| تعداد نشریات | 32 |
| تعداد شمارهها | 819 |
| تعداد مقالات | 7,949 |
| تعداد مشاهده مقاله | 40,894,504 |
| تعداد دریافت فایل اصل مقاله | 8,468,855 |
تاثیر غلظتهای مختلف پروتئین هیدرولیز شده در جیره غذایی بر فعالیتهای آنزیمهای آنتیاکسیدانی و گوارشی بچه فیلماهی (Huso huso) پرورشی | ||
| فیزیولوژی و بیوتکنولوژی آبزیان | ||
| دوره 13، شماره 2، آبان 1404، صفحه 43-70 اصل مقاله (586.77 K) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22124/japb.2024.27300.1538 | ||
| نویسندگان | ||
| علی حسین پور زلتی* 1؛ تورج سهرابی لنگرودی1؛ میرحامد سید حسنی2؛ مریم منصف شکری3 | ||
| 1استادیار بخش آبزیپروری، انستیتو تحقیقات بین المللی ماهیان خاویاری، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران | ||
| 2دکتری تخصصی، بخش آبزیپروری، انستیتو تحقیقات بین المللی ماهیان خاویاری، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران | ||
| 3استادیار بخش فیزیولوژی و بیوشیمی، انستیتو تحقیقات بین المللی ماهیان خاویاری، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران | ||
| چکیده | ||
| در این پژوهش، اثر جایگزینی پودر ماهی با پروتئین هیدرولیز شده ماهی بر میزان برخی شاخصهای استرس اکسیداتیو و فعالیت آنزیمهای گوارشی در بچه فیلماهی (Huso huso) بررسی شد. به این منظور، به مدت 48 روز، 750 قطعه بچه فیلماهی با وزن اولیه 5/0±3 گرم در پنج گروه آزمایشی با سه تکرار شامل گروه شاهد (بدون پروتئین هیدرولیز شده)، 3 تیمار با سطوح مختلف جایگزینی پودر ماهی با پروتئین هیدرولیز شده (تیمارهای 1، 2 و 3 به ترتیب 75/2، 5/5 و 25/8 درصد) و تیمار 4 (شاهد مثبت) با جیره تجاری پرورش داده شدند. نتایج مربوط به شاخصهای استرس اکسیداتیو نشان داد که بین گروههای آزمایشی در مقدار فعالیت آنزیمهای کاتالاز و سوپراکسید دیسموتاز و میزان مالون دیآلدهید اختلاف معنیداری وجود نداشت (05/0P>). در مورد آنزیمهای گوارشی تریپسین، پپسین، آمیلاز و لیپاز نیز هیچگونه اختلاف آماری معنیداری در هیچ یک از مراحل چهارگانه بررسی فعالیتهای آنزیمی (5، 10، 20 و 35 روز پس از ذخیرهسازی) و در هیچ کدام از انواع آنزیمهای مورد بررسی مشاهده نشد (05/0P>). به طور کلی، نتایج این مطالعه نشان داد که جایگزینی پودر ماهی با پروتئین هیدرولیزشده ماهی در جیره غذایی بچه فیلماهی تا سطح 25/8 درصد تاثیر معنیداری بر فعالیت سیستم آنتیاکسیدانی و گوارشی این ماهیان نداشت. | ||
| کلیدواژهها | ||
| پروتئین هیدرولیز شده؛ بچه فیلماهی؛ آنزیم گوارشی؛ آنزیم آنتیاکسیدانی | ||
| موضوعات | ||
| فیزیولوژی و بیوتکنولوژی آبزیان | ||
| مراجع | ||
|
Aebi H. 1984. Catalase in vitro. P: 121–126. In: L. Packer (Eds.). Methods in Enzymology. Academic Press, USA. AOAC. 1990. Official Methods of Analysis. Association of Official Analytical Chemists, Gaithersburg, USA. 664P. Benhabiles M.S., Abdi N., Drouiche N., Lounici H., Pauss A., Goosen M.F.A. and Mameri N. 2012. Fish protein hydrolysate production from sardine solid waste by crude pepsin enzymatic hydrolysis in a bioreactor coupled to an ultrafiltration unit. Materials Science and Engineering (C), 32(4): 922–928. doi: 10.1016/J.MS EC.2012.02.013 Bernfeld P. 1951. Amylases α and β. P: 149–158. In: Colowick P. and Kaplan N.O. (Eds.). Methods in Enzymology. Academic Press, USA. Bhaskar N., Benila T., Radha C. and Lalitha R.G. 2008. Optimization of enzymatic hydrolysis of visceral waste proteins of catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Bioresource Technology, 99(2): 335–343. doi: 10.1016/J.BIO RTECH.2006.12.015 