\}$, we have $L = \{b, ab, a^2b\}$ as element of G/H. The set $\{(x,y) \in G \times G : xy \notin H\}$ contains the following elements; $\{(1,b),(1,ab),(1,a^2b),(b,1),(ab,1$ $(a^{2}b,1),(a,b),(a,ab),(a,a^{2}b),(b,a),(ab,a),(a^{2}b,a),(a^{2}b,a),(a^{2},ab),(a^{2},a^{2}b),(b,a^{2}),(ab,a^{2}),(a^{2}b,a^{2})\}.$ $P_{xy\notin H}(G)=\frac{|\{(x,y)\in G\times G: xy\notin H\}|}{|G|^{2}}=\frac{18}{36}=1/2.$

Theorem 2. Let H be the trivial subgroup of a finite group G, the non-closure degree for G is given by $P_{xy \notin H}(G) = \frac{|G| - 1}{|G|}$.

Proof. Excluding the self inverse elements, for every pair $(x,y) \in G \times G$: xy = e there exists $(y,x) \in G \times G$: yx = e. Let π be the number of self inverse elements in G and $P_1 = \{(x,y) \in G \times G : xy = e\}. \text{We can see that } |P_1| = \pi + 2(\frac{|G| - \pi}{2}) = |G|. \text{ Then we obtain } P_{xy \notin H}(G) = \frac{|\{(x,y) \in G \times G : xy \notin H\}|}{|G|^2} = \frac{|G \times G| - |P_1|}{|G|^2} = \frac{|G|^2 - |G|}{|G|^2} = \frac{|G| - 1}{|G|}.$

The next examples are illustrated using the trivial subgroup.

Example 6. Let $G = \mathbb{Z}_7$ and $H = \{0\}$, we then extract the elements of the set $\{(x,y) \in \mathbb{Z}_7 \times \mathbb{Z}_7 \}$ $\mathbb{Z}_7: xy \notin H$. Thus the elements are; $\{(0,1,),(0,2),(0,3),(0,4),(0,5),(0,6),(1,0),(1,1),(1,2),(1,$ (1,3), (1,4), (1,5), (2,0), (2,1), (2,2), (2,3), (2,4), (2,6), (3,0), (3,1), (3,2), (3,3), (3,5)(3,6), (4,0), (4 $(4,1), (4,2), (4,4), (4,5), (4,6), (5,0), (5,1), (5,3), (5,4), (5,5), (5,6), (6,0), (6,2), (6,3), (6,4), (6,5), (6,6)\}, \text{ therefore } P_{xy\notin H}(G) = \frac{|\{(x,y) \in G\times G : xy \notin H\}|}{|G|^2} = \frac{42}{49} = \frac{6}{7}.$ By using Theorem 2 we get $P_{xy\notin H}(G) = \frac{|G| - 1}{|G|} = \frac{7-1}{7} = \frac{6}{7}.$

Example 7. For a group $G = D_8 = \{1, a, a^2, a^3, b, ab, a^2b, a^3b\}$ and its normal subgroup H ={1}. The set $\{(x,y) \in G \times G : xy \notin H\} = \{(1,a), (1,a^2), (1,a^3), (1,b), (1,ab), (1,a^2b), (1,a^3b), (a,1), (a,b), (a,b$ $(a^2, 1), (a^3, 1), (b, 1), (ab, 1), (a^2b, 1), (a^3b, 1), (a, a), (a, a^2), (a, b), (a, ab), (a, a^2b), (a, a^3b), (a^2, a), (b, a), (a^3b), (a^3b)$ $(ab, a), (a^2b, a), (a^3b, a), (a^2, a^3), (a^2, b), (a^2, ab), (a^2, a^2b), (a^2, a^3b), (a^3, a^2), (b, a^2), (ab, a^2), (a^2b, a^2$ $(a^3b, a^2), (a^3, a^3), (a^3, b), (a^3, ab), (a^3, a^2b), (a^3, a^3b), (b, a^3), (ab, a^3), (a^2b, a^3), (a^3b, a^3), (b, ab), (b, a^2b), (a^3, a^3), (a^3, a^3$ $\begin{array}{l} (b,a^3b),(ab,b),(a^2b,b),(a^3b,b),(ab,a^2b),(ab,a^3b),(a^2b,ab),(a^3b,ab),(a^2b,a^3b),(a^3b,a^2b)\}. \text{ Thus,} \\ P_{xy\notin H}(G) = \frac{|\{(x,y) \in G\times G: xy \notin H\}|}{|G|^2} = \frac{56}{64} = \frac{7}{8}. \\ \text{In this case if } Z(D_8) \text{ is used as the normal subgroup we get same result.} \end{array}$

