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Abstract. This study examines a class of predator models that incorporate cooperative predation within
specialized carnivore populations. The functional response is parameterized, and numerical simulations
are employed to support the analytical investigation of pattern formation potential. The principal finding
of this work is that stable Turing patterns, such as stripes, can emerge when predator distributions are
more localized than those of their prey. Specialized predator groups that cooperate in hunting contribute
to the formation of prey aggregation zones (roost patches), as cooperation enhances predation efficiency.
The results demonstrate that although predators exhibit limited mobility, cooperative behavior during
hunting promotes both successful predation and long-term coexistence with prey populations.
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1 Introduction

Since the publication of Alan Turing’s seminal paper on chemical morphogenesis, reaction-diffusion sys-
tems have been extensively studied for their role in the emergence of spatial and temporal patterns [18]. A
wide variety of physical, chemical, and biological systems exhibit such natural pattern formations. Many
of these patterns have been quantitatively described using mathematical models of reaction-diffusion
systems [6, 12, 19]. For example, spiral waves typically emerge near the Hopf bifurcation threshold,
particularly when the diffusion rate is low. These structures arise from homogeneous oscillations that
become unstable under slight perturbations, giving rise to spiral patterns.

Target patterns have also been investigated using diverse analytical and numerical methods [10, 17].
However, it is relatively uncommon for such analytical results to be thoroughly supported by numerical
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simulations [5]. The multiscale perturbation approach has frequently been employed to explore the
specific conditions under which these patterns emerge. Targets in coupled reaction-diffusion systems
tend to form near the intersection of Turing and temporal Hopf bifurcation regions. The derivation of
amplitude equations and subsequent stability analyses, as demonstrated by [3,8,14,20], has significantly
enhanced our understanding of the mechanisms underlying target pattern formation. These studies are
further strengthened by computational simulations that validate the theoretical predictions.

In spatiotemporal predator-prey systems, combinations of patterns—such as stripes—have been re-
ported [2]. According to Gurney et al., stripes can form in the spatial Rosenzweig–MacArthur model.
Malchow et al. [11] investigated spiral development in a phytoplankton–zooplankton–fish model using
numerical simulations. Medvinsky et al. [11] also explored the emergence of stripes in plankton–fish
interaction models, noting that initial formations may eventually disintegrate due to spatiotemporal dy-
namics. Sherratt et al. [16] highlighted how geographic barriers and landscape size can influence the
development of target patterns. Although identifying the precise conditions for the formation of spiral or
target patterns in reaction-diffusion systems is challenging, studies like [3] provide valuable guidance.
Collectively, these analytical and numerical studies effectively capture the spatiotemporal dynamics in-
herent in predator-prey systems.

Prey–predator models serve as essential ecological tools for capturing complex population dynam-
ics while accounting for environmental factors and species interactions [6]. Population growth rates
can vary across communities due to factors such as asynchronous reproductive timing, skewed sex ra-
tios, reduced foraging or predator avoidance efficiency, inbreeding depression, and group-size effects
on fertility. These factors suggest that population density can significantly impact fitness-related traits.
When population density falls below a certain threshold, it may lead to reduced reproductive success and
eventual decline [6].

Cooperative predation is a critical factor in predator-prey interactions that must be considered in
ecological models. Many predators form groups to increase hunting efficiency [7]. Examples include
coyotes, jackals, lions, wolves, spotted hyenas, and dolphins, as well as avian species such as Harris’s
hawk and several shrikes and kookaburra species. Cooperative predation is also observed in reptiles and
fish on rare occasions. This coordinated behaviour can be modelled using game-theoretic approaches or
differential equations that account for predator group size, number of prey, and predation success. Alves
and Hilker proposed a model using two ordinary differential equations to describe pack predation, intro-
ducing a cooperation term to study coexistence and bifurcation properties [1]. While these models offer
insight into predator cooperation, few reaction-diffusion models have explicitly incorporated cooperative
predation. Furthermore, the role of predation cooperation in spatial and spatiotemporal pattern formation
remains underexplored.

Thus, this study aims to investigate how cooperative predation influences pattern formation in preda-
tor–prey models. We demonstrate that, under appropriate initial conditions, stripe patterns can emerge.
Using multiscale perturbation techniques, we derive the linear amplitude equations and verify our ana-
lytical predictions through numerical simulations.