Bolasina S., Tagawa M., Yamashita Y. and Tanaka M. 2006. Effect of stocking density on growth, digestive enzyme activity and cortisol level in larvae and juveniles of Japanese flounder, Paralichthys olivaceus. Aquaculture, 259(1): 432–443. doi: 10.1016/j.aquaculture.2006.05.021 Borges S., Odila J., Voss G., Martins R., Rosa A., Couto J.A., Almeida A. and Pintado M. 2023. Fish by-products: A source of enzymes to generate circular bioactive hydrolysates. Molecules, 28(3): 1–16 (1155). doi: 10.3390/molecules28 031155 Bronzi P., Chebanov M., Michaels J.T., Wei Q., Rosenthal H. and Gessner J. 2019. Sturgeon meat and caviar production: Global update 2017. Journal of Applied Ichthyology, 35(1): 257–266. doi: 10.1111/jai.13870 Buddington R.K. and Doroshov S.I. 1986. Development of digestive secretions in white sturgeon juveniles (Acipenser transmontanus). Comparative Biochemistry and Physiology (A), 83(2): 233–238. doi: 10.1016/0300-9629(86)90567-0 Bui H.T.D., Khosravi S., Fournier V., Herault M. and Lee K.J. 2014. Growth performance, feed utilization, innate immunity, digestibility and disease resistance of juvenile red seabream (Pagrus major) fed diets supplemented with protein hydrolysates. Aquaculture, 418-419: 11–16. doi: 10.1016/j.aqua culture.2013.09.046 Cahu C., Ronnestad I., Grangier V. and Zambonino-Infante J.L. 2004. Expression and activities of pancreatic enzymes in developing sea bass larvae (Dicentrarchus labrax) in relation to intact and hydrolyzed dietary protein; involvement of cholecystokinin. Aquaculture, 238(1-4): 295–308. doi: 10.1016/j.aquaculture.2004.04.0 13 Chaklader M.R., Siddik M.A. and Fotedar R. 2020. Total replacement of fishmeal with poultry by-product meal affected the growth, muscle quality, histological structure, antioxidant capacity and immune response of juvenile barramundi, Lates calcarifer. Plos One, 15(11): 1–21 (0242079). doi: 10.1371/journal.po ne.0242079 Chalamaiah M., Hemalatha R. and Jyothirmayi T. 2012. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chemistry, 135(4): 3020–3038. doi: 10.1016/j.foodchem.2012.06.100 Ding Z., Zhang Y., Ye J., Du Z. and Kong Y. 2015. An evaluation of replacing fish meal with fermented soybean meal in the diet of Macrobrachium nipponense: Growth, nonspecific immunity, and resistance to Aeromonas hydrophila. Fish and Shellfish Immunology, 44(1): 295–301. doi: 10.1016/j.fsi.2015.02.024 Elavarasan K., Naveen Kumar V. and Shamasundar B.A. 2014. Antioxidant and functional properties of fish protein hydrolysates from freshwater carp (Catla catla) as influenced by the nature of enzyme. Journal of Food Processing and Preservation, 38 (3): 1207–1214. doi: 10.1111/jfpp. 12081 Fan Z., Wu D., Li J., Zhang Y., Cui Z., Li T., Zheng X., Liu H., Wang L. and Li H. 2022. Assessment of fish protein hydrolysates in juvenile largemouth bass (Micropterus salmoides) diets: Effect on growth, intestinal antioxidant status, immunity, and microflora. Frontiers in Nutrition, 9: 1–18 (816341). doi: 10.3389/fnut. 2022.816341 Furne J., Saeed A and Levitt M.D. 2008. Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 295(5): 1479–1485. doi: 10.1152/ajpregu.90566.2008 Gajanan P.G., Elavarasan K. and Shamasundar B.A. 2016. Bioactive and functional properties of protein hydrolysates from fish frame processing waste using plant proteases. Environmental Science and Pollution Research, 23: 24901–24911. doi: 10.1007/s11356-016-7618-9 Gatlin III D.M., Barrows F.T., Brown P., Dabrowski K., Gaylord T.G., Hardy R.W., Herman E., Hu G., Krogdahl A., Nelson R. and Overturf K. 2007. Expanding the utilization of sustainable plant products in aquafeeds: A review. Aquaculture Research, 38(6): 551–579. doi: 10.1111/j.1365-2109.2007.01704 Gaweł S., Wardas M., Niedworok E. and Wardas P. 2004. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiadomosci Lekarskie, 57: 453–455. Gisbert E., Fournier V., Solovyev M., Skalli A. and Andree K.B. 2018. Diets containing shrimp protein hydrolysates provided protection to European sea bass (Dicentrarchus labrax) affected by a Vibrio pelagius natural infection outbreak. Aquaculture, 495: 136–143. doi: 10.1016/J.AQUACULTU RE.2018.04.051 Hardy R.W. 2010. Utilization of plant proteins in fish diets: Effects of global demand and supplies of fishmeal. Aquaculture Research, 41(5): 770–776. doi: 10.1111/j.1365-2109.2009.02349 Heath R.L. and Packer L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1): 189–198. doi: 10.1016/0003-9861(68)90654-1 Hlordzi V., Wang J., Li T., Cui Z., Tan B., Liu H., Yang Q., Dong X., Zhang S. and Chi S. 2022. Effects of lower fishmeal with hydrolyzed fish protein powder on the growth performance and intestinal development of juvenile pearl gentian grouper (Epinephelus fuscoguttatus♀ and Epinephelus lanceolatus♂). Frontiers in Marine Science, 9: 1–12 (830398). doi: 10.3389/fmars.2022.830398 Hsu K.C. 2010. Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food Chemistry, 122(1): 42–48. doi: 10.1016/j.foodchem.2010.02.013 Iijima N., Tanaka S. and Ota Y. 1998. Purification and characterization of bile salt-activated lipase from the hepatopancreas of red sea bream, Pagrus major. Fish Physiology and Biochemistry, 18: 59–69. doi: 10.10 23/A:1007725513389 Iranian Fisheries Organization. 2021. Statistical Yearbook of the Iranian Fisheries Organization 2016-2021. Iranian Fisheries Organization, IRAN. 29P. Javaherdoust S., Yeganeh S. and Amirkolaie A.K. 2020. Effects of dietary visceral protein hydrolysate of rainbow trout on growth performance, carcass composition, digestibility and antioxidant enzyme in juvenile Oncorhynchus mykiss. Aquaculture Nutrition, 26(1): 134–144. doi: 10.1111/anu. 12975 Karapanagiotidis I.T., Psofakis P., Mente E., Malandrakis E. and Golomazou E. 2019. Effect of fishmeal replacement by poultry by-product meal on growth performance, proximate composition, digestive enzyme activity, haematological parameters and gene expression of gilthead seabream (Sparus aurata). Aquaculture Nutrition, 25(1): 3–14. doi: 10.1111/anu.12824 Klompong V., Benjakul S., Kantachote D. and Shahidi F. 2007. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry, 102(4): 1317–1327. doi: 10.1016/j.foodchem.2006.07.016 Kono Y. 1978. Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Archives of Biochemistry and Biophysics, 186(1): 189–195. doi: 10.1016/0003-9861(78)90479-4 Korczek K., Tkaczewska J. and Migdal W. 2018. Antioxidant and antihypertensive protein hydro-lysates in fish products- A review. Czech Journal of Food Sciences, 36(3): 195–207. doi: 10.17221/283/ 2017-CJFS Kotzamanis Y.P., Gisbert E., Gatesoupe F.J., Zambonino Infante J. and Cahu C. 2007. Effects of different dietary levels of fish protein hydrolysates on growth, digestive enzymes, gut microbiota, and resistance to Vibrio anguillarum in European sea bass (Dicentrarchus labrax) larvae. Comparative Biochemistry and Physiology (A), 147(1): 205–514. doi: 10.1016/j.cbpa.2006.12.037 Martinez-Alvarez R.M., Morales A.E. and Sanz A. 2005. Antioxidant defenses in fish: Biotic and abiotic factors. Reviews in Fish Biology and Fisheries, 15(1): 75–88. doi: 10.1007/s11160-005-7846-4 Moutinho S., Peres H., Serra C., Martinez-Llorens S., Tomas-Vidal A., Jover-Cerda M. and Oliva-Teles A. 2017. Meat and bone meal as partial replacement of fishmeal in diets for gilthead sea bream (Sparus aurata) juveniles: Diets digestibility, digestive function, and microbiota modulation. Aquaculture, 479: 721–731. doi: 10.1016/j.aquaculture. 2017.07.021 Nikoo M., Mozanzadeh M.T., Noori F., Imani A., Houshmand H., Sam M.R. and Jafari F. 2024. The effects of protein hydrolysates from rainbow trout by-products on growth, digestive and antioxidant enzymes, and liver lysozyme activity in sobaity (Sparidentex hasta) and Arabian yellowfin (Acanthopagrus arabicus) seabream juveniles. Aquaculture Reports, 37: 1–9 (102229). doi: 10. 1016/j.aqrep.2024.102229 North B.P., Turnbull J.F., Ellis T., Porter M.J., Migaud H., Bron J. and Bromage N.R. 2006. The impact of stocking density on the welfare of rainbow trout (Oncorhynchus mykiss). Aquaculture, 255(1-4): 466–479. doi: 10.1016/J.AQUACULTURE.200 6.01.004 Oliva-Teles A., Cerqueira A.L. and Goncalves P. 1999. The utilization of diets containing high levels of fish protein hydrolysate by turbot (Scophthalmus maximus) juveniles. Aquaculture. 179(1-4): 195–201. doi: 10.1016/S0044-8486 (99)00162-3 Psofakis P., Karapanagiotidis I.T., Malandrakis E.E., Golomazou E., Exadactylos A. and Mente E. 2020. Effect of fishmeal replacement by hydrolyzed feather meal on growth performance, proximate composition, digestive enzyme activity, haematological parameters and growth-related gene expression of gilthead seabream (Sparus aurata). Aquaculture, 521: 1–9 (735006). doi: 10.1016/j.aquaculture.2020.7350 06 Qian Z.J., Jung Q.K. and Kim S.K. 2008. Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw. Bioresource Technology, 99: 1690–1698. doi: 10.1016/j.bior tech.2007.04.005 Rungruangsak K. and Utne F. 1981. Effect of different acidified wet feeds on protease activities in the digestive tract and on growth rate of rainbow trout (Salmo gairdneri Richardson). Aquaculture, 22: 67–79. doi: 10.1016/0044-8486(81)9013 4-4 Sarmadi B.H. and Ismail A. 2010. Antioxidative peptides from food proteins: A Review. Peptides, 31(10): 1949–1956. doi: 10.1016/j. peptides.2010.06.020 Savoie A., Le Francois N.R., Lamarre S.G., Blier P.U., Beaulieu L. and Cahu C. 2011. Dietary protein hydrolysate and trypsin inhibitor effects on digestive capacities and performances during early-stages of spotted wolffish: Suggested mechanisms. Comparative Biochemistry and