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Abstract. This paper investigates the time-optimal path-tracking problem for a collaborative robotic
system, considering some limitations and dynamic characteristics. The problem is formulated for a
robotic system consisting of two-link planar manipulators with and without bar cases along a predeter-
mined geometric path in minimum time. The main challenges are to satisfy both the co-position and
co-time conditions of the end-effector movement, as well as the physical limitations of the torque ap-
plied to the joints. Through discretization and convexification, we convert the problem into a convex
conic optimization problem. The numerical example confirms the effectiveness of the method.
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1 Introduction

In recent decades, the development of advanced robotic systems to improve precision, speed, and effi-
ciency in industrial and service tasks has become one of the key topics in engineering research. One
of the challenges in this field is designing robot trajectories such that physical limitations are satisfied.
Numerous studies have been conducted on the modeling and approximation of robotic motion trajecto-
ries. The use of polynomial functions for trajectory approximation, iterative learning algorithms, and the
transformation of nonlinear problems are among the prominent approaches explored in recent research.
In [2], the increase in degrees of freedom is investigated by approximating the robot path using
polynomial functions. This study demonstrated that polynomial-based modeling can effectively represent
and approximate robotic trajectories, thereby enhancing the flexibility and precision of motion control.
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One important problem in robotics is the time-optimal path tracking problem, where motion along
predefined paths is achieved with minimum time and energy consumption. Trajectory and time optimiza-
tion not only enhance productivity but also significantly affect the durability of mechanical components
and the overall quality of task execution. The time-optimal path tracking problem for a single robotic
arm is reformulated as a convex optimization problem through a nonlinear change of variables in [8].
In addition to minimizing motion time, the authors also considered secondary objectives such as min-
imizing the absolute value of the torque rate and thermal energy generation. In [1], the time-optimal
path tracking problem for a six-degrees-of-freedom industrial manipulator is reformulated as a convex
optimization problem that includes velocity constraints.

Recently, the cooperation between multiple robots to jointly execute one or more tasks has given rise
to a new research field known as collaborative robotics. The main goal of these systems is to enable
efficient task execution using two or more robots, especially for operations that are beyond the capabil-
ity of a single robot in terms of complexity, accuracy, or efficiency. Moreover, a team of cooperating
robots generally outperforms individual robots in terms of productivity and precision [5], and their use
is essential for optimizing energy, time, and cost consumption. Collaborative robots (Cobots) have been
increasingly adopted in industrial environments due to their significant benefits. Cobots assist human
workers in performing demanding or hazardous tasks, creating a symbiotic relationship between humans
and robots [1]. They enable flexible automation in manufacturing with applications such as assembly [3],
material handling [7], painting, palletizing, packaging, and welding [0]. This collaboration has led to
improved product quality, reduced physical strain, and enhanced operational efficiency in production en-
vironments [5]. In collaborative robotic systems, time-optimal planning and energy-efficient control of
manipulators are key challenges. Recently, in [5], the focus is on path-tracking for two manipulators car-
rying a bar, but it has only focused on time optimization. Despite these valuable contributions, there still
exists a notable research gap in addressing time-optimal and energy-efficient path tracking for multiple
collaborative manipulators handling a shared load. While [8] employs second-order cone programming
(SOCP) for path tracking, it does not consider multi-robot cooperation or load sharing, and the optimiza-
tion objective in [5] is limited to minimizing motion time. In this study, inspired by the formulation in [8],
the time-optimal path-tracking problem is extended to the case of two cooperative manipulators carrying
a shared bar. The proposed optimization framework incorporates multiple objectives, including thermal
energy and the absolute value of the rate of torque change, along with corresponding weighting factors
to regulate heat generation and smooth control effort. The main contribution of this paper is addressing
the optimization problem of two cooperating arms through mathematical modeling and reformulating it
as an SOCP problem that can be solved efficiently.