The article is organised as follows: Sections 2, 3, and 4 discuss the relevant spatiotemporal model,
along with the existence of steady points, positivity conditions, and local and global stability analysis.
Section 5 covers the corresponding model, along with bifurcation requirements. The stability of limit
cycles and spatial Turing derivation is addressed in Sections 6, 7, and 8, while the numerical validation
of the analytical results is presented in Section 9. Finally, the discussion and conclusion are provided in
Section 10.
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Table 1: The meaning of the parameter for system (1)

Parameter Representaion
K The carrying capacity for prey.
m The predator’s natural rate of mortality.
r Prey’s intrinsic growth rate.
e Efficiency of conversion.

2 The model

The prey-predator model, which incorporates consumers at multiple trophic levels that function both
as prey and predators within a food web, serves as the fundamental building block for understanding
complex ecological networks. These models, represented by a set of ordinary differential equations, offer
valuable insights into the broader dynamics of prey-predator interactions within biological systems. As
such, they have become the focus of extensive research. By examining the dynamics and behavioural
responses within these models, we can gain a deeper understanding of various ecological phenomena.
The traditional Lotka-Volterra or Gause prey-predator models have long served as the foundation for such
studies, but modern variations of these models often build upon or modify these classic formulations.
These updated paradigms aim to reflect more accurately the complexities of real-world ecosystems,
incorporating additional factors such as resource availability, environmental conditions, or multi-species
interactions. In many cases, the newer models share a similar structure to their predecessors but offer
improvements or refinements that enhance their applicability and predictive power. Let us now consider
a system that incorporates,

du
dT

= ru
(

1− u
k

)
−φ(u,v)v, (1a)

dv
dT

= eφ(u,v)v−mv. (1b)

Initiall conditions are u(0) > 0,v(0) > 0, u ≡ u(T ) and v ≡ v(T ), and all positive parameters are dis-
played in the Table 1, where u(T ) and v(T ) are the densities of prey and predator populations at time T ,
respectively.

Additionally, φ(u,v) denotes the frequency at which each predator kills prey, which is the overall
functional response of predators to prey. The ratio of prey to predators might play a role.

If the functional response φ(u) depends solely on prey density, it is referred to as prey-dependent.
This implies that the rate at which a predator consumes prey is entirely determined by the abundance
of the prey population. One of the simplest forms of prey-dependent functional responses is the linear
response, found in the classical Lotka–Volterra model, and defined by φ(u) = λu, commonly known as
Holling Type I. In this case, the predation rate increases proportionally with prey density, where λ is a
constant representing the predator’s encounter or capture efficiency. This form assumes no handling time
and implies that predators have unlimited appetite, which may not be realistic in most ecological settings.
More ecologically realistic dynamics are captured by Holling Type II, given by φ(u) = λu

c+u , where c rep-
resents the half-saturation constant. This formulation introduces the concept of handling time—the time
a predator spends capturing, killing, and consuming prey. As prey density increases, the predation rate
rises but eventually levels off, approaching a maximum rate due to the predator’s limited capacity to pro-
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Figure 1: Diagram depicts the Holling type-I, II, III, IV functinal response.

cess additional prey. This response is common in systems where predators become satiated and cannot
continue increasing their consumption indefinitely. Holling Type III, described by φ(u) = λu

c+u2 , adds
further ecological realism by incorporating a sigmoidal response. At low prey densities, the predation
rate increases slowly, possibly due to prey hiding more effectively or predators taking longer to locate
prey. As prey become more abundant, predation accelerates, before again levelling off at higher densi-
ties due to saturation. This form captures phenomena such as learning behaviour in predators and prey
refuges, and is often observed in natural ecosystems where prey switching or alternative food sources ex-
ist. Finally, Holling Type IV, represented by φ(u) = λu

u2
i +u+c

, introduces a dome-shaped response. Here,

predation increases with prey density up to a certain threshold but then declines at very high prey den-
sities. This may occur due to predator confusion, interference, or reduced efficiency in densely packed
prey populations. Parameters i and c help shape the curvature of the response. This functional form is
particularly useful in modelling scenarios involving cooperative predation or when predator efficiency is
hindered by overcrowding or complex spatial interactions among prey. Figure 1 presents the numerical
representations of all types of functional responses. The density of the target and predator populations
may affect φ(u,v) like ratio-dependent reactions and functional responses according to Crowley-Martin,
Beddington-DeAngelis, etc.