Physiology (A), 158(4): 525–530. doi: 10.1016/j.cb pa.2010.12.017 Sayed Hassani M.H., Banavreh A., Yousefi Jourdehi A., Mohseni M., Monsef Shokri M. and Yeganeh Rastekenari H. 2021. The feasibility of partial replacement fish meal with poultry by‐products in practical diets of juvenile great sturgeon, Huso huso: Effects on growth performance, body composition, physio-metabolic indices, digestibility and digestive enzymes. Aquaculture Research, 52(8): 3605–3616. doi: 10.1111/are.15205 Sheng Z., Turchini G.M., Xu J., Fang Z., Chen N., Xie R., Zhang H. and Li S. 2022. Functional properties of protein hydrolysates on growth, digestive enzyme activities, protein metabolism, and intestinal health of larval largemouth bass (Micropterus salmoides). Frontiers in Immunology, 13: 1–18 (913024). doi: 10.3389/fimmu.2022.913024 Siddik M.A., Howieson J. and Fotedar R. 2019. Beneficial effects of tuna hydrolysate in poultry by-product meal diets on growth, immune response, intestinal health and disease resistance to Vibrio harveyi in juvenile barramundi, Lates calcarifer. Fish and Shellfish Immunology, 89: 61–70. doi: 10.10 16/j.fsi.2019.03.042 Siddik M.A., Howieson J., Fotedar R. and Partridge G.J. 2021. Enzymatic fish protein hydro-lysates in finfish aquaculture: A review. Reviews in Aquaculture, 13(1): 406–430. doi: 10.1111/raq.12 481 Siddik M.A., Howieson J., Partridge G.J., Fotedar R. and Gholipourkanani H. 2018. Dietary tuna hydrolysate modulates growth performance, immune response, intestinal morphology and resistance to Streptococcus iniae in juvenile barramundi, Lates calcarifer. Scientific Reports, 8(1): 1–13 (15942). doi: 10.1038/s41598-018-34 182-4 Silva F.C.P., Nicoli J.R., Zambonino-Infante J. L., Le Gall M.M., Kaushik S. and Gatesoupe F.J. 2010. Influence of partial substitution of dietary fish meal on the activity of digestive enzymes in the intestinal brush border membrane of gilthead sea bream, Sparus aurata and goldfish, Carassius auratus. Aquaculture, 306(1): 233–237. doi: 10.1016/j. aquaculture.2010.05.018 Slizyte R., Rommi K., Mozuraityte R., Eck P., Five K. and Rustad T. 2016. Bioactivities of fish protein hydrolysates from defatted salmon backbones. Biotechnology Reports, 11: 99–109. doi: 10.1016/j. btre.2016.08.003 Soleimani M.R., Hosseini S.F. and Nikkhah M. 2016. Evaluation of antioxidant activity of protein hydrolysate from common kilka (Clupeonella cultriventris caspia). Fisheries Science and Technology, 5(3): 95–108. Song Z., Li H., Wang J., Li P., Sun Y. and Zhang L. 2014. Effects of fishmeal replacement with soy protein hydrolysates on growth performance, blood biochemistry, gastrointestinal digestion and muscle composition of juvenile starry flounder (Platichthys stellatus). Aquaculture, 426: 96–104. doi: 10.1016/j.aquaculture.2014. 