Journal of Mathematical Modeling J
Vol. -, No. -, 2026, pp. -. Research Article < MM >

Higher order numerical method for a class of singularly
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Abstract. Nonlinear science plays an important role in modern technology. Due to the limitations
over the linear theories and the chaotic nature of the problems in this technological era, investigation of
nonlinear problems has become indispensable to analyse the dynamics of complicated and multi-scale
characteristics problems. This article aims at the analysis and implementation of a numerical method
for a class of singularly perturbed time dependent nonlinear reaction diffusion problems. Together with
the classical finite difference operators, a piecewise uniform Shishkin mesh in the spatial direction and a
uniform mesh in the temporal direction are used to formulate a new numerical method to solve the class
of problems. The method is proved to be second order convergent in space and first order convergent
in time uniformly with respect to the perturbation parameter. Numerical experiments are included to
support the theoretical results.
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1 Introduction

Occurrence of small quantities in numerous physical problems induce a chaotic behaviour in the solution
of the problems and/or in the derivatives of their solution. For an instance, the solution of physical
problems involving Prandtl number, Reynolds number, Peclet number and Rayleigh number undergoes
a rapid change in some portion of the domain of the problems; fluid which experiences a boundary layer
flow is a precise example for this. Such problems could be modeled using differential equations with
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prescribed conditions. Precisely, a differential equation together with a small positive parameter in its
higher order derivative and boundary/initial conditions find applications in fluid dynamics [8], control
systems [17], chemical transport models [ 1] and bio-fluid mechanics [4]. Such differential equations
are termed as Singular Perturbation Problems (SPPs).

Since SPPs exclude exact solutions and further classical numerical techniques fail to resolve SPPs,
new techniques are developed. Most of the SPPs of practical importance are nonlinear in nature. In the
literature, very few asymptotic and numerical techniques are available for nonlinear SPPs; asymptotic
techniques provide only qualitative theory for such problems and there are many limitations over the
numerical methods. It is highly complicated to establish a parameter uniform numerical method for
nonlinear SPPs; since nonlinear nature of the problems, occurrence of small quantities and the presence
of the boundary layers lead to much complexities in the computational aspect. Designing parameter
uniform, robust and layer resolving numerical methods for these problems is still in nascent level.

Nonlinear science plays a vital role in modern technology [2], [14]. Due to the limitations over the
linear theories, the analysis of nonlinear problems has become very essential to investigate the dynamics
of complicated and multi scale characteristics problems.

Several non-classical numerical methods are available in the literature for linear SPPs whereas only
few robust and parameter uniform numerical methods are available in the literature for nonlinear SPPs.
Precisely, only a handful of numerical methods are available in the literature for nonlinear parabolic
SPPs. To list a few, in [3] an adaptive space-time Newton-Galerkin approach involving Newton’s method
is developed for a nonlinear parabolic SPP. Article [5] deals with the construction of monotone iterative
algorithms for aforesaid problem whereas article [0] deals with the construction of inexact monotone
method for the same problem.

In [7], a discontinuous Galerkin finite element method is designed for a nonlinear parabolic SPP.
Article [9] is devoted to the construction of a kind of non-linear analytical technique called as variational
iteration method for a nonlinear parabolic SPP. Applicability of Lagrange’s multiplier for a nonlinear
parabolic SPP is demonstrated in [16] and [10]. Ali developed a collocation method for aforesaid prob-
lem in [1]; further, in [12] and [13], Kopteva and Linss used an elliptic reconstruction approach to solve
the same problem.

In the present article, a class of nonlinear parabolic SPPs with Dirichlet boundary conditions is
considered. An algorithm which utilizes the continuation method is used to compute the numerical ap-
proximations for the class of problems under consideration. Many of the numerical methods reported in
the literature utilizes Newton’s method as a nonlinear solver. It is worth observing that Newton’s method
renders it useless in the limiting case € — 0 [8]. It is to be noted that in the present study no artificial
condition is imposed either on the perturbation parameter or on the boundary conditions. Moreover,
the boundary conditions are not necessarily zero in the present study which induces the complexity of
ensuring the compatibility conditions.