The following theorem takes care of the non-closure degree for a finite group G relative to a non-trivial subgroup H when G/H consists of lone cosets and related pairs of cosets.

Theorem 3. Let H be a non-trivial normal subgroup of a finite group G with the order of H as β and m the index of H in G, where ψ is the number of lone cosets and ω the number of pairs of related cosets. Then the non-closure degree of G is;

$$P_{xy \notin H}(G) = \frac{2\beta^2 \sum_{i=1}^{\psi+1} (m-i) + 8\beta^2 (\omega - 1) + 2\omega (2^{\beta} C_2 + \beta)}{|G|^2}.$$

Proof. Let m be the index of H in G, if m is even the quotient group G/H contains lone coset(s) and related pair of cosets. Let ψ be the number of lone cosets and ω the number of pairs of related cosets.

In the set $\{(x,y) \in G \times G : xy \notin H\}$ the pairs (x,y) could be by pairing

- i. x from H and y from the remaining m-1 cosets.
- ii. x from a lone coset and other m-2 cosets, which is done successively up to the last lone coset with $m-(\psi+1)$ cosets.
- iii. x from coset say A and other cosets not pairwise related to A.
- iv. x and y within an ordinary coset, i.e x and y coming from a single coset which is neither H nor a lone coset.

Let $P_1 = \{(x,y) \in H \times N : xy \notin H\}$, with N a coset different from H. For each $(x,y) \in H \times N$, there exists $(y,x) \in H \times N$ since $H \times N \subseteq G \times G$. Since the order of H is β , then $|P_1| = 2\beta^2(m-1)$.

If m is even there could be a number of lone cosets, with each coset also of order β , let $P_2 = \{(x,y) \in L \times M : xy \notin H\}$ with x from a lone coset and y from the remaining cosets which are m-2 in number as H is now excluded. So for the next lone coset will be with m-3 cosets continuously up to the last lone coset with $m-(\psi+1)$ cosets.

Let P_3 be the set containing (x, y) with x from H and all lone cosets while y from the remaining $m - (\psi + 1)$ cosets. So $|P_3| = 2\beta^2(m - i)$, with $i = 1, 2, 3, ..., (\psi + 1)$.

Let $P_4 = \{(x,y) \in A \times Q : xy \notin H\}$ with Q a coset not related to coset A as shown in corollary 3, for every (x,y) we equally have (y,x) satisfying same condition. From Definition 2 the coset A has a related pair say B while coset Q has a related pair say R. This means x from A can also be paired with y from R in $2\beta^2$ ways, observe that coset B follows just like coset A. The pairing is done successively up to the last pair. So for the total pairing for two ordinary cosets not related out of all the ω coset gives $|P_4| = 8\beta^2(\omega - 1)$.