This paper is structured as follows: The first section outlines the time-optimal path-tracking prob-
lem for a single robot, which is then extended to two cooperative manipulators in the second section.
Subsequently, the problem of two cooperating arms carrying a bar connected to their end-effectors is
formulated and analyzed. The third section presents numerical experiments that demonstrate the effec-
tiveness of the proposed method. Finally, conclusions and directions for future research are discussed in
the last section.
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2 Time-optimal trajectory tracking problem for a robot

This section presents the time-optimal path tracking problem for a single manipulator. Its movement
is significantly influenced by two key factors: the kinematics and dynamics of the manipulator. The
purpose of forward kinematics is to determine the coordinates and orientation of the end-effector based
on the robot’s joint variables. However, inverse kinematics aims to obtain the robot’s joint variables
according to the location and orientation of the end-effector. Obtaining the joint torque using the location,
velocity and acceleration of the robot’s joints is known as inverse dynamics. This can be performed
using the Lagrange formulation to determine the required torques for a desired motion. By generating
the appropriate solution in the joint space, it is ensured that the end-effector will pass the specified
geometric path. The end-effector can move along a straight line or another predefined geometric curve
from the starting point to the endpoint.

Assume a geometric path ¢(s), specified in joint space coordinates. The motion of the manipulator
along a defined trajectory can be expressed as a function of a scalar s. We denote the relationship between
time and path with s(¢) and assume that the path begins from 7 =0 and ends att =T

0=1s(0) <s(r) <s(T)=1. (1)

By applying the chain derivative rule, a geometric path g(s) in joint space allows for the determination
of the joint velocities and accelerations as follows:

(5)s, 2

g(s) =4
q'()§+4"(s)5, A3)

4(s)

where 2 () Suls) )
won9%als) o dq(s) . ds . ds
q (S)— 8S2 ’ Q(s)_ 8S ) s_dt2> s_dl.

In this scenario, the dynamic equation of a manipulator, whose degree of freedom is n, can be expressed
as:

T =M(q)§+C(q,9)q+G(q), “)

where T € R” is the joint torque, M(q) € R"*" denotes the positive definite inertia matrix, C(q,q) €
R™*" represents the matrix of Coriolis and centrifugal forces, and G(g) € R" illustrates the vector of
gravitational torque. This equation shows how to create movement in the robot by the torque exerted by
the actuators [8].

2.1 Modeling the problem

First, we examine the convex optimization problem for a two-link arm. The dynamics of a robotic
manipulator can be formulated from its equations of motion. These equations incorporate joint velocities,
torques, and accelerations while considering the imposed joint constraints, as follows:

|
min ——=ds
a(0).5(0).(0) /o Vb(s)

s.t. T(t) =m(s(t))a(s) +c(s)b(s) +g(s(t)),
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(s) < 7(s), for s€]0,1]. Q)

The variables a(s) and b(s) are optimization parameters, and the velocity at both the beginning and
the end of the trajectory is set to zero. For torque, both upper and lower limits are considered. In addition
to optimizing time, other goals can be incorporated in the problem. The thermal energy produced by
the actuators and the integral of the absolute magnitude of torque change can be added to the objective
function. Reducing thermal energy and rapid torque variations helps avoid torque jumps and improves

)

k\2
- and absolute value of the rate of torque change as

(1
T,

system control [8]. We define thermal energy as -

1
At
%]

. The y; and 7, are weighting factors.

Along with torque constraints, other constraints may also be considered. Specifically velocity and
acceleration limits are enforced by applying symmetrical upper and lower bounds on the joints. The
generalized optimal control problem is convex due to the convex nature of the objective function and in-
equality constraints, as well as the linear characteristics of the dynamic system and equality constraints.
By employing a direct transcription method, the problem is transformed into a finite-dimensional op-
timization problem. Initially, we discretize the path into nodal points and determine the values of the
functions a(s), b(s), and 7(s) at the nodal points and in between them [&]. By introducing the shorthand
notation N, =0,1,2,....k and Ny_; =0,1,2,....k— 1, problem (5) can be reformulated as the following
large-scale discretized optimization problem:

min
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Considering two slack variables ef and d¥, the following relations hold:
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which is equivalent to the following constraints:

()’
=2

1+nYi,

k k

The objective function can be written as Z,’f;ol 2Askdk + Zkkz_ll 17 %, where 1 € R" is a vector with
all elements equal to one. To transform the constraint into a quadratic conic form, the problem is formu-
lated as a large-scale discretized optimality problem, which finally leads to an SOCP as follows:

K—1 K-1
min Z 2Askd* + Z 1765,
k=0 k=1
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3 Two manipulators

In this section, we examine the movement of the two arms of two-link robots and investigate their motion
of the end-effector along a specified geometric path.