For any continuous function ¢ on a domain A, |[¢[|s = sup e |¢(x,?)| and for any mesh function
D, ||@||\ny = max |P(x;,#)|. Throughout this article C denotes a positive constant which is indepen-
dent of the variables x,¢ and the parameters £, M, N.
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2 The main problem

The class of singularly perturbed time dependent nonlinear reaction diffusion problems under consider-
ation is Sule.r) ule.)
u(x,t u(x,t

P —€ 9.2 + f(x,t,u(x,t)) =0, (x,t) €D, €))
with u(x,0) = Bp(x) on T, u(0,7) = B;(t) on Iy, u(1,¢) = B,(t)on T, 2)

where B, (x),B(t),B,(t) are known smooth functions, 0 < € <1,D =Q, xQ;, Q, = (0,1), Q, = (0,7],

D=DUT, T =0, Ul UL, Tp={(x,00:0<x<1},T;={(0,):0<¢<T}and T, = {(1,1) : 0 <

t < T}. It is assumed that for all (x,z,0(x,7)) € D X R, f(x,z, 0(x,t)) is sufficiently smooth such that

df(x,t, 0(x,1))
20

%gu(x,t) =

>o>0.

Under suitable compatibility and continuity conditions, a unique solution u(x,) of (1)-(2) exists [15].
The reduced problem corresponding to (1)-(2) is

P | e tofx.1)) =0, (x.6) €10,1] < 0.7, @

with ug = u on I';,. 4)
From (3)-(4), for (x,t) € D,

|u0(x l‘)‘ <c, |8ku0 (x,t) |<C, |6 uo(xt)

oxk
|Tull)| < ¢, k=2,3,4.

&)

In general u # up on I'; UT',. Hence the solution u(x,7) of (1)-(2) may exhibit boundary layers near
bothI; and I',.

3 Theoretical results

Let B} be a linear operator such that

§ oy (x,t %y (x,t
)= P PVOD |y

where a(x,1) is a smooth function such that a(x,7) > o on D.

Theorem 1. Let y be any function in the domain of By such that y > 0onT',*B;x > 0on D then y >0
on D.

Proof. Let X, be such that y (%,7) = mlnx(x t) and suppose ¥ (%,7) < 0. Then (%,7) ¢ T, axg[z,f) =0and
% > 0. Let (%,7) € D and consider

oy T %y (x,F o
wig(eh) = 2D T | i) <o,

a contradiction. Hence, x (%,7) > 0 which proves the theorem. O
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Theorem 2. Let ) be any function in the domain of 8}. Then for (x,t) € D,

(e, 0)] < Hxllr + g |[Bexp-
Proof. Let © = ||x||r+ L||B:x||p and ¥*(x,) = © =+ x(x,7). Then ¥* > 0.on T and

BIPE(x,1) Oa(x,t) =By (x,1)
al1Bixllpal,1) £ By (x1)

OonD.

VIV

Hence from Theorem 1, ¥* > 0 on D, which proves the theorem.
Decompose u(x,t) of (1)-(2) into g(x,¢) and s(x,#) such that u(x,t) = g(x,t) + s(x,t) where

dq(x,t)  9%q(x,1) N
Ct) e TIRL | flarg(x) =OonD,

withg =ugonI’

and

ds(x,t) . 92s(x,1)

y S5 Fxta(n) +5(60) = fxrg(x0) =0 on D,

withs=u—qgonTl.

From (9),on I}, s=u—g=u—uy=0.
3.1 Bounds on ¢(x,) and its derivatives
Theorem 3. For all (x,t) € D,

awn|<C, JHER<e, (T <C k=12
2 <c14e ), k=34, |58I<C k=23

ox dxk=19¢

Proof. From (6) and (3),
dq(x,r)  9*q(x,1)

Birg(x,1) = o £ o2 +ai(x,1) q(x,t)
y auoa(:’t)—i-al(x’t)u()(x’t)

= f1<x7t)7
df(x,t,01(x,1))

where a; (x,) =
q(x,t) further as follows

q(x,t) = up(x,t) +€q(x,1),

(6)
(M

®)
€))

(10)

(11

is an intermediate value. To establish the required results, decompose

(12)

where ug(x,7) is the solution of the reduced problem (3)-(4) and g (x,?) is the solution of the following

problem
dqi(x,1) 82q1(x,t)

%qu(xat): ot — € Ox2 +a1(x,t)q1(x,t):

0%ug(x,1)
dx?

onD,

(13)
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withg; =0onT. (14)

Now the bounds for g (x,¢) and its derivatives are established. Let A*(x,t) = C 4 g (x,t). Then AT =
C > 0 on I' and for a suitable choice of C, for (x,t) € D,

BEA®(x,1) = Cay (x,t) £ Biqi (x,1) > 0.

