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Abstract. Nonlinear science plays an important role in modern technology. Due to the limitations
over the linear theories and the chaotic nature of the problems in this technological era, investigation of
nonlinear problems has become indispensable to analyse the dynamics of complicated and multi-scale
characteristics problems. This article aims at the analysis and implementation of a numerical method
for a class of singularly perturbed time dependent nonlinear reaction diffusion problems. Together with
the classical finite difference operators, a piecewise uniform Shishkin mesh in the spatial direction and a
uniform mesh in the temporal direction are used to formulate a new numerical method to solve the class
of problems. The method is proved to be second order convergent in space and first order convergent
in time uniformly with respect to the perturbation parameter. Numerical experiments are included to
support the theoretical results.

Keywords: Singularly perturbed time dependent nonlinear reaction diffusion problems, boundary layers, finite dif-
ference scheme, Shishkin mesh, parameter uniform convergence
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1 Introduction

Occurrence of small quantities in numerous physical problems induce a chaotic behaviour in the solution
of the problems and/or in the derivatives of their solution. For an instance, the solution of physical
problems involving Prandtl number, Reynolds number, Peclet number and Rayleigh number undergoes
a rapid change in some portion of the domain of the problems; fluid which experiences a boundary layer
flow is a precise example for this. Such problems could be modeled using differential equations with
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prescribed conditions. Precisely, a differential equation together with a small positive parameter in its
higher order derivative and boundary/initial conditions find applications in fluid dynamics [8], control
systems [17], chemical transport models [11] and bio-fluid mechanics [4]. Such differential equations
are termed as Singular Perturbation Problems (SPPs).

Since SPPs exclude exact solutions and further classical numerical techniques fail to resolve SPPs,
new techniques are developed. Most of the SPPs of practical importance are nonlinear in nature. In the
literature, very few asymptotic and numerical techniques are available for nonlinear SPPs; asymptotic
techniques provide only qualitative theory for such problems and there are many limitations over the
numerical methods. It is highly complicated to establish a parameter uniform numerical method for
nonlinear SPPs; since nonlinear nature of the problems, occurrence of small quantities and the presence
of the boundary layers lead to much complexities in the computational aspect. Designing parameter
uniform, robust and layer resolving numerical methods for these problems is still in nascent level.

Nonlinear science plays a vital role in modern technology [2], [14]. Due to the limitations over the
linear theories, the analysis of nonlinear problems has become very essential to investigate the dynamics
of complicated and multi scale characteristics problems.

Several non-classical numerical methods are available in the literature for linear SPPs whereas only
few robust and parameter uniform numerical methods are available in the literature for nonlinear SPPs.
Precisely, only a handful of numerical methods are available in the literature for nonlinear parabolic
SPPs. To list a few, in [3] an adaptive space-time Newton-Galerkin approach involving Newton’s method
is developed for a nonlinear parabolic SPP. Article [5] deals with the construction of monotone iterative
algorithms for aforesaid problem whereas article [6] deals with the construction of inexact monotone
method for the same problem.

In [7], a discontinuous Galerkin finite element method is designed for a nonlinear parabolic SPP.
Article [9] is devoted to the construction of a kind of non-linear analytical technique called as variational
iteration method for a nonlinear parabolic SPP. Applicability of Lagrange’s multiplier for a nonlinear
parabolic SPP is demonstrated in [16] and [10]. Ali developed a collocation method for aforesaid prob-
lem in [1]; further, in [12] and [13], Kopteva and Linss used an elliptic reconstruction approach to solve
the same problem.

In the present article, a class of nonlinear parabolic SPPs with Dirichlet boundary conditions is
considered. An algorithm which utilizes the continuation method is used to compute the numerical ap-
proximations for the class of problems under consideration. Many of the numerical methods reported in
the literature utilizes Newton’s method as a nonlinear solver. It is worth observing that Newton’s method
renders it useless in the limiting case ε → 0 [8]. It is to be noted that in the present study no artificial
condition is imposed either on the perturbation parameter or on the boundary conditions. Moreover,
the boundary conditions are not necessarily zero in the present study which induces the complexity of
ensuring the compatibility conditions.

For any continuous function φ on a domain Λ, ||φ ||Λ = sup(x,t)∈Λ |φ(x, t)| and for any mesh function
Φ, ||Φ||ΛM,N = max j,k |Φ(x j, tk)|. Throughout this article C denotes a positive constant which is indepen-
dent of the variables x, t and the parameters ε,M,N.
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2 The main problem

The class of singularly perturbed time dependent nonlinear reaction diffusion problems under consider-
ation is

Bεu(x, t) =
∂u(x, t)

∂ t
− ε

∂ 2u(x, t)
∂x2 + f (x, t,u(x, t)) = 0, (x, t) ∈ D, (1)

with u(x,0) = Bb(x) on Γb, u(0, t) = Bl(t) on Γl, u(1, t) = Br(t) on Γr, (2)

where Bb(x),Bl(t),Br(t) are known smooth functions, 0 < ε ≤ 1, D = Ωx ×Ωt , Ωx = (0,1), Ωt = (0,T ],
D = D∪Γ, Γ = Γb ∪Γl ∪Γr, Γb = {(x,0) : 0 ≤ x ≤ 1}, Γl = {(0, t) : 0 ≤ t ≤ T} and Γr = {(1, t) : 0 ≤
t ≤ T}. It is assumed that for all (x, t,θ(x, t)) ∈ D×R, f (x, t, θ(x, t)) is sufficiently smooth such that
∂ f (x, t, θ(x, t))

∂θ
≥ α > 0.