01.002 Srichanun M., Tantikitti C., Kortner T.M., Krogdahl A. and Chotikachinda R. 2014. Effects of different protein hydrolysate products and levels on growth, survival rate and digestive capacity in Asian seabass (Lates calcarifer Bloch) larvae. Aquaculture, 428: 195–202. doi: 10.1016/J.AQUACUL TURE.2014.03.004 Swanepoel J.C. and Goosen N.J. 2018. Evaluation of fish protein hydrolysates in juvenile African catfish (Clarias gariepinus) diets. Aquaculture, 496: 262–269. doi: 10.1016/j.aquaculture.2018.06.084 Tonheim S. K., Nordgreen A., Hogoy I., Hamre K. and Ronnestad I. 2007. In vitro digestibility of water-soluble and water-insoluble protein fractions of some common fish larval feeds and feed ingredients. Aquaculture, 262(2): 426–435. doi: 10.1016/j.aqu aculture.2006.10.030 Torrissen K., Lied E. and Espe M. 1994. Differences in digestion and absorption of dietary protein in Atlantic salmon (Salmo salar) with genetically different trypsin isozymes. Journal of Fish Biology, 45: 1087–1104. doi: 10.1111/j.1095-8649.1994.tb01075.x Wei Y., Liang M. and Xu H. 2019. Fish protein hydrolysate affected amino acid absorption and related gene expressions of IGF-1/AKT pathways in turbot (Scophthalmus maximus). Aquaculture Nutrition, 26(1): 145–155. doi: 10.1111/anu. 12976 Wu Y.B., Ren X., Chai X.J., Li P. and Wang Y. 2018. Replacing fish meal with a blend of poultry by‐product meal and feather meal in diets for giant croaker (Nibea japonica). Aquaculture Nutrition, 24(3): 1085–1091. doi: 10.1111/anu. 12647 Wuertz S., Lutz I., Gessner J., Loeschau P., Hogans B., Kirschbaum F. and Kloas W. 2006. The influence of rearing density as environmental stressor on cortisol response of shortnose sturgeon (Acipenser brevirostrum). Journal of Applied Ichthyology, 22: 269–273. doi: 10.1111/J.1439-0426.2007.00966. X Xu H., Mu Y., Zhang Y., Li J., Liang M., Zheng K. and Wei Y. 2016. Graded levels of fish protein hydrolysate in high plant diets for turbot (Scophthalmus maximus): effects on growth performance and lipid accumulation. Aquaculture, 454: 140–147. doi: 10.1016/J.AQUA CULTURE.2015.12.006 Yang X., He Y., Chi S., Tan B., Lin S., Dong X., Yang Q., Liu H. and Zhang S. 2020. Supplementation with Saccharomyces cerevisiae hydrolysate in a complex plant protein, low-fishmeal diet improves intestinal morphology, immune function and Vibrio harveyi disease resistance in Epinephelus coioides. Aquaculture, 529: 1–10 (735655). doi: 10.1016/j. aquaculture.2020.735655 Yeganeh S. and Adel M. 2021. Effects of dietary rainbow trout visceral protein hydrolysate on hematological, immunological and biochemical serum parameters and antioxidant enzymes of juvenile Siberian sturgeon, Acipenser baerii. Aquatic Animals Nutrition, 7(4): 43–60. doi: 22124/janb.2022. 23264.1176 Yu Y. 2023. Replacement of fish meal with poultry by-product meal and hydrolyzed feather meal in feeds for finfish. P: 51–93. In: Lim C., Lee C.S. and Webster C.D. (Eds.). Alternative Protein Sources in Aquaculture Diets. CRC Press, USA. doi: 10.1201/9781003421214 Zeytin S., Schulz C. and Ueberschar B. 2016. Diurnal patterns of tryptic enzyme activity under different feeding regimes in gilthead sea bream (Sparus aurata) larvae. Aquaculture, 457: 58–90. doi: 10. 1016/j.aquaculture.2016.02.017 Zheng K., Xu T., Qian C., Liang M. and Wang X. 2014. Effect of low molecular weight fish protein hydrolysate on growth performance and IGF‐I expression in Japanese flounder (Paralichthys olivaceus) fed high plant protein diets. Aquaculture Nutrition, 20(4): 372–380. doi: 10.1111/ANU.12090
| ||
|
آمار تعداد مشاهده مقاله: 4 تعداد دریافت فایل اصل مقاله: 4 |
||