Let $P_5 = \{(x,y) \in A \times A : xy \notin H\}$, in this case both x and y are from same coset, for a coset A the pairing is done in $2^{\beta}C_2$ ways since for each (x,y), (y,x) exists and for a pair of related cosets we get $4^{\beta}C_2$. Set P_5 also comprises of elements of the form (x,x) since $\forall x \notin H$, xx is also not in H, and for each pair of related cosets we have 2β of such pairs. So for all ω ,

 $|P_5| = 4\omega^{\beta} C_2 + 2\beta\omega = 2\omega(2^{\beta} C_2 + \beta).$

The result is obtained by adding $|P_3|$, $|P_4|$ and $|P_5|$, then applying Definition 1 to get

$$P_{xy \notin H}(G) = \frac{2\beta^2 \sum_{i=1}^{\psi+1} (m-i) + 8\beta^2 (\omega - 1) + 2\omega (2^{\beta} C_2 + \beta)}{|G|^2}.$$

Below are examples showing the non-closure degree of a finite group G using Theorem 3.

Example 8. Let $G = \mathbb{Z}_{12}$ with its normal subgroup $H = \{0, 4, 8\}$, the other cosets in G/H are $Q = \{1, 5, 9\}$, $L = \{2, 6, 10\}$ and $R = \{3, 7, 11\}$. Observe that L is a lone coset while Q and R are related cosets. Let $P_1 = \{(x, y) \in H \times N : xy \notin H\}$, where N is the set of elements from the other 3 cosets. So the elements of P_1 are $\{(0, 1), (0, 2), (0, 3), (0, 5), (0, 6), (0, 7), (0, 9), (0, 10), (0, 11), (1, 0), (2, 0), (3, 0), (5, 0), (6, 0), (7, 0), (9, 0), (10, 0), (11, 0), (4, 1), (4, 2), (4, 3), (4, 5), (4, 6), (4, 7), (4, 9), (4, 10), (4, 11), (1, 4), (2, 4), (3, 4), (5, 4), (6, 4), (7, 4), (9, 4), (10, 4), (11, 4), (8, 1), (8, 2), (8, 3), (8, 5), (8, 6), (8, 7), (8, 9), (8, 10), (8, 11), (1, 8), (2, 8), (3, 8), (5, 8), (6, 8), (7, 8), (9, 8), (10, 8), (11, 8)\}$, making $|P_1| = 54$.

Let $P_2 = \{(x,y) : L \times M : xy \notin H\}$, where M represents the set of elements of the two related cosets, the elements of P_2 are; $\{(2,1),(2,3),(2,5),(2,7),(2,9),(2,11),(1,2),(3,2),(5,2),(7,2),(9,2),(11,2),(6,1),(6,3),(6,5),(6,7),(6,9),(6,11),(1,6),(3,6),(5,6),(7,6),(9,6),(11,6),(10,1),(10,3),(10,5),(10,7),(10,9),(10,11),(1,10),(3,10),(5,10),(7,10),(9,10),(11,10)\}$. So, $|P_2| = 36$.

Let $P_3 = \{(x,y) \in Q \times Q : xy \notin H\}$, the elements of P_3 are; $\{(1,5), (1,9), (5,9), (5,1), (9,1), (9,5), (1,1), (5,5), (9,9)\}$. Making $|P_3| = 9$. Similarly; $|P_4| = |\{(x,y) \in R \times R : xy \notin H\}| = 9$. Hence,

$$P_{xy \notin H}(G) = \frac{|P_1| + |P_2| + |P_3| + |P_4|}{|G|^2} = \frac{108}{144} = \frac{3}{4}.$$

Using the formula in Theorem 3 will be easier to obtain the result, in this case $\beta = 3$, m = 4, $\psi = 1$ and $\omega = 1$, leading to

$$P_{xy \notin H}(G) = \frac{2\beta^2 \sum_{i=1}^{\psi+1} (m-i) + 8\beta^2 (\omega - 1) + 2\omega (2^{\beta} C_2 + \beta)}{|G|^2}$$

$$= \frac{2\beta^2 [(m-1) + (m-2)] + 8\beta^2 (0) + 2(2^{\beta} C_2 + 3)}{12^2}$$

$$= \frac{18(5) + 0 + 18}{144} = \frac{108}{144} = \frac{3}{4}.$$

Example 9. Let $G = D_{12}$ and $H = \{1, a^3\}$, the remaining cosets in G/H will be $A = \{a, a^4\}$, $B = \{a^2, a^5\}$, $C = \{b, a^3b\}$, $D = \{ab, a^4b\}$ and $E = \{a^2b, a^5b\}$. Observe that the cosets A and B are related pair while C, D and E are lone cosets.

