| تعداد نشریات | 32 |
| تعداد شمارهها | 818 |
| تعداد مقالات | 7,911 |
| تعداد مشاهده مقاله | 38,602,946 |
| تعداد دریافت فایل اصل مقاله | 8,397,124 |
Climate evolution from the Miocene to the present in central and southeastern Kazakhstan: Evidence from Aktau Mountain and Kushuk localities | ||
| Caspian Journal of Environmental Sciences | ||
| دوره 23، شماره 4، دی 2025، صفحه 893-902 اصل مقاله (1.04 M) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22124/cjes.2025.9206 | ||
| نویسندگان | ||
| Shahizada Akmagambet1؛ Aizhan Zhamangara1؛ Anar Myrzagaliyeva1؛ Ruslan Muratov* 1؛ Zhanna Adamzhanova1؛ Talant Samarkhanov1؛ Aizhan Zadagali1؛ Anuarbek Kakabayev* 2 | ||
| 1High School of Natural Sciences of Astana International University, 8 Kabanbay Batyra Av., 000010, Astana, Kazakhstan | ||
| 2Department of Geography and Ecology, M. Kozybayev North Kazakhstan University, 114 University, Rushkin str, 150000, Petropavlovsk, Kazakhstan | ||
| چکیده | ||
| Reconstructing past climate dynamics in Central Asia is essential for understanding the Cenozoic evolution of ecosystems and regional climate patterns. This study presents a comparative paleoclimate analysis of two coeval Early Miocene floras from Kazakhstan: Aktau Mountain (also known as Dzhungar Aktau, Ili Depression, Southeastern Kazakhstan) and Kushuk (Turgai Depression, Central Kazakhstan). Using the Coexistence Approach (CA), we reconstructed key climatic parameters including mean annual temperature (MAT), coldest and warmest month temperatures (CMT, and WMT), and mean annual precipitation (MAP). The results indicate that both regions experienced warm and humid conditions during the Miocene (MAT ~14 °C, and MAP ~900–1000 mm), favorable for the development of forested ecosystems. In contrast, paleoclimate simulations from CHELSA TraCE21k reveal that during the Last Glacial Maximum (~21 ka) both localities were characterized by colder and drier conditions (MAT < 0 °C, and MAP 88–350 mm). Modern climate assessments show strong discrepancies between global climate models (CHELSA v2.1), which significantly overestimate temperature and precipitation, and regional meteorological data (Kazhydromet), documenting a strongly continental and arid climate (MAT 11.8 °C, MAP 218 mm in Aktau; and MAT 2.5 °C, MAP 275 mm in Kushuk). Our findings highlight a long-term climatic trajectory from humid Miocene conditions through arid Pleistocene environments to the modern sharply continental climate of Kazakhstan. The study emphasizes the importance of integrating paleobotanical evidence, global climate models, and observational meteorological datasets to achieve reliable reconstructions of the past and present climate dynamics in Central Asia. | ||
| کلیدواژهها | ||
| climate dynamics؛ paleoclimate reconstruction؛ Miocene؛ Kazakhstan؛ Coexistence Approach | ||
| مراجع | ||
|
Akmagambet, SHB, Zhamangara, AK, Nigmatova, SA & Adamzhanova, ZHA 2024, Application of the Coexistence Approach to Early Oligocene climate reconstruction based on the Kyyn-Kerish flora. Bulletin of the L.N. Gumilyov ENU. Chemistry, Geography, Ecology Series, 149(4): 134-147. https://doi.org/10.32523/2616-6771-2024-149-4-134-147.
Bruch, AA, Kovar-Eder, J & Utescher, T 2006, Middle and Late Miocene spatial temperature patterns and gradients in Europe — preliminary results based on palaeobotanical climate reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 238(1–4): 306–320, https:// doi.org/10.1016/j.palaeo.2006.03.031.
Bruch, AA, Uhl, D & Mosbrugger, V 2007, Miocene climate in Europe — Patterns and evolution: A first synthesis of NECLIME. Palaeogeography, Palaeoclimatology, Palaeoecology, 253(1–2): 1-7, https://doi.org/10.1016/j.palaeo.2007.03.030.
Karger, DN, Conrad, O, Böhner, J, Kawohl, T, Kreft, H, Soria-Auza, RW, Zimmermann, NE, Linder, P, Kessler, M 2017, Climatologies at high resolution for the Earth land surface areas. Scientific Data, 4 170122. https://doi.org/10.1038/sdata.2017.122.
Karger, DN, Nobis, MP, Normand, S, Graham, CH, Zimmermann, N 2023, CHELSA-TraCE21k – High resolution (1 km) downscaled transient temperature and precipitation data since the Last Glacial Maximum. Climate of the Past. https://doi.org/10.5194/cp-2021-30.
Kazhydromet 2024, Climatic characteristics of Kazakhstan regions. Retrieved from https://www.kazhydromet.kz/uploads/files/72/file/5ec145504ea54-oblast.pdf.
Kazhydromet (n.d.), Database of meteorological data of the Republic of Kazakhstan. Retrieved September 4, 2025, from https://meteo.kazhydromet.kz/database_meteo_kz/.
Kordikova, EG, Elmar PJH & Alexander VM 2000, Early Miocene Carnivora of Aktau Mountains, South Eastern Kazakhstan. Paläontologische Zeitschrift 74.1, pp. 195-204.
Kornilova, VS 1955, On the characteristics of the flora of the Bolattam layers of Turgai. Izvestiya AN KazSSR, Seriya biologicheskaya.