Using the objective function of the single-arm problem, and considering similar variables and con-
straints, the problem is transformed into a quadratic conic problem. Consider two arms, each with two
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Figure 1: Two-link robots model.

degrees of freedom, whose end-effectors are supposed to traverse the path in the minimum co-time and
co-position (same time and same position). To ensure that both robots follow the path simultaneously,
their motion is synchronized step by step, thereby satisfying the co-position and co-time conditions.
The path is discretized into multiple points, and each robot moves along it point by point. The key
aspect of co-position and co-time is that it makes the problem dependent on the path. The equations of
the intended path in this article are considered in Cartesian space, then the joint angles are calculated
using inverse kinematics for two two-link robots (see Figure 1). The length of each link is 0.5m. The
given path is a semicircle with a radius of 0.56m, and the path function is defined over the interval [0, 1].

For the robot on the left, we denote the angle of the first link with respect to the x-axis as g1, and the
angle of the second link relative to the extension of the first link as ¢,. The angle between the two dotted
lines and the x-axis is 45 °. For the robot on the right, the angle of the first link with the x-axis is denoted
as g3, and the angle of the second link with the extension of the first link is denoted as g4. The angle of
the line connecting the two links in the right robot with the x-axis is 135°. If the movement direction of
q:1 is counterclockwise, g; is negative, and if it is clockwise, g is positive. The same convention applies
to the second robot. Since the dynamic equations are expressed for a single robot, the same equations
can be applied to the second robot as well. Each robot traverses the path within a specific time frame.
The key is that both robots must move along the path together. In this case, we ensure co-position and
co-time.

The main point in co-time and co-position is to make the problem depend on the path s(z). Therefore,
the dynamic equations for the robot’s motion take the following form:

% = Mi(qi)Gi + Ci(qi,4i)d4i + Gi(gi), i=1,2. (10)

Given that the end-effectors are in the same location at every moment and traverse the same trajectory,
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we assume that the velocities and accelerations of both actuators are identical.

In the two-robot problem, similar to the single-robot problem, the objective function and constraints
can be determined. Considering the time, thermal energy, and torque change rate in the objective func-
tion, along with the torque, velocity and acceleration limitations, and using discretization, the conic
quadratic programming problem has been transformed into the following form:

K—1 K—1 K—1 K—1
min{ " 2as'af + 5 Y 17ef+ Y 2Add5+p ) 1765
k=0 k=0 k=0 k=0
st Th= m,-(s%)af —i—c,-(sk%l)bik%] +gi(5%),

b) = 53,
b= 32,

k1 1k o~ kA k
b;"" —b; =2a;As",
k+1 k+1
T(s )< T <A T,
2
k
Ty
N
T1i
. §C§+1+C;{+d{c k € Ny_1,

1)

—ef < : <€, keN_i,

<b4+1, i=1,2. (11D

4 Collaborative robot problem of a bar

In this part, the movement of two robots carrying a bar along a common path is examined (see Figure
2). To address the collaborative robot problem in the presence of the bar, a strip is connected to the
end-effectors. The impact of the bar’s movement on the manipulators is divided into two components
and subsequently integrated with the dynamics of the respective manipulators [5].
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Figure 2: Schematic representation of the manipulators

4.1 Bar torque and end-effector

First, we describe the movement of the bar by examining the forces acting on it, which including transi-
tional forces and rotational forces. If we denote the direction of movement of the bar by P(s), then using
the chain rule, the acceleration is described by the following equation:

B(s) = P'(s)5+ P (s)s". (12)

The forces exerted on the bar are separated into two components: transitional and the rotational forces.
The transitional force is given by
F(s) = mpP(s), (13)

where my, is bar’'mass and jj(s) represents the acceleration along the path. By applying the chain rule, the
acceleration can be reformulated as [5]:

F(s) = mpP' (5)§ +myuP" (s)s°. (14)

This force is the same for all parts of the bar. Therefore, it can be divided into two forces acting at the
ends of the bar. Gravitational force is also applied uniformly to all parts of the bar. Since the force is
applied at both ends of the rod and the path is horizontal, the net effect of gravity along the path is zero.
To check the rotational force, we first consider the applied torque on the bar, which is obtained by the

following equation [5]:
d
7(s) = - (R(S)IR(s) w(s)), (15)
where I refers to the inertial matrix, R(s) is the rotation matrix that converts the coordinates of each point

in the device to the reference coordinates, and @(s) is the angular velocity. This torque results from two
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forces, Fi and F,, which are applied at each rod end at a right angle to the bar, with the equal magnitude
and in contrary direction. Therefore, bar movement equations are divided into two groups of equations.
Because, these forces are parallel to the tangent vector to the path, their magnitude has the following
relationship with the magnitude of the bar moment [5]:

2d|Fy(s)| = |w(s)], i=1,2, (16)

where d represents the distance from the center of mass of the bar to the end-effector. Since we have two

sets of dynamic equations, we denote them with indices 1 and 2. So, the net force applied to each of the

end-effectors is obtained as follows, by adding the transitional and gravitational force, and is denoted by
FP[50:

1 1

F' = SE(s) +Fy(s)+5

F(s) = mpp (s)§+myp” (s)s°. (18)

F, a7

4.2 Joint torque

The vector of force and torque applied to i-th arm(joint) is as follows [5]:
E = [EX7Ey7E27niX7niy7niZ]' (19)

We denote the torque generated by the joint corresponding to the i-th (participating) arms by 7;. Using
the Jacobian of the cooperative arms, the following relationship between the moment produced at the
joint and the applied force is established [5]:

%(s) = Ji(ai(s)) Fi(s). (20)

The J; matrix is a six-by-n matrix that represents the number of joints. To obtain the joint angle, we can
use inverse kinematics. In this case, there is no torque in the actuators, and the forces are applied only in
along the direction of the x and y axes. For two cooperative manipulators, the Jacobian matrix is given
by the following [5]:

-hl hz-
hy hy
0 0

Jl(qi(s)) = 0 W (21)
0 0

where hy = —ljysin(qi1) — lipsin(gi1 + qiz), ho = —lsin(git + qiz), h3 = i1 cos(qi1) + lin cos(gi1 + gin)
and hy = [ cos(gi1 +qin)-

Since there is no transitional motion along the z-axis, the third row of the Jacobian matrix becomes
zero [5]. Additionally, since there is no torque along the x and y axes, the fourth and fifth rows of the
Jacobian matrix also become zero. This matrix consists of two components: translational velocity and
angular velocity. Therefore, the total torque of the system, obtained by adding the torque of the bar, is
expressed as follows [5]:
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Ti(s) = (mi(s) — Jilqi(s))" Romi(s)) a(s) + (ei(s) = Ji(qi(s))" Roci(s)) b(s)

+ (8i(s) = Ji(qi(s))"Ro3) - 22)

4.3 Problem modeling

Based on the extracted torque of the entire system with the bar, the optimization problem addressed in
the second section of the article aims to minimize time, actuator thermal energy, and torque change rate.
This is done subject to constraints on speed, acceleration, and torque, and is formulated as the following
convex quadratic conic problem:

min {kZ'l 2AsFdE + }/ZkZ’I 176k + kZ’l 2As*db + }/2]21 lTeIE}
k=0 k=0 k=0 k=0
st Ti(s) = (mi(s)Ji(qi(s))" Rymi(s))a(s) + (ci(s)Ji(qi(s))" Roki(s)b(s)
+mi(s) = (Jo(s) = Jilgi(s)) " RGJ),
b =3,
bl =st,
B — b =24k As*,
(s ) ST <A,

2
k
v
N
T
< ci.H_l —i—ci-(—i—dlk, for k € Ny (23)
k.
N
ni
i

0,
bi(s5), for k€ Ni

‘Afm
171

b

c
z
b; <

T~

AT

‘fm’|
2cf
bk —1

<bE+1, fork e Ny, fori=1,2.
2

5 Simulation

Here, the numerical results are presented for two cooperative manipulators. Table 1 provides the dynamic
parameters used in the simulation for both manipulators. The parameter d is defined as 0.5m and the bar
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Table 1: Dynamic parameters for the manipulators

Parameters Values
Number of points 300
Length of links Lh=hL=5h=1I14=0.5(m)
Mass of links my =mp =m3 =my = 0.5(kg)

Joint stiffness tensor(link) I =0.08(kg.m?)
Upper and lower torque T=[—1,1](N.m)

path coordinate

0.6 —— First end-effector
= = Second end-effector
®  Origin

0.4

0.2

-0.2

04f

06k

Figure 3: The motion of the end-effectors

has a mass of 0.5kg. The optimization problem is structured as an SOCP and solved using CVX [4] in
MATLAB. The results with 73 = % = 0.001 are shown in Figures 3 to 13.

Figure 3 shows the motion of the end-effectors on a semicircular path with a radius of 0.65m.

The joint torques and their bounds for the first and second manipulators are plotted as a function
of the time and path coordinate in Figures 4 and 5. Upon examining the plots, it becomes clear that at
each point along the path (or time), one of the joint torques reaches saturation, consistent with the results
reported in the literature for minimum-time control of single manipulator [8].

Figures 6-9 illustrate the pseudo velocities (b and by) and pseudo accelerations (a; and ay) of the
robot arms with respect to the path coordinate s. The initial and final velocities are chosen to be zero.
The first arm has the highest joint velocities in the path coordinates from 0.5 to 0.6, while the second
arm reaches its peak velocities in the range from 0.3 to 0.4. Maximum accelerations in both arms are
observed during the time interval from O to 0.1 seconds.

Figures 10 and 11 present the angular displacement of the each robot arm as a function of time. The
joint angles of the robotic arms may take positive or negative values over time due to the motion of the
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Joint torques1
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5 |/
i
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
path coordinate (-)

Figure 4: The joint torques of the first manipulators

Joint torques2
T T T

0/0

0.8 0.9

0.6 0.7

0.4 0.5
path coordinate (-)

0.3

0.2

0.1
Figure 5: The joint torques of the second manipulators

links. By convention, clockwise rotations are considered negative, whereas counterclockwise rotations

are considered positive.
Figure 12 illustrates the relationship between path and time, while Figure 13 provides its three-
dimensional representation with respect to time. To obtain a more concise figure, the time axis is scaled
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Figure 6: Joint velocities of first WS‘pect to the path

Pseudo velocity (b2)

o
P
-
o
N

0.07

0.06

o
o
a1

pseudo velocity (1/s)

-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
path coordinate (-)

o

!1gure 7: Joint velocities of second arm with respect to the path

by a fact e time associated with each node point can be explicitly determined. Both arms
move simult y from the initial to the terminal position, completing the trajectory in 36.0306 sec-
onds. The objective function value at the optimal solution of problem (23) is 72.1471.



14 Maryam Kia, M ad Keyanpour

Pseudo acceleration (a1)
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Figure 8: Joint accelerations of ﬁrWesp@ct to the path
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Pseudo acceleration (a2)
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-0.01

-0.015

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
path coordinate (-)

Moint accelerations of second arm with respect to the path

6 Conclusion and suggestions

This article ¢ rs the problem of controlling collaborative robots, with a specific focus on the si-
multaneous minimization of time, thermal energy, and absolute value of the rate of torque change in
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Figure 10: Angular displacements of first arm

Joint angles 2
T T

2.6 T T T

joint angle (rad)

Figure 11: Angular displacements of second arm

cooperative robots. The problem involves constraints on speed and acceleration and examines two sce-
narios, with and without a bar, for two two-jointed robots. The goal is to ensure their end-effectors move
simultaneously along a common planar path. The challenges of co-location and co-time movement of the
cooperative robots are modeled appropriately and implemented effectively. It is demonstrated that the



16 Maryam Kia, Mohammad Keyanpour

Path coordinate - time relation 2
T T T T T T 1
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1 1 1 1 1 1 1
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Figure 12: Arm path coordinates as a function of time

Simultaneous movement of end-effectors along the path

First end-effector
= = Second end-effector
®  Origin

0.7 —

0.6 —

0.5—

0.4 —

0.3 —

0.2 —

Time [s]

0.1—

0.1 —

-0.2 —

Figure 13: Arm path coordinates as a function of time

problem can be formulated into a finite-dimensional conic optimization problem, which can be solved
using conic optimization solvers. The numerical results indicate that the proposed method is reliable.
In the simulations, it is observed that, for specific points of the path, joint torques in each arm reached
saturation in both scenarios, confirming the optimality of the results.
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Table 2: Performance comparison of the proposed method

Weighting factors Method in [2] = Proposed method
Thermal energy for first arm 231.8393 231.113
Thermal energy for second arm 363.7254 363.1151
Absolute value of the rate of torque change for first arm 11.6168 7.7488
Absolute value of the rate of torque change for second arm 10.5346 7.9576

It is suggested to investigate the problem of minimum-time optimization on a non-flat path, taking
into account friction and torque of the motors connected to the joints.
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