Under suitable compatibility and continuity conditions, a unique solution u(x, t) of (1)-(2) exists [15].
The reduced problem corresponding to (1)-(2) is

∂u0(x, t)
∂ t

+ f (x, t,u0(x, t)) = 0,(x, t) ∈ [0,1]× (0,T ], (3)

with u0 = u on Γb. (4)

From (3)-(4), for (x, t) ∈ D,

|u0(x, t)| ≤C, | ∂ ku0(x,t)
∂ tk | ≤C, | ∂ ku0(x,t)

∂xk | ≤C, 1 ≤ k ≤ 4,

| ∂ ku0(x,t)
∂xk−1∂ t | ≤C, k = 2,3,4.

(5)

In general u ̸= u0 on Γl ∪Γr. Hence the solution u(x, t) of (1)-(2) may exhibit boundary layers near
both Γl and Γr.

3 Theoretical results

Let B∗
ε be a linear operator such that

B∗
εψ(x, t) =

∂ψ(x, t)
∂ t

− ε
∂ 2ψ(x, t)

∂x2 +a(x, t)ψ(x, t),

where a(x, t) is a smooth function such that a(x, t)≥ α on D.

Theorem 1. Let χ be any function in the domain of B∗
ε such that χ ≥ 0 on Γ,B∗

ε χ ≥ 0 on D then χ ≥ 0
on D.

Proof. Let x̃, t̃ be such that χ(x̃, t̃ ) = min
x, t

χ(x, t) and suppose χ(x̃, t̃ )< 0. Then (x̃, t̃ ) /∈ Γ, ∂ χ(x̃,t̃ )
∂ t = 0 and

∂ 2χ(x̃,t̃ )
∂x2 ≥ 0. Let (x̃, t̃ ) ∈ D and consider

B∗
ε χ(x̃, t̃) =

∂ χ(x̃, t̃ )
∂ t

− ε
∂ 2χ(x̃, t̃ )

∂x2 +a(x̃, t̃ )χ(x̃, t̃ )< 0,

a contradiction. Hence, χ(x̃, t̃ )≥ 0 which proves the theorem.
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Theorem 2. Let χ be any function in the domain of B∗
ε . Then for (x, t) ∈ D,

|χ(x, t)| ≤ ||χ||Γ + 1
α
||B∗

ε χ||D.

Proof. Let Θ = ||χ||Γ + 1
α
||B∗

ε χ||D and Ψ±(x, t) = Θ ±χ(x, t). Then Ψ± ≥ 0 on Γ and

B∗
εΨ±(x, t) = Θa(x, t)±B∗

ε χ(x, t)
≥ 1

α
||B∗

ε χ||D a(x, t)±B∗
ε χ(x, t)

≥ 0 on D.

Hence from Theorem 1, Ψ± ≥ 0 on D, which proves the theorem.

Decompose u(x, t) of (1)-(2) into q(x, t) and s(x, t) such that u(x, t) = q(x, t)+ s(x, t) where

∂q(x, t)
∂ t

− ε
∂ 2q(x, t)

∂x2 + f (x, t,q(x, t)) = 0 on D, (6)

with q = u0 on Γ (7)

and
∂ s(x, t)

∂ t
− ε

∂ 2s(x, t)
∂x2 + f (x, t,q(x, t)+ s(x, t))− f (x, t,q(x, t)) = 0 on D, (8)

with s = u−q on Γ. (9)

From (9), on Γb, s = u−q = u−u0 = 0.

3.1 Bounds on q(x, t) and its derivatives

Theorem 3. For all (x, t) ∈ D,

|q(x, t)| ≤C, | ∂ kq(x,t)
∂ tk | ≤C, | ∂ kq(x,t)

∂xk | ≤C, k = 1,2,∣∣∣ ∂ kq(x,t)
∂xk

∣∣∣≤C
(

1+ ε1− k
2

)
, k = 3,4, | ∂ kq(x,t)

∂xk−1∂ t | ≤C, k = 2,3.
(10)

Proof. From (6) and (3),

B∗
εq(x, t) =

∂q(x, t)
∂ t

− ε
∂ 2q(x, t)

∂x2 +a1(x, t)q(x, t)

=
∂u0(x, t)

∂ t
+a1(x, t)u0(x, t)

= f1(x, t),

(11)

where a1(x, t) =
∂ f (x, t,θ1(x, t))

∂u
is an intermediate value. To establish the required results, decompose

q(x, t) further as follows
q(x, t) = u0(x, t)+ ε q1(x, t), (12)

where u0(x, t) is the solution of the reduced problem (3)-(4) and q1(x, t) is the solution of the following
problem

B∗
εq1(x, t) =

∂q1(x, t)
∂ t

− ε
∂ 2q1(x, t)

∂x2 +a1(x, t)q1(x, t) =
∂ 2u0(x, t)

∂x2 on D, (13)
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with q1 = 0 on Γ. (14)

Now the bounds for q1(x, t) and its derivatives are established. Let A±(x, t) = C± q1(x, t). Then A± =
C ≥ 0 on Γ and for a suitable choice of C, for (x, t) ∈ D,

B∗
εA±(x, t) =Ca1(x, t)±B∗

εq1(x, t)≥ 0.