Kornilova, VS 1956, Results of the study of the Oligocene flora of Turgai. Trudy Instituta botaniki AN KazSSR, 3: 59-101, Izdatel’stvo AN KazSSR.
Kornilova, VS 1960, Lower Miocene flora of Kushuk (Turgai Depression). Trudy Instituta botaniki AN KazSSR, 3: 3–19. Izdatel’stvo AN KazSSR.
Kornilova, VS & Lavrov, VV 1949, On the findings of the Tertiary xerophytic flora in Turgai and its stratigraphic position. Vestnik AN KazSSR, 5, 50.
Kurlov, SI & Perezhogin, YUV 2015, Fossil Paleogene-Neogene flora of Northern Turgai (Central Kazakhstan). Vestnik Orenburgskogo gosudarstvennogo universiteta, 10(185): 30-36.
Lucas, SG, Emry, RJ & Tyutkova, LA 2000, Stratigraphy and mammalian biochronology across the Eocene–Oligocene transition in Kazakhstan. Bulletin of Carnegie Museum of Natural History, 36: 145–158.
Lucas, SG et al. 2000, AAPG Studies in Geology# 46, Chapter 3: Cenozoic Lacustrine Deposits of the Ili Basin, Southeastern Kazakhstan. pp. 59-63.
Mosbrugger, V & Utescher, T 1997, The coexistence approach: A method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 134(1-4): 61-86, https://doi.org/10.1016/S0031-0182(96)00154-X.
Mukhtubayeva, S, Razhanov, M, Daribay, T, Adamzhanova, Z, Zhamangara, A, Nurushev, M & Akmagambet, SH 2024, Prospects for the introduction of Betula pendula f. dalecarlica (L.F.) C.K. Schneid. in Akmolinsk region, Kazakhstan. Caspian Journal of Environmental Sciences, 22(4), Article 8119. https://doi.org/10.22124/cjes.2024.8119.
Nigmatova, S 2016, Altyn-Emel — geological open-air museum. In V A, Kovshar (Ed.), Trudy GNPP “Altyn-Emel”, 2 (pp. 11–31). Almaty.
Nigmatova, S, Zhamangara, A, Akmagambet, S, Madyarova, I, Abubakirova, N, Kashaganov, K & Zadagali, A 2023, Possibilities of reconstructing the Paleogene and Neogene paleoclimate based on fossil flora (example of Uly-Zhilanshik River paleoflora). Vestnik ENU. Seriya Khimiya, Geografiya, Ekologiya, 145(4): 71-82, https://doi.org/10.32523/2616-6771-2023-145-4-71-82.
Popova, S, Utescher, T, Akhmetiev, M & Bruch, AA 2019, Cenozoic climate and vegetation changes in Central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 530: 26-44, https://doi.org/ 10.1016/j.palaeo.2019.05.010.
Rayushkina, GS 1993, Miocene flora of the Aktau Mountain (Ili Depression). In Faunisticheskie i floristicheskie kompleksy mezozoya i kainozoya Kazakhstana, (pp. 134–147), Almaty.
Shi, J, Jin, Z, Fan, T, Liu, Q, Zhang, F & Fan, X 2016, Sequence development, depositional filling evolution, and prospect forecast in northern Aryskum Depression of South Turgay Basin, Kazakhstan. Energy Exploration & Exploitation, 34(4): 621–642, https://doi.org/10.1177/ 0144598716650067.
Sun, J & Wang, Y 2005, How old is the Asian monsoon system? Palaeobotanical records from North China. Palaeogeography, Palaeoclimatology, Palaeoecology, 222(3–4): 181-222, https://doi.org/ 10.1016/j.palaeo.2005.03.005.
Verestek, V et al. 2018, Constrained magnetostratigraphic dating of a continental Middle Miocene section in the arid central Asia. Frontiers in Earth Science, 6: 49.
Utescher, T, Bruch, AA, Erdei, B, François, L, Ivanov, D, Jacques, FMB & Mosbrugger, V 2014, The Coexistence Approach: Theoretical background and practical applications. Palaeogeography, Palaeoclimatology, Palaeoecology, 410: 58-73, https://doi.org/10.1016/j.palaeo.2014.05.031.
Weber, Y 2003, Paleobotanical studies of the Miocene flora of the Dzhungar Aktau. PhD Dissertation, Moscow State University, Russia.
Zhamangara, A, Akmagambet, S & Nigmatova, S 2025, Paleoclimate analysis of the Early Miocene in the Kushuk locality (Turgai Depression) based on the Coexistence Approach method. Bulletin of the L.N. Gumilyov ENU. Chemistry, Geography, Ecology Series, 150(1): 171-184, https://doi.org/10.32523/ 2616-6771-2025-150-1-171-184.
Zhamangara, A, Akmagambet, SH, Nigmatova, S, Madyarova, I, Kashaganov, K, Zadagali, A, Seidali, A & Bayshashov, B 2024, The Early Miocene Paleoclimate of Erzhilansay: Interpretation of climatic parameters using modern methods. Sustainability, 17(1): 143, https://doi.org/10.3390/su17010143.
Zhang, Z, Ramstein, G, Schuster, M, Li, C, Contoux, C & Yan, Q 2012, Aridification of the Sahara desert caused by Tethys Sea shrinkage during the Late Miocene. Nature, 476(7358): 459-463, https://doi.org/10.1038/nature10310. | ||
|
آمار تعداد مشاهده مقاله: 6 تعداد دریافت فایل اصل مقاله: 11 |
||