Here $\beta = 2$, $m = 6, \omega = 1$ and $\psi = 3$. Applying the formula in Theorem 3 gives;

$$P_{xy \notin H}(G) = \frac{2\beta^{2}(m-i) + 8\beta^{2}(\omega - 1) + 2\omega(2^{\beta}C_{2} + \beta)}{|G|^{2}}$$

$$= \frac{2\beta^{2}[(m-1) + (m-2) + (m-3) + (m-4)] + 0 + 8}{144}$$

$$= \frac{120}{144} = \frac{5}{6}.$$

3 Bounds for non-closure degree for a group

Next are Theorems 4 and 5 showing the bounds for the non-closure degree of a finite group G relative to its normal subgroup H.

Theorem 4. Let H be a normal subgroup of a finite group G, then the non-closure degree of G is equal to zero if and only if H = G.

$$\begin{array}{l} \textit{Proof.} \ (\Rightarrow) \ \text{Assume the probability is zero, i.e} \\ P_{xy \notin H}(G) = 0 = \frac{0}{|G|^2} = \frac{|\emptyset|}{|G|^2} = \frac{|\{(x,y) \in G \times G : xy \notin G\}|}{|G|^2} = P_{xy \notin G}(G) \ \text{and this implies} \ H = G. \\ (\Leftarrow) \ \text{Suppose} \ H = G, \ \text{by Definition 1 we have} \ P_{xy \notin H}(G) = P_{xy \notin G}(G) = \frac{|\{(x,y) \in G \times G : xy \notin G\}|}{|G|^2} = \frac{|\emptyset|}{|G|^2} = 0. \end{array}$$

For any finite set X, we denote the probability of selecting any pair of elements from the set such that a certain relation(condition) is satisfied by P(X).

Theorem 5. For a normal subgroup H of a finite group G, the non-closure degree for G is given by $P_{xy\notin H}(G)\leq \frac{|G|-1}{|G|}$.

Proof. Let $X = \{(x,y) \in G \times G : xy \in G\}$, this implies that P(X) = 1. Let $Y = \{(x,y) \in G \times G : xy \in H = \{e\}\}$ and $Z = \{(x,y) \in G \times G : xy \notin H\}$, clearly $Y \subseteq X$, $Z \subseteq X$ and $(Y \cup Z) \subseteq X$.

The elements of Y are in the form xy = e with $y = x^{-1}$, if π is the number of self inverse elements in G then there are $|G| - \pi$ elements which are not self inverse and this will lead to $2\frac{(|G|-\pi)}{2}$ number of (x,y) in $G \times G$. So $P(Y) = \frac{\pi + (|G|-\pi)}{|G|^2} = \frac{1}{|G|}$.

2 $\frac{(|G|-\pi)}{2}$ number of (x,y) in $G\times G$. So $P(Y)=\frac{\pi+(|G|-\pi)}{|G|^2}=\frac{1}{|G|}$. Since $(Y\cup Z)\subseteq X$, then we have $P(Y\cup Z)\le P(X)$ which means $P(Y)+P(Z)\le P(X)$ and $P(Z)\le P(X)-P(Y)$. Substituting for P(X) and P(Y) gives $P(Z)\le 1-\frac{1}{|G|}=\frac{|G|-1}{|G|}$. Observe that $P(Z)=P_{xy\notin H}(G)$.

Theorems 4 and 5 above show that $0 \le P_{xy \notin H}(G) \le \frac{|G|-1}{|G|}$. When $H = \{e\}$ there are more pairs (x,y) in $G \times G$ such that $xy \notin H$ as such the non-closure degree of a group G is maximum when $H = \{e\}$. The following tables show the non-closure degree for \mathbb{Z}_{12} , Q_8 and D_{10} indicating the lower and upper bounds.