However, when predation incorporates cooperative behaviour, both prey and predator densities be-
come essential in determining the functional response φ(u,v). In such cases, the rate of prey capture
increases with rising predator density. This assumption can be modelled by introducing a predator
density-dependent term into the capture rate, such as λ + a1v [13], where a1 > 0 quantifies the de-
gree of cooperation among predators during hunting. Consequently, the functional response changes
from φ(u,v) to φ(u,λ + a1v), thereby introducing predator dependence into the formulation. When
a1 = 0, the model reduces to a classical prey-dependent framework, where only prey density influences
the functional response. This approach was employed by Alves and Hilker, inspired by the methodology
proposed by Berec [3], to incorporate the cooperative predation term in its simplest form. A commonly
used representation of cooperative predation within a prey–predator framework is given by the following
Holling type IV functional response:

φ(u,λ +a1v) =
u(λ +a1v)
u2

i +u+ c
,

as described in [13]. This captures a dome-shaped response, where predation increases with prey density
up to a point, and then declines at very high prey densities due to interference or reduced efficiency.
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The corresponding model is formulated as:

du
dT

= ru
(

1− u
k

)
− uv(λ +a1v)

u2

i +u+ c
, (2a)

dv
dT

= e
u(λ +a1v)
u2

i +u+ c
v−mv. (2b)

We start with ξ1 =
eu
m , ξ2 =

ev
m , t = mT , s = r

m , L = ke
m , b = λe

m , g = a1m
λ

, a = ie
m and d = ce

m . We get the
non-dimensional form of the system, which is

dξ1

dt
= sξ1

(
1− ξ1

L

)
− b(1+gξ2)ξ1ξ2

ξ 2
1
a +ξ1 +d

, (3a)

dξ2

dt
=

b(1+gξ2)ξ1ξ2
ξ 2

1
a +ξ1 +d

−ξ2. (3b)

The parameters of systems (3) are positive and dimensionless variables. For these equations, the non-
negative initial conditions are ξ1(0)≥ 0, and ξ2(0)≥ 0.

3 Existence of steady states

We shall identify the model’s equilibrium point by analysing the related characteristics equations for the
model under consideration φ1(ξ1,ξ2) = 0 and φ2(ξ1,ξ2) = 0 i.e.

sξ1

(
1− ξ1

L

)
− b(1+gξ2)ξ1ξ2

ξ 2
1
a +ξ1 +d

= 0, (4a)

b(1+gξ2)ξ1ξ2
ξ 2

1
a +ξ1 +d

−ξ2 = 0. (4b)

We obtain the positive axis steady point by solving the given system, which is E1(0,0) and E2(L,0). The
significant prey and predator nullclines of the model (3) are

ξ1 = (
¯
1+gξ

∗
2 )ξ

∗
1 − ξ 2∗

1
a

−d,ξ2 = s∗ξ
∗
1 (1−

ξ ∗
1

L
),

respectively. Using the value of ξ2 from the predators’ nullcline equations into prey nullclines, we can
derive a cubic equation of ξ1 as follows:

f (ξ1)≡
gb
dL

ξ
3
1 − 1

d
(gb− 1

g
)ξ 2

1 − 1
g
(b−1)ξ1 +1 = 0

given that f (−∞)< 0 and f (1)> 0 from the given expression of f (ξ1), there must exist at least one root

where g2b< 1 and b> 1. Since f ′(ξ1) has two non-negative real parts (
L(gb− 1

g )

3gb ±
L
√

(gb− 1
g )

2+3 gb
L (b−1)

3gb ), we
conclude that f (ξ1) has at least one negative root, two non-negative the roots, and two non-zero roots.
The coexistence equilibrium point (ξ ∗

1 ,ξ
∗
2 ) is determined by the intersection of the prey and predator

nullclines, as shown in Figure 2. In Figure 2a, there is a single coexistence equilibrium, while Figure 2b
illustrates the existence of two interior equilibrium points.
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(a) (b)

Figure 2: In this diagram, the red colour is for the predator population and the blue is for the prey population
functional response nullclines for system (3).

3.1 Positivity of system

Consider

dξ1

dt
= ξ1

(
s
(

1− ξ1

L

)
− b(1+gξ2)ξ2

ξ 2
1
a +ξ1 +d

)
= ξ1φ3(ξ1,ξ2), (5a)

dξ2

dt
= ξ2

(
b(1+gξ2)ξ1

ξ 2
1
a +ξ1 +d

−1

)
= ξ2φ4(ξ1,ξ2), (5b)

with the initial conditions ξ1(0) = ξ10 > 0 and ξ2(0) = ξ20 > 0, and all variables used in the given system
are positive. Also,

φ3(ξ1,ξ2) = s
(

1− ξ1

L

)
− b(1+gξ2)ξ2

ξ 2
1
a +ξ1 +d

, (6a)

φ4(ξ1,ξ2) =
b(1+gξ2)ξ1

ξ 2
1
a +ξ1 +d

−1. (6b)

Theorem 1. Considering the initial circumstances supplied, every solution to system (5) is always posi-
tive.

Proof. We have to show (ξ1,ξ2) ∈ R ∀ ∈ [0,∞), such that ξ1(t) ≥ 0 and ξ2(t) ≥ 0. From model (3) we
get

ξ1(t) = ξ10e
∫ t

0 φ3(ξ1,ξ2)dt̄ ,

ξ2(t) = ξ20e
∫ t

0 φ4(ξ1,ξ2)dt̄ .

Since there exists an M > 0 such that ∀t ∈ [0, t̄] is clearly defined and continuous on (ξ1,ξ2), we have

ξ1(t) =ξ10e
∫ t

0 φ3(ξ1,ξ2)dt̄ ≥ ξ10eMt̄ ,
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Table 2: Table for stability analysis at each of the equilibrium/steady points

Steady point Jacobian matrix Nature of stability

E1(0,0) A1 =

[
s 0
0 −1

]
Saddle

E2(L,0) A2 =

−s − bL
L2
a +L+d

0 −1+ bL
L2
a +L+d

 Stable if bL
L2
a +L+d

< 1, unstable if
bL

L2
a +L+d

> 1

ξ2(t) =ξ20e
∫ t

0 φ4(ξ1,ξ2)dt̄ ≥ ξ20eMt̄ .

From the given expression, we concluded that if t → t̄, we obtain

ξ1(t) =ξ1(t̄)≥ ξ10eMt̄ ,

ξ2(t) =ξ2(t̄)≥ ξ20eMt̄ ,

which contradicts our assumption. Hence, all the solutions related to the given system are always posi-
tive.

4 Stability analysis

Our primary objective is to examine possible solutions for a dynamical system under particular condi-
tions. Ecological stability governs amplitude, consistency, elasticity, resilience, and persistence. The
appropriate definition belongs in the environmental context. Dynamical systems introduce the notion of
neighbourhood instability and the sphere of attraction of the ecosystem [4, 15]. A system is considered
locally stable if it remains stable under minor perturbations and globally stable if it has a single equilib-
rium point throughout the whole region of attraction. To investigate the stability of its equilibriums, we
linearise a mathematical model constructed concerning a specific environment. The Lyapunov stability
method is a popular technique for determining the global stability of any mathematical model.

4.1 Local stability analysis

Three non-negative equilibria can occur for model systems: E1(0,0) (trivial equilibrium point), E2(L,0)
(predator-free/axial equilibrium point), and E3(ξ

∗
1 ,ξ

∗
2 ) (coexistence/interior equilibrium point). We now

show the matching criteria for the coexistence equilibrium point E3 in Table 2, together with the feasi-
bility and stability requirements for the system’s first two equilibria (3). The Jacobian matrix of system
(3) appears as follows at each selected equilibrium point:

A3 =


s(1− 2ξ ∗

1
L )− b(1+gξ ∗

2 )ξ
∗
2 (d−

ξ∗2
1
a )

(
ξ∗2
1
a +ξ ∗

1 +d)2
−2gbξ ∗

1 ξ ∗
2 +bξ ∗

1
ξ∗2
1
a +ξ ∗

1 +d

b(1+gξ ∗
2 )ξ

∗
2 (d−

ξ∗2
1
a )

(
ξ∗2
1
a +ξ ∗

1 +d)2

2gbξ ∗
1 ξ ∗

2 +bξ ∗
1

ξ∗2
1
a +ξ ∗

1 +d
−1

 .
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The interior/coexisting equilibrium/steady point exists where

ξ1 = (
¯
1+gξ

∗
2 )ξ

∗
1 − ξ 2∗

1
a

−d,ξ2 = s∗ξ
∗
1 (1−

ξ ∗
1

L
).

By using the value of ξ2 from the predators we can derive a cubic equation of ξ1, as

f (ξ1)≡
gb
dL

ξ
3
1 − 1

d
(gb− 1

g
)ξ 2

1 − 1
g
(b−1)ξ1 +1 = 0.

Now

f (0) =1 > 0,

f (L) =
1

gd
L2 − 1

g
(b−1)L+1 < 0 if g < L(b−1− L

d
).

The coexisting equilibrium point E3(ξ
∗
1 ,ξ

∗
2 ) is indicated by the equation’s positive root in (0,L) due to

f (0) f (L)< 0. The characteristic equation at the equilibrium point E3(ξ
∗
1 ,ξ

∗
2 ) is as follows:

P(λ ) = λ
2 +C1λ +C2,

where A3 =

[
A11 A12
A21 A22

]
is the Jacobian matrix of the model system (3) at equilibrium point E3(ξ

∗
1 ,ξ

∗
2 ),

and the coefficients are C1 =−(A11 +A22) =−tr(A) and C2 = det(A). The components of the Jacobian
matrix are as follows:

A11 =s(1− 2ξ ∗
1

L
)−

b(1+gξ ∗
2 )ξ

∗
2 (d − ξ ∗2

1
a )

(
ξ ∗2

1
a +ξ ∗

1 +d)2
, A12 =−2gbξ ∗

1 ξ ∗
2 +bξ ∗

1
ξ ∗2

1
a +ξ ∗

1 +d

A21 =
b(1+gξ ∗

2 )ξ
∗
2 (d − ξ ∗2

1
a )

(
ξ ∗2

1
a +ξ ∗

1 +d)2
, A22 =

2gbξ ∗
1 ξ ∗

2 +bξ ∗
1

ξ ∗2
1
a +ξ ∗

1 +d
−1.

According to the Routh–Hurwitz criteria, if tr(A)< 0 and det(A)> 0, the characteristic polynomial will
have either negative real roots or a pair of complex conjugate roots with negative real parts. Therefore,
the coexistence equilibrium point E3(ξ

∗
1 ,ξ

∗
2 ) is locally asymptotically stable if and only if tr(A) < 0,

det(A)> 0. These conditions can be expressed as follows:

s(1− 2ξ ∗
1

L
)−

b(1+gξ ∗
2 )ξ

∗
2 (d − ξ ∗2

1
a )

(
ξ ∗2

1
a +ξ ∗

1 +d)2
+

2gbξ ∗
1 ξ ∗

2 +bξ ∗
1

ξ ∗2
1
a +ξ ∗

1 +d
−1 < 0,

(
s(1− 2ξ ∗

1
L

)−
b(1+gξ ∗

2 )ξ
∗
2 (d − ξ ∗2

1
a )

(
ξ ∗2

1
a +ξ ∗

1 +d)2

)(
2gbξ ∗

1 ξ ∗
2 +bξ ∗

1
ξ ∗2

1
a +ξ ∗

1 +d
−1

)
−

(
−2gbξ ∗

1 ξ ∗
2 +bξ ∗

1
ξ ∗2

1
a +ξ ∗

1 +d

)(
b(1+gξ ∗

2 )ξ
∗
2 (d − ξ ∗2

1
a )

(
ξ ∗2

1
a +ξ ∗

1 +d)2

)
> 0.
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If we simplify the above inequalities, we obtain

ab(s(1+ξ
∗
2 )+ξ

∗
2 )+ξ

∗
1 < (2sbξ

∗
1 (1+gξ

∗
2 )+dL)a,

d >
ξ ∗2

1
a

.

Hence, the coexistence equilibrium point E3(ξ
∗
1 ,ξ

∗
2 ) is locally asymptotically stable whenever the above

conditions are satisfied.

4.2 Global stability analysis

Global stability is the ability of a system to return to the equilibrium point from any initial state. A
dynamical system’s attractive basin of trajectories can be either the state space or a particular area inside
the state space that serves as the system’s state variables’ identifying region. When a system exhibits
global stability, it has a single equilibrium point across the whole area of attraction. International stability
is one kind of asymptotic stability. The global stability of system (3) is explained below concerning its
coexistence equilibrium point, E3(ξ

∗
1 ,ξ

∗
2 ) .

Theorem 2. The interior equilibrium point E3(ξ
∗
1 ,ξ

∗
2 ) is globally asymptotically stable if the conditions

bξ ∗
1 > m2

a +m+d and b(1+gM)< 1 hold where m < ξ1,ξ2 < M.

Proof. We define the Lyapunov function as

V (ξ1,ξ2) =
∫

ξ1

ξ ∗
1

ξ1 −ξ ∗
1

ξ1
dξ1 +

∫
ξ2

ξ ∗
2

ξ2 −ξ ∗
2

ξ2
dξ2. (7)

Differentiating equation (7) with respect to time along the solution equation (3a) and (3b) and, we obtain

dV
dt

=
ξ1 −ξ ∗

1
ξ1

dξ1

dt
+

ξ2 −ξ ∗
2

ξ2

dξ2

dt

= (ξ1 −ξ
∗
1 )

[
s
(

1− ξ1

L

)
− b(1+gξ2)ξ2

ξ 2
1
a +ξ1 +d

]
+(ξ2 −ξ

∗
2 )

[
b(1+gξ2)ξ1

ξ 2
1
a +ξ1 +d

−1

]
, (8)

Since ξ1,ξ2 < M, and we assume that ξ1,ξ2 ≥ m > 0 when t > T for some T > 0, equation (8) becomes

dV
dt

< (ξ1 −ξ
∗
1 )

[
− s

L
(ξ1 −ξ

∗
1 )−

b(ξ2 −ξ ∗
2 )ξ2

m2

a +m+d
+ξ

∗
2

(
1

ξ ∗
1
− b

m2

a +m+d

)]
+(ξ2 −ξ

∗
2 ) [b(1+gM)−1] ,

<− s
L
(ξ1 −ξ

∗
1 )

2 − b
m2

a +m+d
(ξ1 −ξ

∗
1 )(ξ2 −ξ

∗
2 )−ξ

∗
2

(
b

m2

a +m+d
− 1

ξ ∗
1

)
(ξ1 −ξ

∗
1 )

− (1−b(1+gM))(ξ2 −ξ
∗
2 ).

Thus dV
dt < 0 under the hypothesis of Theorem 2. Therefore, the coexisting equilibrium point E3(ξ

∗
1 ,ξ

∗
2 )

is globally asymptotically stable under the given condition of Theorem 2.
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5 Hopf bifurcation

Now we define how the internal steady points E3(ξ
∗
1 ,ξ

∗
2 ) behave in terms of stability. When Reλ = 0

and Imλ ̸= 0, the Hopf bifurcation takes place. As a result, the Jacobian matrix linked to E3(ξ
∗
1 ,ξ

∗
2 )

must have a positive determinant at the Hopf bifurcation and a zero trace. Consequently, we specify the
Jacobian matrix,

A3 =
[

A11 A12
A21 A22

]
,

where

A11 = s(1− 2ξ ∗
1

L
)−

b(1+gξ ∗
2 )ξ

∗
2 (d − ξ ∗2

1
a )

(
ξ ∗2

1
a +ξ ∗

1 +d)2
,A12 =−2gbξ ∗

1 ξ ∗
2 +bξ ∗

1
ξ ∗2

1
a +ξ ∗

1 +d
,

A21 =
b(1+gξ ∗

2 )ξ
∗
2 (d − ξ ∗2

1
a )

(
ξ ∗2

1
a +ξ ∗

1 +d)2
,A22 =

2gbξ ∗
1 ξ ∗

2 +bξ ∗
1

ξ ∗2
1
a +ξ ∗

1 +d
−1.

By solving tr(A) = 0, we can get Hopf bifurcation threshold at g as follows:

g =
2sbξ ∗3

1 − sξ ∗
1 L(ξ ∗2

1 +ξ ∗
1 +d)+Lξ ∗

2 (d − ξ ∗2
1
a )

ξ ∗
2

.

Since tr(A) = 0 , det(A)> 0 at g and d
dg(A11+A22) ̸= 0 at g, this confirms that a Hopf bifurcation occurs

near a stable point.

6 Stability of limit cycle

Let us introduce small perturbations to the region surrounding the interior steady state point by setting
ξ̄1 = ξ1 −ξ ∗

1 and ξ̄2 = ξ2 −ξ ∗
2 . For convenience, we use ξ1 and ξ2 instead of ξ̄1 and ξ̄2, respectively. We

have

dξ1

dt
=(ξ1 +ξ

∗
1 )(1−ξ1 −ξ

∗
1 )

(
ξ1 +ξ ∗

1
L

−1
)
− b(1+gξ ∗

2 )(ξ1 +ξ ∗
1 )(ξ2 +ξ ∗

2 )
(ξ1+ξ ∗

1 )
2

a +(ξ1 +ξ ∗
1 )+g

, (9)

dξ2

dt
=

b(1+gξ ∗
2 )(ξ1 +ξ ∗

1 )(ξ2 +ξ ∗
2 )

(ξ1+ξ ