| تعداد نشریات | 32 |
| تعداد شمارهها | 819 |
| تعداد مقالات | 7,949 |
| تعداد مشاهده مقاله | 40,894,504 |
| تعداد دریافت فایل اصل مقاله | 8,468,855 |
بیان نوترکیب، خالصسازی نسبی و ارزیابی ویژگیهای بیوشیمیایی سرین پروتئاز قلیایی سویه Salinivibrio proteolyticus AF-2004T جدا شده از دریاچه فوق شور بختگان | ||
| فیزیولوژی و بیوتکنولوژی آبزیان | ||
| دوره 13، شماره 2، آبان 1404، صفحه 21-42 اصل مقاله (519.3 K) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22124/japb.2024.28131.1550 | ||
| نویسندگان | ||
| پریچهر سیروس نیا1؛ علی دلجو2؛ حسین غفوری3؛ سجاد صاری خان* 4 | ||
| 1دانشجوی دکتری بیوتکنولوژی کشاورزی، دانشکده کشاورزی، دانشگاه بوعلیسینا، همدان، ایران | ||
| 2دانشیار گروه بیوتکنولوژی، دانشکده کشاورزی، دانشگاه بوعلیسینا، همدان، ایران | ||
| 3دانشیار گروه زیستشناسی، دانشکده علوم پایه، دانشگاه گیلان، رشت، ایران | ||
| 4مربی بانک DNA و دادههای ژنومی، مرکز ملی ذخایر ژنتیکی و زیستی ایران، جهاد دانشگاهی، تهران، ایران | ||
| چکیده | ||
| پروتئازها به عنوان یکی از پرکاربردترین آنزیمهای صنعتی در شکستن مولکولهای پروتئین و تبدیل آن به پپتیدها و آمینواسیدها نقش دارند. سرین پروتئازها که جزو اندوپپتیدازها به حساب میآیند خود به چهار زیرگروه تقسیم میشوند که در میان آنها سرین پروتئازهای قلیایی از نظر صنعتی مهمترین گروه محسوب میشوند. در این مطالعه، ژن سرین متالوپروتئاز قلیایی از سویه Salinivibrio proteolyticus از دریاچه فوق شور بختگان کلون و بیان نوترکیب شد. نتایج به دست آمده، تولید یک پروتئین منومر با وزن مولکولی حدود 66 کیلودالتون را تایید کرد. نتایج این پژوهش نشانگر عدم تاثیر معنیدار پلاسمیدهای چاپرونی بر روی بیان محلول پروتئاز مورد مطالعه است و حتی در صورت استفاده فرایند تخلیص پروتئین را به دلیل وجود مقادیر بالای پروتئینهای چاپرونی در فاز محلول مختل میکند. سنجش فعالیت آنزیم به روش زایموگرافی و همچنین با محلول Folin-Ciocalteu نشان دهنده فعالیت پروتئازی آن بر روی سوبسترای کازئین بود. با مشاهده اثر مهارکنندگی EDTA با غلظت 1 میلیمولار به عنوان مهار کننده متالوپروتئازها و اثر کاهندگی فعالیت آنزیم در حضور PMSF با غلظت 1 میلیمولار به عنوان مهار کننده سرین پروتئازها چنین نتیجهگیری میشود که پروتئاز مورد بررسی به دسته سرین متالوپروتئازها تعلق دارد. همچنین، فعالیت پروتئولیتیکی آنزیم بر روی سوبسترای کازئین با غلظت 65/0 درصد، بر اساس نتایج اسپکتروفتومتر و با استفاده از منحنی استاندارد ال-تیروزین به میزان 08/0±65/1 واحد در میلیگرم محاسبه شد. در نهایت باید برای دستیابی به فعالیت ویژه بهینه آنزیم ارزیابی شرایط مختلف واکنش مانند دما و pH بهینه و یونهای فلزی مطلوب آن مد نظر قرار گیرد. | ||
| کلیدواژهها | ||
| اندوپپتیداز؛ زایموگرافی؛ آنزیم صنعتی | ||
| موضوعات | ||
| فیزیولوژی و بیوتکنولوژی آبزیان | ||
| مراجع | ||
|
Adinarayana K. and Ellaiah P. 2002. Response surface optimization of the critical medium components for the production of alkaline protease by a newly isolated Bacillus sp. Journal of Pharmacy and Pharmaceutical Sciences, 5: 272–278. Alvarez V.M., Von Der Weid I., Seldin L. and Santos A.L.S. 2006. Influence of growth conditions on the production of extracellular proteolytic enzymes in Paenibacillus peoriae NRRL BD-62 and Paenibacillus polymyxa SCE2. Letters in Applied Microbiology, 43: 625–630. doi: 10.1111/j.1472-765X.2006.02015.x Amoozegar M.A., Schumann P., Hajighasemi M., Fatemi A.Z. and Karbalaei-Heidari H.R. 2008. Salinivibrio proteolyticus sp. nov., a moderately halophilic and proteolytic species from a hypersaline lake in Iran. International Journal of Systematic and Evolutionary Microbiology, 58: 1159–1163. doi: 10.1099/ijs.0. 65423-0 Amoozegar M.A., Zahra Fatemi A., Karbalaei-Heidari H.R. and Razavi M.R. 2007. Production of an extracellular alkaline metalloprotease from a newly isolated, moderately halophile, Salinivibrio sp. strain AF-2004. Microbiological Research, 162: 369–377. doi: 10.1016/j.micres.2006. 02.007 Ariyaei A., Farhadi A., Moradian F. and Rahimi Mianji G. 2019. Cloning, expression and characteri-zation of a novel alkaline serine protease gene from native Iranian Bacillus sp.; a producer of protease for use in livestock. Gene, 693: 10–15. doi: 10.1016/j.gene.2019.01.020 Bhatt H.B. and Singh S.P. 2020. Cloning, expression and structural elucidation of a biotechnologically potential alkaline serine protease from a newly isolated halo-alkaliphilic Bacillus lehensis JO-26. Frontiers in Microbiology, 11: 1–16. doi: 10.3389/fmicb.2020.00941 Brettin T., Davis J.J., Disz T., Edwards R.A., Gerdes S., Olsen G.J., Olson R., Overbeek R., Parrello B., Pusch G.D., Shukla M., Thomason III J.A., Stevens R., Vonstein V., Wattam A.R. and Xia F. 2015. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Scientific Reports, 5: 1–6 (8365). doi: 10.1038/srep08365 Fathinejad F., Ghafouri H., Barzegari E., Sarikhan S., Alizadeh A. and Howard N. 2023. Gene cloning and characterization of a novel recombinant 40‑kDa heat shock protein from Mesobacillus persicus B48. World Journal of Microbiology and Biotechnology, 39(9): 248. doi: 10.1007/s11274-023-03693-2 Ghafoori H., Askari M. and Sarikhan S. 2016. Purification and characterization of an extracellular haloalkaline serine protease from the moderately halophilic bacterium, Bacillus iranensis (X5B). Extremophiles, 20(2): 115–123. doi: 10.1007/s00792-015-0804-8 Hartley B.S. 1960. Proteolytic enzymes. Annual Review of Biochemistry, 29: 45–72. doi: 10.11 46/annurev.bi.29.070160.000401 Hejdysz M., Kaczmarek S.A., Kubis M., Wisniewska Z., Peris S., Budnik S. and Rutkowski A. 2020. The effect of protease and Bacillus licheniformis on nutritional value of pea, faba bean, yellow lupin and narrow-leaved lupin in broiler chicken diets. British Poultry Science, 61: 287–293. doi: 10.1080/00071668.2020.171 6303 Karbalaei-Heidari H.R., Shahbazi M. and Absalan G. 2013. Characterization of a novel organic solvent tolerant protease from a moderately halophilic bacterium and its behavior in ionic liquids. Applied Biochemistry and Biotechnology, 170: 573–586. doi: 10.1007/s12010-013-0215-1 Karbalaei-Heidari H.R., Ziaee A.A. and Amoozegar M.A. 2007a. Purification and biochemical characterization of a protease secreted by the Salinivibrio sp. strain AF-2004 and its behavior in organic solvents. Extremophiles, 11: 237–243. doi: 10.1007/s00792-006-0031-4 Karbalaei-Heidari H.R., Ziaee A.A., Schaller J. and Amoozegar M.A. 2007b. Purification and characteri-zation of an extracellular halo-alkaline protease produced by the moderately halophilic bacterium, Salinivibrio sp. strain AF-2004. Enzyme and Microbial Technology, 40: 266–272. doi: 10.1 016/j.enzmictec.2006.04.006 Morihara K. 1974. Comparative specificity of microbial protein-ases. Advances in Enzymology and Related Areas of Molecular Biology, 41: 179–243. doi: 10.1002/ 9780470122860.ch5 Naveed M., Nadeem F., Mehmood T., Bilal M., Anwar Z. and Amjad F. 2021. Protease- a versatile and ecofriendly bio-catalyst with multi-industrial applications: An updated review. Catalysis Letters, 151: 307–323. doi: 10.1007/s10562-020-03316-7 Park S., Lee J.J., Yang B.M., Cho J.H., Kim S., Kang J., Oh S., Park D.J., Perez-Maldonado R., Cho J.Y., Park I.H., Kim H.B. and Song M. 2020. Dietary protease improves growth perform- ance, nutrient digestibility, and intestinal morphology of weaned pigs. Journal of Animal Science and Technology, 62(1): 21–30. doi: 10.5187/jast.2020.62.1.21 Rao C.S., Sathish T., Ravichandra P. and Prakasham R.S. 2009. Characterization of thermo-and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochemistry, 44: 262–268. doi: 10.1016/j.procbio. 