From Table 1 we can see that the non-closure degree for \mathbb{Z}_{12} is greater when it is relative to the trivial subgroup. The trend is the same for Tables 2 and 3 with the non-closure degree as 0.5 when the subgroup is maximal.

Table 1: $P_{xy \notin H}(\mathbb{Z}_{12})$ relative to different subgroups of \mathbb{Z}_{12} .

S/N	Subgroup, H	H	$P_{xy \notin H}(G)$
1	$H = \{0\}$	1	0.9167
2	$H = \{0, 6\}$	2	0.8333
3	$H = \{0, 4, 8\}$	3	0.7500
4	$H = \{0, 3, 6, 9\}$	4	0.6667
5	$H = \{0, 2, 4, 6, 8, 10\}$	6	0.5
6	$H = \mathbb{Z}_{12}$	12	0

Table 2: $P_{xy \notin H}(\mathbb{Q}_8)$ relative to different subgroups of Q_8 .

S/N	Subgroup, H	H	$P_{xy \notin H}(G)$
1	$H = \{1\}$	1	0.8750
2	$H = \{1, -1\}$	2	0.7500
3	$H = \{1, -1, i, -i\}$	4	0.5000
4	$H = Q_8$	8	0

Table 3: $P_{xy \notin H}(D_{10})$ relative to different subgroups of D_{10} .

S/N	Subgroup, H	H	$P_{xy \notin H}(G)$
1	$H = \{1\}$	1	0.9000
2	$H = \{e, a, a^2, a^3, a^4\}$	5	0.5000
3	$H = D_5$	10	0

Conclusion

The work has to do with defining the non-closure degree for a group G relative to its normal subgroup H, which is the probability of selecting a pair of elements in G such that $xy \notin H$. The formula for computing the probability for finite groups are obtained using the elements of the quotient group G/H, illustrations are done using both abelian and non-abelian groups. It is shown that the probability lies in the interval $[0, \frac{|G|-1}{|G|})$ with the result as 0.5 when |G| is even and H maximal.

Acknowledgments

The authors would like to thank the reviewer for careful reading.

References

- [1] M. Abdul Hamid, N. M. Muhd Ali, N. H. Sarmin and A. Erfanian, *The productivity degree of two subroups of dihedral groups*, AIP Conference Proceedings 1605,601-604, doi:10.1063/1.4887657.(ISI) (2014).
- [2] M. Abdul Hamid, N. M. Muhd Ali, N. H. Sarmin, A. Erfanian and F. N. Abd Manaf, *The squared commutativity degree of dihedral groups*, Jurnal Teknologi, **78** (2022), 45–49.
- [3] H. Dubose-Schmidt, M. D. Gallay and D. L. Wilson, Counting nilpotent pairs in finite groups: some conjectures, Mathematical Sciences Technical Reports, 132, (1992).
- [4] A. Erfanian, B. Toule and N. H. Sarmin, Some considerations on the n-th commutativity degrees of finite groups, Ars Comb., 3 (2011), 495–506.
- [5] P. Erdos and P. Turan, On some problems of a statistical group theory IV, Acta Mathematica Academiae Scientiarum Hungaricae, 19 (1968), 413–435.
- [6] W. H. Gustafson, What is the probability that two group elements commute? The American Mathematical Monthly, (9) 80 (1973), 1031–1034.
- [7] G. A. Miller, Relative number of non-invariant operators in a group, Proceedings of the National Academy of Sciences, (2) **30** (1944), 25–28.
- [8] D. M. Patric, C. A. Sugar, G. J. Sherman and E. K. Wespic, What is the probability of generating a cyclic subgroup, Irish Mathematical Society Bulletin, **31** (1993), 22–27.
- [9] A. I. kiri and A. Suleiman, On independence polynomials of quotient based graphs for finite abelian groups, Journal of the Nigerian Mathematical Society, (3) 41 (2022), 313–323.