Hence, using Theorem 1 with A (x,t), for any (x,¢) € D, |q1(x,t)| < C. Differentiating (13) partially
with respect to ¢ and rearranging,

dn(t)  Duglt)  day(x1)
o oo o )

B
and then using Theorem 2, for any (x,?) ‘9‘“(x f)
m

< C. In the same way it can be established that

for any (x,1)

< C. Using the mean value theorem to %, for some y € I = [n,n + €],

9q1(»1) _ qi(n+ Ve =qi(n.1)

dx VE
which gives
0 N _ _
' qla(y ) <2e ]/2||q1HI§C8 1/2.
X
Now consider
dqi(xt) aql }t + anl St
ox - ax2 (15)
2
gy _ 8q1( ) d uo(s,t)
= 24w e IK (T-l—al(s,t)ql(s,t)—eaxz ds.

a‘”(x D1 < Ce~1/2. In the same way it can be established that for any

92 ql(xt)

From (15), for any (x,7)

(x,t) €D, |aa‘§(‘ fat | <C, k=2,3. From (13), for any (x,)

<Ce . Differentiating (13)
d3q1(xt)
9 ax3

partially with respect to x once and twice and then using the required results, for any (x,7)

< Ce 3% and ‘%‘ < Ce~2. Finally using the appropriate bounds of ug(x,t),q;(x,t) and their

derivatives with (12), the bounds of ¢(x,) and its derivatives follow. U

3.2 Bounds on s(x,7) and its derivatives

From (8),
ds(x,t d%s(x,t
Bis(x,1) = SS; ) _¢ (;S‘Z ) b ar(rn)stor) = O, (16)
df(x,t,6,(x,t
where ay(x,t) = M is an intermediate value. Decompose s(x,?) as follows:
u

s(x,0) = ' (x,1) +5(x,1), (17)
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where B%s' (x,t) = 0 on D with s’ =son T, s' =0on I, UT, and B%s"(x,1) = 0 on D with s =son T,
s"=0onTI,UIY. Let, for any x € [0,1],

B! (x) = e*V%/VE and B’ (x) = e (17IVE/VE,

Theorem 4. For all (x,t) € D,

|2 < CBl(x), 0< k<2,

2500 < ce k2Bl (x), 1 <k <4

Analogous results hold for s" and its derivatives with x replaced by 1 — x.

Proof. Let Ef (x,t) = CB!(x) & s(x,t), (x,t) € D. Then for a proper choice of C, E{" >0 on I and for
(x,t) €D,
BLET (x,1) = C(aa(x,t) — ) B (x) > 0.

Thus using Theorem 1 with Ei°, Ei* > 0 on D which gives for any (x,7) € D, |s'(x,t)| < CB(x). Now

the bound on %st is established. Let Ef (x,1) = CB!(x) + aslgz), (x,¢) € D. Note that \as )L < .

Thus for a proper choice of C, E; = > 0 on I'. Differentiate B%s' = 0 partially with respect to t once and
rearrange to get

Losl 9%l d3s! s _dap J
By = o Coa T T o (18
From (18), for any (x,7) € D,
ds! (x,1)
ot

‘%Z <CB'(x).

Now for (x,2) € D,
ds! (x,1)
ot

BLE; (x,1) = C(aa(x,t) — o) B (x) + B >0.