Hence, using Theorem 1 with A±(x, t), for any (x, t) ∈ D, |q1(x, t)| ≤ C. Differentiating (13) partially
with respect to t and rearranging,

B∗
ε

∂q1(x, t)
∂ t

=
∂ 3u0(x, t)

∂x2∂ t
− ∂a1(x, t)

∂ t
q1(x, t)

and then using Theorem 2, for any (x, t) ∈ D,
∣∣∣ ∂q1(x,t)

∂ t

∣∣∣ ≤ C. In the same way it can be established that

for any (x, t) ∈ D,
∣∣∣ ∂ 2q1(x,t)

∂ t2

∣∣∣ ≤ C. Using the mean value theorem to ∂q1
∂x , for some y ∈ I = [η ,η +

√
ε ],

∂q1(y, t)
∂x

=
q1(η +

√
ε, t)−q1(η , t)√

ε

which gives ∣∣∣∣∂q1(y, t)
∂x

∣∣∣∣≤ 2ε
−1/2 ∥q1∥I ≤C ε

−1/2.

Now consider

∂q1(x,t)
∂x = ∂q1(y,t)

∂x +
∫ x

y

∂ 2q1(s, t)
∂x2 ds

= ∂q1(y,t)
∂x + ε−1

∫ x

y

(
∂q1(s, t)

∂ t
+a1(s, t)q1(s, t)− ε

∂ 2u0(s, t)
∂x2

)
ds.

(15)

From (15), for any (x, t) ∈ D,
∣∣∣ ∂q1(x,t)

∂x

∣∣∣ ≤ C ε−1/2. In the same way it can be established that for any

(x, t) ∈ D, | ∂ kq1(x,t)
∂xk−1∂ t | ≤C, k = 2,3. From (13), for any (x, t) ∈ D,

∣∣∣ ∂ 2q1(x,t)
∂x2

∣∣∣≤C ε−1. Differentiating (13)

partially with respect to x once and twice and then using the required results, for any (x, t) ∈ D,
∣∣∣ ∂ 3q1(x,t)

∂x3

∣∣∣
≤ C ε−3/2 and

∣∣∣ ∂ 4q1(x,t)
∂x4

∣∣∣ ≤ C ε−2. Finally using the appropriate bounds of u0(x, t),q1(x, t) and their
derivatives with (12), the bounds of q(x, t) and its derivatives follow.

3.2 Bounds on s(x, t) and its derivatives

From (8),

B∗
εs(x, t) =

∂ s(x, t)
∂ t

− ε
∂ 2s(x, t)

∂x2 +a2(x, t)s(x, t) = 0, (16)

where a2(x, t) =
∂ f (x, t,θ2(x, t))

∂u
is an intermediate value. Decompose s(x, t) as follows:

s(x, t) = sl(x, t)+ sr(x, t), (17)
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where B∗
εsl(x, t) = 0 on D with sl = s on Γl, sl = 0 on Γb∪Γr and B∗

εsr(x, t) = 0 on D with sr = s on Γr,
sr = 0 on Γb ∪Γl. Let, for any x ∈ [0,1],

Bl(x) = e−x
√

α/
√

ε and Br(x) = e−(1−x)
√

α/
√

ε .

Theorem 4. For all (x, t) ∈ D,

| ∂ ksl(x,t)
∂ tk | ≤ CBl(x), 0 ≤ k ≤ 2,

| ∂ ksl(x,t)
∂xk | ≤ C ε−k/2Bl(x), 1 ≤ k ≤ 4.

Analogous results hold for sr and its derivatives with x replaced by 1− x.

Proof. Let E±
1 (x, t) =CBl(x) ± sl(x, t), (x, t) ∈ D. Then for a proper choice of C, E±

1 ≥ 0 on Γ and for
(x, t) ∈ D,

B∗
εE±

1 (x, t) =C (a2(x, t)−α)Bl(x)≥ 0.

Thus using Theorem 1 with E±
1 , E±

1 ≥ 0 on D which gives for any (x, t) ∈ D, |sl(x, t)| ≤ CBl(x). Now

the bound on ∂ sl

∂ t is established. Let E±
2 (x, t) = CBl(x) ± ∂ sl(x,t)

∂ t , (x, t) ∈ D. Note that | ∂ sl(x,t)
∂ t |Γ ≤ C.

Thus for a proper choice of C, E±
2 ≥ 0 on Γ. Differentiate B∗

εsl = 0 partially with respect to t once and
rearrange to get

B∗
ε

∂ sl

∂ t
=

∂ 2sl

∂ t2 − ε
∂ 3sl

∂x2∂ t
+a2

∂ sl

∂ t
=−∂a2

∂ t
sl. (18)

From (18), for any (x, t) ∈ D, ∣∣∣∣B∗
ε

∂ sl(x, t)
∂ t

∣∣∣∣≤CBl(x).