2008.10.022 Raval V.H., Bhatt H.B. and Singh S.P. 2018. Adaptation strategies in halophilic bacteria. P: 137–164. In: Durvasula R.V. and Subba Rao D.V. (Eds.). Extremophiles: From Biology to Biotechnology. CRC Press, USA. Raval V.H., Pillai S., Rawal C.M. and Singh S.P. 2014. Biochemical and structural characterization of a detergent-stable serine alkaline protease from seawater halo-alkaliphilic bacteria. Process Biochemistry, 49: 955–962. doi: 10.1016/j.procbio.2014.03.014 Rekik H., Frikha F., Zarai Jaouadi N., Gargouri F., Jmal N., Bejar S. and Jaouadi B. 2019. Gene cloning, expression, molecular modeling and docking study of the protease SAPRH from Bacillus safensis strain RH12. International Journal of Biological Macromolecules, 125: 876–891. doi: 10.1016/j.ijbiomac.2018.12.103 Sadeghi H.M.M., Rabbani M. and Naghitorabi M. 2010. Cloning of alkaline protease gene from Bacillus subtilis 168. Research in Pharmaceutical Sciences, 4: 43–46. Sepehri S., Ghafoori H. and Sarikhan S. 2023. Cloning, expression and purification of a novel carboxypeptidase from a hypersaline lake halophilic Bacillus persicus. Journal of Aquatic Physiology and Biotechnology, 11(1): 59–75. doi: 10.22124/japb.2022.22750.1479 Singh R., Kumar M., Mittal A. and Mehta P.K. 2016. Microbial enzymes: Industrial progress in 21st century. 3 Biotech, 6: 1–15. doi: 10.1007/s13205-016-0485-8 Singh S. and Bajaj B.K. 2015. Medium optimization for enhanced production of protease with industrially desirable attributes from Bacillus subtilis K-1. Chemical Engineering Communications, 202: 1051–1060. doi: 10.1080/00986445.2014.900052 Sinha R. and Khare S.K. 2013. Characterization of detergent compatible protease of a halophilic Bacillus sp. EMB9: Differential role of metal ions in stability and activity. Bioresource Technology, 145: 357–361. doi: 10.1016/j.biorte ch.2012.11.024 Smith E.L., DeLange R.J., Evans W.H., Landon M. and Markland F.S. 1968. Subtilisin Carlsberg: V. The complete sequence: Comparison with subtilisin BPN’; Evolutionary relationship. Journal of Biological Chemistry, 243(9): 2184–2191. doi: 10.1016/S0021-925 8(18)93461-7 Solanki P., Putatunda C., Kumar A., Bhatia R. and Walia A. 2021. Microbial proteases: Ubiquitous enzymes with innumerable uses. 3 Biotech, 11: 1–25. doi: 10.1007/s13 205-021-02928-z Suberu Y., Akande I., Samuel T., Lawal A. and Olaniran A. 2019a. Optimization of protease production in indigenous Bacillus species isolated from soil samples in Lagos, Nigeria using response surface methodology. Biocatalysis and Agricultural Biotechnology, 18: 1–13 (101011). doi: 10.1016/j. bcab.2019.01.049 Suberu Y., Akande I., Samuel T., Lawal A. and Olaniran A. 2019b. Cloning, expression, purification and characterisation of serine alkaline protease from Bacillus subtilis RD7. Biocatalysis and Agricultural Biotechnology, 20: 1–10 (101264). doi: 10.1016/j.bcab.20 19.101264 Tarazi S., Ghafoori H., Sarikhan S. and Sariri R. 2021. Increasing the solubility of recombinant glutathione S-transferase from Rutilus kutum using chaperone-based method in Escherichia coli. Journal of Aquatic Physiology and Biotechnology, 9: 89–108. doi: 10.22124/japb.2021.18601.1409 Tekin A., Uzuner U. and Sezen K. 2021. Homology modeling and heterologous expression of highly alkaline subtilisin-like serine protease from Bacillus halodurans C-125. Biotechnology Letters, 43: 479–494. doi: 10.1007/s10529-020-03025-6 Yang H., Liu Y., Ning Y., Wang C., Zhang X., Weng P. and Wu Z. 2020. Characterization of an intracellular alkaline serine protease from Bacillus velezensis SW5 with fibrinolytic activity. Current Microbiology, 77: 1610–1621. doi: 10.1007/s00284-020-0197 7-6 Yasumitsu H. 2017. Serine protease zymography: Low-cost, rapid, and highly sensitive RAMA casein zymography. Methods in Molecular Biology, 1626: 13–24. doi: 10.1007/978-1-4939-7111-4_2
| ||
|
آمار تعداد مشاهده مقاله: 6 تعداد دریافت فایل اصل مقاله: 4 |
||