Thus using Theorem 1 with E5°, ES* > 0 on D which gives for any (x,t) € D, \%| < CB!(x). In

9%s! (x,r) . . . g1 (x,1)
the same way the bound on =5~ can be established. Following the technique used to bound =5,

for (X,l) c D ds! (xt) ds! (xt)

< Ce~V/2, Further, following the technique used to bound with the func-

tion E5 (x,1) = CS*I/Z]BBI(x) L () for (x,t) € D, %5 (x | < Ce~1/2B!(x). Now from the equation
Bis! (x, f) =0, for (x,1) € D, M‘ < Ce™'B!(x). Following the technique used to bound 95'(xt) (;”),

i S (x’) < Ce ' B!(x). Differentiating B}s (x,¢) = 0 once

. d3s! (x,1) d*st (xt)
and twice partlally with respect to x and using the required bounds, the bounds on =55~ and —5 7~
X X

follow. O

for (x,t)

ox20t

<Ce 2B (x and‘as (1)
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4 Mesh and discrete problem

4.1 The rectangular mesh

A rectangular mesh D" is now constructed on D. Let DY = {x j}y:]l, EXN = {xj¥'lo DY = {uil,,
D) = {z}¥,, DMN = DM x DY, D" = D) x D and T"¥ = D" AT On spatial domain [0,1] a

piecewise uniform Shishkin mesh BXN is constructed as follows, [0,1] = [0,A] U (A,1 —A] U (1 —A4,1]

such that
A= min{l,mlnN}.
NG

On both [0,4] and (1 — A, 1], a uniform mesh with § mesh intervals is placed whereas on (1,1 —21], a
uniform mesh with 5 mesh intervals is placed. Let /; be the step length in both [0,A] and [1 — A, 1] and
42 2(1-2A)

hy be that of [A,1 —A]. Then hy = —, hy = , and
N N
N
jh17 forOS.]SZv
. N N . 3N
3N 3N

On the other hand, on the temporal domain [0,7] a uniform mesh 5?4 is placed. Thus, for 0 <k < M,
ty = kh; where h; = %

4.2 The discrete problem

The discrete problem corresponding to (1)-(2) is, for (x;,#;) € DMV

By MU (xj,10) = D; U (xj, 1) — € 82U (xj,10) + f(xj,t6, U (x, 1)) = O,
(19)
with U = u on MV,

U(xj i) —U(xj,tx—1) (DY —D7)U (xj,1)

Here D; U(x;,t;) = . 07U (xj,1y) =

)

hy h;j
_ U(xjty) —U(xi—1,t U(xit1,t) —U(xj, 1ty —
Dx U(x.,-,tk) = ( / ) h ( J ), DjU(x.,-,tk) = ( Zis h) ( J ), h.,-:xl,-—xj,l and hj =
h h h ’ h "
10 Withﬁoz—landﬁN:—N

2 2 27
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5 Error analysis
Let Pi(x;,t) and P>(x;,#) be two mesh functions such that P, = P, on M*N_ Consider, for (x k) €
DM’N7
(B VP =B VP (xj0) = Dy (P —Py)(xjt) — € 82 (P — Py) (x), 1)
+F (gt Pr (1)) — f (%)t P (% 1))

= Dy (Pi—P)(xj,tx) — € 82(Py — P2) (x}, 1) (20)
+az(xj, 1) (Pr — P2) (%), 1)

M* , N*
= Be " (A= P)(x) 1),
. . . M* N* . A MN
where a3(x;,t,) is an intermediate value and B is the Frechet derivative of B, ™.

Theorem 5. Let W be any mesh function such that 't > 0 on I" M.N , ’BQ/[*’N*‘P >0 on DMN ,then ¥ >0
—M.N
onD 7.

Proof. Similar to Theorem 1. O
Theorem 6. Let ¥ be any mesh function. Then for (xj,t) € EM’N,
M*N*
[¥(xj,00)] < [P pwa + 5 [|Be ™ P pwr
Proof. Similar to Theorem 2. 0
Using Theorem 6 with (20),
(P —=Po)(xjs16)| < [[Pr=Pal[pa + LB (P = Po) |
= gllBe " (P Py)|pu a1
= LBV —BYVP) (xj,00) [ pu.