Now for (x, t) ∈ D,

B∗
εE±

2 (x, t) =C (a2(x, t)−α)Bl(x)±B∗
ε

∂ sl(x, t)
∂ t

≥ 0.

Thus using Theorem 1 with E±
2 , E±

2 ≥ 0 on D which gives for any (x, t) ∈ D, | ∂ sl(x,t)
∂ t | ≤ CBl(x). In

the same way the bound on ∂ 2sl(x,t)
∂ t2 can be established. Following the technique used to bound ∂q1(x,t)

∂x ,

for (x, t) ∈ D,
∣∣∣ ∂ sl(x,t)

∂x

∣∣∣ ≤ C ε−1/2. Further, following the technique used to bound ∂ sl(x,t)
∂ t with the func-

tion E±
3 (x, t) = Cε−1/2Bl(x) ± ∂ sl(x,t)

∂x , for (x, t) ∈ D,
∣∣∣ ∂ sl(x,t)

∂x

∣∣∣ ≤ Cε−1/2Bl(x). Now from the equation

B∗
εsl(x, t) = 0, for (x, t) ∈ D,

∣∣∣ ∂ 2sl(x,t)
∂x2

∣∣∣ ≤ Cε−1Bl(x). Following the technique used to bound ∂ sl(x,t)
∂x ,

for (x, t) ∈ D,
∣∣∣ ∂ 2sl(x,t)

∂x∂ t

∣∣∣≤C ε−1/2Bl(x) and
∣∣∣ ∂ 3sl(x,t)

∂x2∂ t

∣∣∣≤C ε−1Bl(x). Differentiating B∗
εsl(x, t) = 0 once

and twice partially with respect to x and using the required bounds, the bounds on ∂ 3sl(x,t)
∂x3 and ∂ 4sl(x,t)

∂x4

follow.
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4 Mesh and discrete problem

4.1 The rectangular mesh

A rectangular mesh DM,N is now constructed on D. Let DN
x = {x j}N−1

j=1 , DN
x = {x j}N

j=0, DM
t = {tk}M

k=1,

DM
t = {tk}M

k=0, DM,N = DM
t ×DN

x , DM,N
= DM

t ×DN
x and ΓM,N = DM,N ∩Γ. On spatial domain [0,1] a

piecewise uniform Shishkin mesh DN
x is constructed as follows, [0,1] = [0,λ ] ∪ (λ ,1−λ ] ∪ (1−λ ,1]

such that

λ = min
{

1
4
,
2
√

ε√
α

lnN
}
.

On both [0,λ ] and (1−λ ,1], a uniform mesh with N
4 mesh intervals is placed whereas on (λ ,1−λ ], a

uniform mesh with N
2 mesh intervals is placed. Let h1 be the step length in both [0,λ ] and [1−λ ,1] and

h2 be that of [λ ,1−λ ]. Then h1 =
4λ

N
, h2 =

2(1−2λ )

N
, and

x j =


jh1, for 0 ≤ j ≤ N

4
,

λ +

(
j− N

4

)
h2, for

N
4
+1 ≤ j ≤ 3N

4
,

(1−λ )+

(
j− 3N

4

)
h1, for

3N
4

+1 ≤ j ≤ N.

On the other hand, on the temporal domain [0,T ] a uniform mesh DM
t is placed. Thus, for 0 ≤ k ≤ M,

tk = kht where ht =
T
M .

4.2 The discrete problem

The discrete problem corresponding to (1)-(2) is, for (x j, tk) ∈ DM×N ,

BM,N
ε U(x j, tk) = D−

t U(x j, tk)− ε δ 2
x U(x j, tk)+ f (x j, tk,U(x j, tk)) = 0,

with U = u on ΓM×N .

(19)

Here D−
t U(x j, tk) =

U(x j, tk)−U(x j, tk−1)

ht
, δ 2

x U(x j, tk) =
(D+

x −D−
x )U(x j, tk)
h j

,

D−
x U(x j, tk) =

U(x j, tk)−U(x j−1, tk)
h j

, D+
x U(x j, tk) =

U(x j+1, tk)−U(x j, tk)
h j+1

, h j = x j − x j−1 and h j =

h j+1 +h j

2
with h0 =

h1

2
and hN =

hN

2
.
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5 Error analysis

Let P1(x j, tk) and P2(x j, tk) be two mesh functions such that P1 = P2 on ΓM×N . Consider, for (x j, tk) ∈
DM,N ,

(BM,N
ε P1 −BM,N

ε P2)(x j, tk) = D−
t (P1 −P2)(x j, tk)− ε δ 2

x (P1 −P2)(x j, tk)
+ f (x j, tk,P1(x j, tk))− f (x j, tk,P2(x j, tk))

= D−
t (P1 −P2)(x j, tk)− ε δ 2

x (P1 −P2)(x j, tk)
+a3(x j, tk)(P1 −P2)(x j, tk)

= BM∗,N∗

ε (P1 −P2)(x j, tk),

(20)

where a3(x j, tx) is an intermediate value and BM∗,N∗

ε is the Frechet derivative of BM,N
ε .

Theorem 5. Let Ψ be any mesh function such that Ψ ≥ 0 on ΓM,N , BM∗,N∗

ε Ψ ≥ 0 on DM,N , then Ψ ≥ 0
on DM,N

.

Proof. Similar to Theorem 1.

Theorem 6. Let Ψ be any mesh function. Then for (x j, tk) ∈ DM,N
,

|Ψ(x j, tk)| ≤ ||Ψ||ΓM,N + 1
α
||BM∗,N∗

ε Ψ||DM,N .

Proof. Similar to Theorem 2.

Using Theorem 6 with (20),

|(P1 −P2)(x j, tk)| ≤ ||P1 −P2||ΓM,N + 1
α
||BM∗,N∗

ε (P1 −P2)||DM,N

= 1
α
||BM∗,N∗

ε (P1 −P2)||DM,N

= 1
α
|(BM,N

ε P1 −BM,N
ε P2)(x j, tk)|DM,N .

(21)

As in the continuous case, decompose U into Q and S such that U = Q+S where Q is the solution of

BM∗,N∗

ε Q(x j, tk) = D−
t Q(x j, tk)− ε δ 2

x Q(x j, tk)+a1(x j, tk)Q(x j, tk)
= f1(x j, tk), (x j, tk) ∈ DM,N ,

(22)

with Q = q on Γ
M,N (23)

and S is the solution of

BM∗,N∗

ε S(x j, tk) = D−
t S(x j, tk)− ε δ 2

x S(x j, tk)+a2(x j, tk)S(x j, tk)
= 0, (x j, tk) ∈ DM,N ,

(24)

with S = s on Γ
M,N . (25)
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Note that for any smooth function η(x j, tk),∣∣∣∣( ∂

∂ t
−D−

t

)
η(x j, tk)

∣∣∣∣ ≤ C (tk − tk−1)max
ζ∈Tk

∣∣∣∣∂ 2η(x j,ζ )

∂ t2

∣∣∣∣ , (26)

∣∣∣∣( ∂ 2

∂x2 −δ
2
x

)
η(x j, tk)

∣∣∣∣ ≤C (x j+1 − x j−1)
2 max

ζ∈X j

∣∣∣∣∂ 4η(ζ , tk)
∂x4

∣∣∣∣ (27)

and ∣∣δ 2
x η(x j, tk)

∣∣ ≤ max
ζ∈X j

∣∣∣∣∂ 2η(ζ , tk)
∂x2

∣∣∣∣ (28)

where Tk = [tk−1, tk] and X j = [x j−1,x j+1].

5.1 The local truncation error in Q−q

Theorem 7. Let q be the solution of (11),(7) and Q be that of (22),(23) then for any (x j, tk) ∈ DM,N ,∣∣∣BM∗,N∗

ε (Q−q)(x j, tk)
∣∣∣ ≤ C (M−1 +N−2). (29)

Proof. From (11) and (22), for (x j, tk) ∈ DM,N ,

BM∗,N∗

ε (Q−q)(x j, tk) = f1(x j, tk)−BM∗,N∗

ε q(x j, tk)

=
(
B∗

ε −BM∗,N∗

ε

)
q(x j, tk)

=
(

∂

∂ t −D−
t

)
q(x j, tk)− ε

(
∂ 2

∂x2 −δ 2
x

)
q(x j, tk).

(30)

Since tk − tk−1 = T M−1 for all k and x j+1 − x j−1 ≤ 2N−1 for any choice of λ , from (26), (27) and (30),
for any (x j, tk) ∈ DM,N ,

∣∣∣BM∗,N∗

ε (Q−q)(x j, tk)
∣∣∣≤C

(
M−1

∣∣∣∣∂ 2q
∂ t2

∣∣∣∣
Tk

+ ε N−2
∣∣∣∣∂ 4q
∂x4

∣∣∣∣
X j

)
. (31)

Using Theorem 3 with (31), for any (x j, tk) ∈ DM,N ,∣∣∣BM∗,N∗

ε (Q−q)(x j, tk)
∣∣∣ ≤ C (M−1 +N−2).

5.2 The local truncation error in S− s

Theorem 8. Let s be the solution of (16),(9) and S be that of (24),(25), then for any (x j, tk) ∈ DM,N∣∣∣BM∗,N∗

ε (S− s)(x j, tk)
∣∣∣ ≤ C (M−1 +(N−1 lnN)2). (32)



Co
rre

ct
ed

Pr
oo

f10 Manikandan Mariappan

Proof. From (16) and (24), for (x j, tk) ∈ D,

BM∗,N∗

ε (S− s)(x j, tk) = 0−BM∗,N∗

ε s(x j, tk)

=
(
B∗

ε −BM∗,N∗

ε

)
s(x j, tk)

=
(

∂

∂ t −D−
t

)
s(x j, tk)− ε

(
∂ 2

∂x2 −δ 2
x

)
s(x j, tk).

(33)

The result in (32) is established through S− sl and S− sr. Following (33),

BM∗,N∗

ε (S− sl)(x j, tk) =
(

∂

∂ t
−D−

t

)
sl(x j, tk)− ε

(
∂ 2

∂x2 −δ
2
x

)
sl(x j, tk). (34)

The result in (32) similar for S− sl is proved for the choices λ = 1
4 and λ = 2

√
ε√

α
lnN separately. First let

λ = 1
4 . In this case ε−1 ≤C (lnN)2 and x j+1 − x j−1 = N−1. Using (26), (27) and (34), for any (x j, tk) ∈

DM,N ∣∣∣BM∗,N∗

ε (S− sl)(x j, tk)
∣∣∣≤C

(
M−1

∣∣∣∣∂ 2sl

∂ t2

∣∣∣∣
Tk

+ ε N−2
∣∣∣∣∂ 4sl

∂x4

∣∣∣∣
X j

)
. (35)

Using Theorem 4 with (35), for any (x j, tk) ∈ DM,N ,∣∣∣BM∗,N∗

ε (S− sl)(x j, tk)
∣∣∣ ≤ C

(
M−1 +N−2ε−1

)
≤ C

(
M−1 +(N−1 lnN)2

)
.

(36)

Now consider the second case λ = 2
√

ε√
α

lnN. For this choice of λ , the result is proved on the sub-domains
[0,λ ]× [0,T ], [1−λ ,1]× [0,T ] and [λ ,1−λ ]× [0,T ] separately. The spatial mesh length on both [0,λ ]
and [1−λ ,1] is h1 = 4N−1λ = 8

√
ε N−1 lnN√

α
. Using (26) and (27) with (34) and then Theorem 4 for both

x j ∈ [0,λ ] and x j ∈ [1−λ ,1] and tk ∈ DM
t , we have∣∣∣BM∗,N∗

ε (S− sl)(x j, tk)
∣∣∣≤C (M−1 +(N−1 lnN)2). (37)

Finally consider [λ ,1−λ ]. In this case the spatial mesh length h2 =
2(1−2λ )

N ≤ C N−1. Using (26) and
(27) with (34) and then Theorem 4, we get

∣∣∣BM∗,N∗

ε (S− sl)(x j, tk)
∣∣∣≤C

(
M−1 + ε(x j+1 − x j−1)

2
∣∣∣∣ ∂ sl

∂x4

∣∣∣∣
X j

)
. (38)

Also using (26) and (28) with (34) and then Theorem 4,

∣∣∣BM∗,N∗

ε (S− sl)(x j, tk)
∣∣∣≤C

(
M−1 + ε

∣∣∣∣∂ 2sl

∂x2

∣∣∣∣
X j

)
. (39)
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Note that
max
x∈X j

{
Bl(x),Br(x)

}
≤C N−2, λ ≤ x j ≤ 1−λ . (40)

To establish the required result in the final case, consider the two inequalities ε ≥ N−2 and ε ≤ N−2.
Suppose ε ≥ N−2. For aforementioned inequality, using Theorem 4 and (40) with (38), for any x j ∈
[λ ,1−λ ] and tk ∈ DM

t , ∣∣∣BM∗,N∗

ε (S− sl)(x j, tk)
∣∣∣≤C (M−1 +N−2). (41)

Now consider the other inequality ε ≤ N−2. For this choice, using Theorem 4 and (40) with (39), for any
x j ∈ [λ ,1−λ ] and tk ∈ DM

t , ∣∣∣BM∗,N∗

ε (S− sl)(x j, tk)
∣∣∣≤C (M−1 +N−2). (42)

From (36), (37), (41) and (42), either λ = 1
4 or λ = 2

√
ε√

α
lnN, for any (x j, tk) ∈ DM,N ,∣∣∣BM∗,N∗

ε (S− sl)(x j, tk)
∣∣∣ ≤ C (M−1 +(N−1 lnN)2). (43)

Following similar technique, the same bound for BM∗,N∗

ε (S− sr)(x j, tk) can be established. Using the
triangle inequality and the results for BM∗,N∗

ε (S− sl)(x j, tk) and BM∗,N∗

ε (S− sr)(x j, tk), (32) holds for any
(x j, tk) ∈ DM,N .

5.3 The error in U −u

Theorem 9. Let u be the solution of (1)-(2) and U be that of (19). Then for any (x j, tk) ∈ DM,N
,

|U(x j, tk)−u(x j, tk)| ≤ C (M−1 +(N−1 lnN)2). (44)

Proof. For any (x j, tk) ∈ DM,N ,∣∣∣BM∗,N∗

ε (U −u)(x j, tk)
∣∣∣ ≤

∣∣∣BM∗,N∗

ε (Q−q)(x j, tk)
∣∣∣

+
∣∣∣BM∗,N∗

ε (S− s)(x j, tk)
∣∣∣ . (45)

Using Theorems 7 and 8 with (45), for any (x j, tk) ∈ DM,N ,∣∣∣BM∗,N∗

ε (U −u)(x j, tk)
∣∣∣≤C (M−1 +(N−1 lnN)2). (46)

Since U = u on ΓM,N , using Theorem 6 with (46), for any (x j, tk) ∈ DM,N
,

|(U(x j, tk)−u(x j, tk)| ≤ C (M−1 +(N−1 lnN)2).



Co
rre

ct
ed

Pr
oo

f12 Manikandan Mariappan

6 Numerical experiments

In this section, the nonlinear time dependent problem (1)-(2) is solved numerically by using a variant
of the continuation technique designed in [8] together with the computational technique provided in this
article.

Notations EM,N ,CM,N
p and pM,N denote the parameter-uniform maximum pointwise error, parameter-

uniform error constant and parameter-uniform rate of convergence, respectively and are given by

EM,N = max
ε

EM,N
ε where EM,N

ε =

{∣∣UM,N −UM,2N
∣∣ , for x∣∣UM,N −U2M,N
∣∣ , for t

pM,N =


log2

EM,N

EM,2N , for x

log2
EM,N

E2M,N , for t,
CM,N

p =

{
EM,NN p⋆

1−2−p⋆ , for x
EM,NMp⋆

1−2−p⋆ , for t

where p⋆ =

min
N

pM,N , for x

min
M

pM,N , for t.

Example 1. Consider the nonlinear time dependent problem

∂u(x, t)
∂ t

− ε
∂ 2u(x, t)

∂x2 +
(
u3(x, t)+(1+ x+ t)u(x, t)

)
= 0, (x, t) ∈ D,

with Ωt = (0,T ] = (0,1], u(x,0) = 0 on Γb, u(0, t) =
t
2

on Γl and u(1, t) = t on Γr.

For Example 1, for different values of ε, the values of EM,N , CM,N
p and pM,N in the variable x with a

uniform mesh consists of 10 mesh intervals for the variable t is given in Table 1 and for different values of
ε, the values of EM,N , CM,N

p and pM,N in the variable t with a piecewise uniform Shishkin mesh consists
of 128 mesh intervals for the variable x is given in Table 2. Moreover, the CPU time (in seconds) for
each row of both the tables is given in the last column of the tables. For M = 10, N = 64 and ε = 2−15,
Figure 1 portraits the numerical approximations of u(x, t); for the same values, Figure 2 is the rotated
version of Figure 1. For M = 10, N = 64, ε = 2−9,2−15,2−21, the mesh plot of u(x, t) is presented in
Figure 3 and for aforesaid values of M,N and ε = 2−3,2−9,2−15, the cross section of solution u(x, t) at
(x,1) is presented in Figure 4. Further, log− log plots for the error are given in Figure 5 and Figure 6.

Example 2. Consider the nonlinear time dependent problem

∂u(x, t)
∂ t

− ε
∂ 2u(x, t)

∂x2 +
(

u5(x, t)+(
√

2+ x2 + t/2)u(x, t)
)
= 0, (x, t) ∈ D,

with Ωt = (0,T ] = (0,1], u(x,0) = 0 on Γb, u(0, t) =
t√
π

on Γl and u(1, t) =
t
2

on Γr.

For Example 2, for different values of ε, the values of EM,N , CM,N
p and pM,N in the variable x with a

uniform mesh consists of 10 mesh intervals for the variable t is given in Table 3 and for different values of
ε, the values of EM,N , CM,N

p and pM,N in the variable t with a piecewise uniform Shishkin mesh consists
of 128 mesh intervals for the variable x is given in Table 4. Moreover, the CPU time (in seconds) for
each row of both the tables is given in the last column of the tables.
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Table 1: Values of EM,N , pM,N & CM,N
p for M = 10 & α = 0.9

ε
N CPU time

(in seconds)64 128 256 512 1024
2−3 1.1964e-04 2.9965e-05 7.4946e-06 1.8739e-06 4.6848e-07 374.4625
2−6 8.8734e-04 2.2622e-04 5.6796e-05 1.4217e-05 3.5551e-06 745.7579
2−9 6.1498e-03 1.7095e-03 4.4487e-04 1.1214e-04 2.8109e-05 1115.9714
2−12 3.3941e-03 2.4820e-03 1.0642e-03 5.4053e-04 2.2426e-04 1446.1152
2−15 3.3765e-03 2.4745e-03 1.0663e-03 5.3970e-04 2.3479e-04 1544.8254
2−18 3.3703e-03 2.4719e-03 1.0670e-03 5.3941e-04 2.3485e-04 1638.8346
2−21 3.3682e-03 2.4709e-03 1.0673e-03 5.3931e-04 2.3487e-04 1732.6916
2−24 3.3674e-03 2.4706e-03 1.0673e-03 5.3927e-04 2.3488e-04 1826.3198
2−27 3.3671e-03 2.4705e-03 1.0674e-03 5.3926e-04 2.3488e-04 1919.7852
2−30 3.3670e-03 2.4704e-03 1.0674e-03 5.3925e-04 2.3488e-04 2013.2693
2−33 3.3670e-03 2.4704e-03 1.0674e-03 5.3925e-04 2.3488e-04 2106.7252
2−36 3.3670e-03 2.4704e-03 1.0674e-03 5.3925e-04 2.3488e-04 2200.398
EM,N 6.1498e-03 2.4820e-03 1.0674e-03 5.4053e-04 2.3488e-04
pM,N 9.8164e-01 1.2174e+00 9.8164e-01 1.2025e+00
CM,N

p 7.3876e-01 5.8877e-01 5.0000e-01 5.0000e-01 4.2903e-01

Table 2: Values of EM,N , pM,N & CM,N
p for N = 128 & α = 0.9

ε
M CPU time

(in seconds)160 320 640 1280 2560
20 7.5072e-05 1.8625e-04 1.8580e-04 1.2266e-04 6.8143e-05 468.1151

2−2 4.0261e-04 3.0780e-04 1.8616e-04 1.1145e-04 6.4288e-05 931.1274
2−4 4.0261e-04 3.0780e-04 1.8616e-04 1.1145e-04 6.4288e-05 1393.2488
2−6 4.0261e-04 3.0780e-04 1.8616e-04 1.1145e-04 6.4288e-05 1855.5419

EM,N 4.0261e-04 3.0780e-04 1.8616e-04 1.2266e-04 6.8143e-05
pM,N 3.8742e-01 7.2540e-01 6.0192e-01 8.4803e-01
CM,N

p 1.2213e-02 1.2213e-02 9.6621e-03 8.3272e-03 6.0513e-03

7 Conclusion

In this article a numerical method involving classical finite difference operators, a piecewise uniform
Shishkin mesh in the spatial direction and a uniform mesh in the temporal direction has been developed
for a class of singularly perturbed time dependent nonlinear reaction diffusion problems with Dirichlet
boundary conditions. It has been proved both theoretically and numerically that the developed method is
robust, layer resolving and parameter uniform convergent.

Figures presented in this article reveal the fact that the boundary layers changes rapidly near both the
boundaries Γl and Γr of the domain of the problem. From the tables in this article, it is evident that the
maximum pointwise errors decreases monotonically through the diagonal. Further, the computed rate of
convergence increases whereas the computed error constant decreases when the number of mesh points
is increased; this shows the consistency of the proposed numerical technique.

The analysis presented in this article can be appropriately modified to problems with discontinuous
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Table 3: Values of EM,N , pM,N & CM,N
p for M = 10 & α = 0.9

ε
N CPU time

(in seconds)64 128 256 512 1024
2−3 4.5437e-05 1.1371e-05 2.8433e-06 7.1086e-07 1.7772e-07 376.0943
2−6 2.8607e-04 7.2303e-05 1.8105e-05 4.5280e-06 1.1321e-06 747.8975
2−9 2.0621e-03 5.4802e-04 1.3871e-04 3.4840e-05 8.7171e-06 1115.2013
2−12 2.4677e-03 1.4327e-03 6.6710e-04 2.8504e-04 1.0938e-04 1444.846
2−15 2.4675e-03 1.4427e-03 6.6957e-04 2.8600e-04 1.1376e-04 1541.6231
2−18 2.4675e-03 1.4462e-03 6.7044e-04 2.8634e-04 1.1383e-04 1635.5685
2−21 2.4675e-03 1.4475e-03 6.7075e-04 2.8646e-04 1.1386e-04 1730.0049
2−24 2.4674e-03 1.4479e-03 6.7086e-04 2.8651e-04 1.1387e-04 1824.0905
2−27 2.4674e-03 1.4481e-03 6.7090e-04 2.8652e-04 1.1387e-04 1917.8662
2−30 2.4674e-03 1.4481e-03 6.7091e-04 2.8653e-04 1.1387e-04 2011.909
2−33 2.4674e-03 1.4481e-03 6.7092e-04 2.8653e-04 1.1387e-04 2106.3572
2−36 2.4674e-03 1.4482e-03 6.7092e-04 2.8653e-04 1.1387e-04 2200.1872
EM,N 2.4677e-03 1.4482e-03 6.7092e-04 2.8653e-04 1.1387e-04
pM,N 7.6898e-01 1.1100e+00 1.2274e+00 1.3313e+00
CM,N

p 1.4625e-01 1.4625e-01 1.1546e-01 8.4026e-02 5.6905e-02

Table 4: Values of EM,N , pM,N & CM,N
p for N = 128 & α = 0.9

ε
M CPU time

(in seconds)160 320 640 1280 2560
20 4.9600e-05 1.2721e-04 1.2870e-04 8.4370e-05 4.4241e-05 467.9497

2−2 2.6542e-04 2.0529e-04 1.1765e-04 6.8207e-05 3.8520e-05 934.9692
2−4 2.6542e-04 2.0529e-04 1.1765e-04 6.8207e-05 3.8520e-05 1401.7115
2−6 2.6542e-04 2.0529e-04 1.1765e-04 6.8207e-05 3.8520e-05 1868.2465

EM,N 2.6542e-04 2.0529e-04 1.2870e-04 8.4370e-05 4.4241e-05
pM,N 3.7064e-01 6.7363e-01 6.0923e-01 9.3133e-01
CM,N

p 7.6858e-03 7.6858e-03 6.2298e-03 5.2802e-03 3.5799e-03

source terms and can be extended to nonlinear systems and nonlinear systems with discontinuous source
terms.
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Figure 1: Solution profile u(x, t) of Example 1
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Figure 2: Rotated version of Figure 1
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Figure 3: Mesh plot of solution u(x, t) of Example 1 as ε → 0
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Figure 4: Cross section of solution u(x, t) of Example 1 at (x,1) as ε → 0
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Figure 5: Log− log plot of the maximum pointwise errors corresponding to Table 1
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Figure 6: Log− log plot of the maximum pointwise errors corresponding to Table 2
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