As in the continuous case, decompose U into Q and S such that U = Q + S where Q is the solution of

By MO ) = D Q(xjtk) — €820(x. 1) +ar (7, 1) Q%) 14) 22)
= filxj,t), (xj,1) € DM,
with 0 =gon N (23)
and S is the solution of
By VS(x,n) = DyS(xy,n) —&828(xj, 1) +ax(xj, 1) S (xj, 1)

24
= 0, (xj,l‘k)EDM’N, 24

with § = s on MV, (25)
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Note that for any smooth function 1 (x;,#),

? r azn('x'vg)
‘<at —D, > n(xj,t)| < C(tk_tk‘l)rgneaﬁ 87[21 ’ 06
02 54 y
'(8)@_5)‘)77()617@ Sc(xj-&-l—)cj_])zrgrlg? w @7
and y \
N
|6 1 xj’tk)’ = EneaXX i;yg—w (28)

where T, = [tk_1,tk] and Xj = [xj,l,xjﬂ].

5.1 The local truncation error in Q — g

Theorem 7. Let g be the solution of (11),(7) and Q be that of (22),(23) then for any (x;,t;) € DMAN.
BYN(Q—q)(xp0)| < CMT+NTD). (29)
Proof. From (11) and (22), for (x;,#) € DM,
BV (Q-a) () = Ailem) — B qlxg.n)
= (Br=BY ) gln) (30)
= (500 )alejn) e (5~ 82) ala o).

Since t; —t;_; = T M~ for all k and Xjp1—Xj1 < 2N~! for any choice of A, from (26), (27) and (30),
for any (x;,2;) € DMV,
. (31)
Xj

‘%M M- q)(xhtk)‘ <C (M‘l

Using Theorem 3 with (31), for any (x;,#) € DYV,

BN Q- )| < cMT 4N,

5.2 The local truncation error in S — s

Theorem 8. Let s be the solution of (16),(9) and S be that of (24),(25), then for any (xj,t;) € DMN

By NV (S—s)(n)| < C(MT (NN (32)
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Proof. From (16) and (24), for (x;,7) € D,
By N (S—s)(wpn) = 0B Vs n)
= (BB ) s(n) (33)
— 2
= <%_Dt )s(xjatk)_e(%_Sf)s(xjatk)'
The result in (32) is established through S — s/ and S — s”. Following (33),
M* N* I J -\ J 0 2\ 1
Be 7 (S—5)(xjt6) = E—Dt s (xj,tk) — € ﬁ_éx s (xj, ). (34)

The result in (32) similar for S — s’ is proved for the choices A = 7 Land A = f InN separately. First let

A= %. In this case €' < C(InN)? and Xjp1 —Xj_1 = N—L. Using (26), (27) and (34), for any (xj,t) €

DM’N
) (35

(36)

d%s!

o |,

841

+eN? T

(%Qf*”"(s—sl)@j,tk)j <cC (Ml

Using Theorem 4 with (35), for any (x;,%) € DM
)5324*=N*(S—s1)(xj,tk)} < C(M 14N
< C(M'+(N"'InN)?).

Now consider the second case A = % InN. For this choice of A4, the result is proved on the sub-domains

[0,A] X [0,T], [1—A,1] x[0,T] and [A,1 —A] x [0, T] separately. The spatial mesh length on both [0, 2]

and [l —A,1]is hy = ANTIQ = w\/#. Using (26) and (27) with (34) and then Theorem 4 for both
€[0,A] and x; € [l — A, 1] and t, € DM, we have

‘%vaN" (S—sl)(xj,tk)‘ <C(M™' +(N"'InN)?). (37)

Finally consider [A,1 — A]. In this case the spatial mesh length /; = 21-24) M)

(27) with (34) and then Theorem 4, we get

< CN~'. Using (26) and

) . (38)
Xj
) . (39)

ds!

‘%Q/[*W*(S_SZ)(X]'J/C)) <C (M_l +8(xj+1 _xj*1)2 o

Also using (26) and (28) with (34) and then Theorem 4,

(921

M* N*
‘% Sl)(xj,tk)‘ SC (M + € (9)(2
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Note that
max{IB%’(x),IBa’(x)} <CN 2 A<x;<1-A. (40)

YeX;

To establish the required result in the final case, consider the two inequalities € > N 2and e <N2.
Suppose € > N~2. For aforementioned inequality, using Theorem 4 and (40) with (38), for any x; €
[A,1—A]and #; € DM,

“Blg‘/l*’N*(S—sl)(xj,tk)‘ <CM+N2). 41)

Now consider the other inequality € < N~2. For this choice, using Theorem 4 and (40) with (39), for any
xj €[A,1—A] and#, € DM,

\%?*W*‘(s—sf)(xj,zk)‘ <CM™'4N72). (42)

From (36), (37), (41) and (42), either A = § or A = %lnN, for any (x;,7) € DMV,

‘%’!’*’N* (stl)(xj,rk)( < CM ' (N"'InN)?). 43)

Following similar technique, the same bound for B4 " (S —5")(xj,1) can be established. Using the
triangle inequality and the results for BY (S—s')(x;,t) and pM N (S§—5")(xj,1), (32) holds for any
(xj,tk) € DM, [l

5.3 TheerrorinU —u

Theorem 9. Let u be the solution of (1)-(2) and U be that of (19). Then for any (x;,t;) € 5M’N,

U (xj,8) = u(xj,0)] < C(M~ '+ (N"'InN)?). (44)
Proof. For any (x;,t;) € DMV,

BN W] =[BT (- 9) )

- (45)
+ ’%éw o (S—s)(xj,tk)‘ )
Using Theorems 7 and 8 with (45), for any (x;,#) € DMAN .
‘%Q/[*’N*(U—u)(xj,tk)’ <CcM '+ (N"'N)). (46)

Since U = u on TV using Theorem 6 with (46), for any (x;,%) € EM’N,

(U (xj,te) —u(xj,te)| < C(M~'+ (N"'InN)?).
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6 Numerical experiments

In this section, the nonlinear time dependent problem (1)-(2) is solved numerically by using a variant
of the continuation technique designed in [8] together with the computational technique provided in this
article.

. M.N . . . .
Notations EMN C »  and pMN denote the parameter-uniform maximum pointwise error, parameter-
uniform error constant and parameter-uniform rate of convergence, respectively and are given by

M.N M2N
MN  _ MN un ) UM —UM2N| - for x
E™Y = maxE; " where E; = = YA iy
€ |UMN — g2MN| - for ¢
EMN R
- EMN NP
MN 10g2 EM,ZN’ for x CM’N N *1_27],* y for x
p - EM,N P - EM,NMp* f P
log zomwys fort, 1o tor

n}\i]an’N, for x

where p* '
n}/l[anW, forz.

Example 1. Consider the nonlinear time dependent problem

du(x,t) 882u(x,t)
ot ox?

t
with Q, = (0,7] = (0, 1], u(x,0) =0 on Iy, u(0,2) = 5 on Iy and u(1,¢) =t onT,.

+ (1 (6, 1) + (1 + x4+ 1)u(x,1)) =0, (x,1) € D,

For Example 1, for different values of &, the values of EM:V, C?,LN and pMN in the variable x with a
uniform mesh consists of 10 mesh intervals for the variable ¢ is given in Table 1 and for different values of
g, the values of EMN M and pMN in the variable 7 with a piecewise uniform Shishkin mesh consists
of 128 mesh intervals for the variable x is given in Table 2. Moreover, the CPU time (in seconds) for
each row of both the tables is given in the last column of the tables. For M = 10, N = 64 and £ =215,
Figure 1 portraits the numerical approximations of u(x,?); for the same values, Figure 2 is the rotated
version of Figure 1. For M = 10, N = 64, ¢ = 27,2715 2721 the mesh plot of u(x,t) is presented in
Figure 3 and for aforesaid values of M,N and € = 273,272 2715 the cross section of solution u(x,t) at
(x,1) is presented in Figure 4. Further, log — log plots for the error are given in Figure 5 and Figure 6.

Example 2. Consider the nonlinear time dependent problem

du(x,t) . d%u(x,t)
ot ax?
t t
with Q,; = (0,7} = (0,1}, u(x,0) =0 on 'y, u(0,t) = 7= onIjand u(l,r) = 5 on r,.

For Example 2, for different values of &, the values of EMN C)"" and pM* in the variable x with a
uniform mesh consists of 10 mesh intervals for the variable ¢ is given in Table 3 and for different values of
g, the values of EMN, C)'N and pM in the variable ¢ with a piecewise uniform Shishkin mesh consists
of 128 mesh intervals for the variable x is given in Table 4. Moreover, the CPU time (in seconds) for
each row of both the tables is given in the last column of the tables.

n (MS(x,z)+ (\f2+x2+t/2)u(x7t)) —0, (x,1) €D,
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Table 1: Values of EMN | pMN & CM™N for M =10 & ot = 0.9

e N CPU time
64 128 256 512 1024 (in seconds)
273 [ 1.1964e-04 | 2.9965e-05 | 7.4946e-06 | 1.8739¢-06 | 4.6848¢-07 374.4625
276 | 8.8734e-04 | 2.2622e-04 | 5.6796e-05 | 1.4217e-05 | 3.5551e-06 745.7579
279 | 6.1498e-03 | 1.7095e-03 | 4.4487e-04 | 1.1214e-04 | 2.8109e-05 1115.9714
2712 | 3.3941e-03 | 2.4820e-03 | 1.0642e-03 | 5.4053e-04 | 2.2426e-04 1446.1152
2715 | 3.3765e-03 | 2.4745e-03 | 1.0663e-03 | 5.3970e-04 | 2.3479e-04 1544.8254
2718 1 3.3703e-03 | 2.4719e-03 | 1.0670e-03 | 5.3941e-04 | 2.3485¢-04 1638.8346
2721 | 3.3682e-03 | 2.4709¢-03 | 1.0673e-03 | 5.3931e-04 | 2.3487e-04 1732.6916
2724 | 3.3674e-03 | 2.4706e-03 | 1.0673e-03 | 5.3927e-04 | 2.3488¢-04 1826.3198
2727 | 3.3671e-03 | 2.4705e-03 | 1.0674e-03 | 5.3926e-04 | 2.3488e-04 1919.7852
2730 | 3.3670e-03 | 2.4704e-03 | 1.0674e-03 | 5.3925e-04 | 2.3488¢-04 2013.2693
273 | 3.3670e-03 | 2.4704e-03 | 1.0674e-03 | 5.3925¢-04 | 2.3488e-04 2106.7252
2736 | 3.3670e-03 | 2.4704e-03 | 1.0674e-03 | 5.3925¢-04 | 2.3488e-04 2200.398
EMN 1°6.1498e-03 | 2.4820e-03 | 1.0674e-03 | 5.4053e-04 | 2.3488e-04
MN1°9.8164e-01 | 1.2174e+00 | 9.8164e-01 | 1.2025e+00
C,IE/I’N 7.3876e-01 | 5.8877e-01 | 5.0000e-01 | 5.0000e-01 | 4.2903e-01
Table 2: Values of EMN, pMN & Cf,/I’N forN=128 & ax=0.9
e M CPU time
160 320 640 1280 2560 (in seconds)
20 7.5072e-05 | 1.8625e-04 | 1.8580e-04 | 1.2266e-04 | 6.8143e-05 468.1151
272 | 4.0261e-04 | 3.0780e-04 | 1.8616e-04 | 1.1145¢-04 | 6.4288e-05 931.1274
274 | 4.0261e-04 | 3.0780e-04 | 1.8616e-04 | 1.1145¢-04 | 6.4288e-05 1393.2488
276 | 4.0261e-04 | 3.0780e-04 | 1.8616e-04 | 1.1145¢-04 | 6.4288e-05 1855.5419
EMN 1°4.0261e-04 | 3.0780e-04 | 1.8616e-04 | 1.2266e-04 | 6.8143e-05
PN 1 3.8742e-01 | 7.2540e-01 | 6.0192e-01 | 8.4803e-01
Cz/[’N 1.2213e-02 | 1.2213e-02 | 9.6621e-03 | 8.3272e-03 | 6.0513e-03

7 Conclusion
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In this article a numerical method involving classical finite difference operators, a piecewise uniform
Shishkin mesh in the spatial direction and a uniform mesh in the temporal direction has been developed
for a class of singularly perturbed time dependent nonlinear reaction diffusion problems with Dirichlet
boundary conditions. It has been proved both theoretically and numerically that the developed method is
robust, layer resolving and parameter uniform convergent.

Figures presented in this article reveal the fact that the boundary layers changes rapidly near both the
boundaries I'; and I', of the domain of the problem. From the tables in this article, it is evident that the

maximum pointwise errors decreases monotonically through the diagonal. Further, the computed rate of
convergence increases whereas the computed error constant decreases when the number of mesh points
is increased; this shows the consistency of the proposed numerical technique.

The analysis presented in this article can be appropriately modified to problems with discontinuous
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source terms and can be extended to nonlinear systems and nonlinear systems with discontinuous source

terms.

Table 3: Values of EMN | pMN & CM™N for M =10 & ot = 0.9

Manikandan Mariappan

e N CPU time
64 128 256 512 1024 (in seconds)
273 | 4.5437e-05 | 1.1371e-05 | 2.8433e-06 | 7.1086e-07 | 1.7772e-07 376.0943
276 | 2.8607e-04 | 7.2303e-05 | 1.8105¢-05 | 4.5280e-06 | 1.1321e-06 747.8975
279 | 2.0621e-03 | 5.4802e-04 | 1.3871e-04 | 3.4840e-05 | 8.7171e-06 | 1115.2013
2712 | 2.4677¢-03 | 1.4327e-03 | 6.6710e-04 | 2.8504e-04 | 1.0938e-04 1444.846
2715 | 2.4675¢-03 | 1.4427e-03 | 6.6957e-04 | 2.8600e-04 | 1.1376e-04 | 1541.6231
2718 | 2.4675¢-03 | 1.4462e-03 | 6.7044e-04 | 2.8634e-04 | 1.1383e-04 | 1635.5685
2721 | 2.4675¢-03 | 1.4475e-03 | 6.7075e-04 | 2.8646e-04 | 1.1386e-04 | 1730.0049
2724 | 2.4674e-03 | 1.4479e-03 | 6.7086e-04 | 2.8651e-04 | 1.1387e-04 | 1824.0905
2727 | 2.4674e-03 | 1.4481e-03 | 6.7090e-04 | 2.8652e-04 | 1.1387e-04 | 1917.8662
2730 | 2.4674e-03 | 1.4481e-03 | 6.7091e-04 | 2.8653e-04 | 1.1387e-04 2011.909
273 | 2.4674e-03 | 1.4481e-03 | 6.7092e-04 | 2.8653e-04 | 1.1387e-04 | 2106.3572
27360 | 2.4674e-03 | 1.4482e-03 | 6.7092e-04 | 2.8653e-04 | 1.1387e-04 | 2200.1872
EMN 172.4677¢-03 | 1.4482¢-03 | 6.7092¢-04 | 2.8653¢-04 | 1.1387¢-04
PN 17.6898e-01 | 1.1100e+00 | 1.2274e+00 | 1.3313e+00
CPV | 1.4625e-01 | 1.4625e-01 | 1.1546e-01 | 8.4026e-02 | 5.6905¢-02
Table 4: Values of EMN | pMN & CM™" for N =128 & o0 = 0.9
¢ M CPU time
160 320 640 1280 2560 (in seconds)
20 [ 4.9600e-05 | 1.2721e-04 | 1.2870e-04 | 8.4370e-05 | 4.4241e-05 467.9497
272 | 2.6542e-04 | 2.0529¢-04 | 1.1765¢-04 | 6.8207¢-05 | 3.8520e-05 934.9692
274 | 2.6542e-04 | 2.0529¢-04 | 1.1765e-04 | 6.8207¢-05 | 3.8520e-05 | 1401.7115
270 | 2.6542e-04 | 2.0529¢-04 | 1.1765¢-04 | 6.8207¢-05 | 3.8520e-05 | 1868.2465
EMN 172.6542e-04 | 2.0529¢-04 | 1.2870e-04 | 8.4370e-05 | 4.4241e-05
PN 1737064e-01 | 6.7363e-01 | 6.0923e-01 | 9.3133e-01
CNV | 7.6858¢-03 | 7.6858¢-03 | 6.2298¢-03 | 5.2802¢-03 | 3.5799¢-03
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Figure 1: Solution profile u(x,) of Example 1

u(x,t)

Figure 2: Rotated version of Figure 1
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Mesh plot of solution u(x,#) of Example 1 as € — 0

Figure 3
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N=64,e=2

=64,e=2"
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Cross section of solution u(x,#) of Example 1 at (x,1) as € — 0

Figure 4
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Figure 5: Log — log plot of the maximum pointwise errors corresponding to Table 1
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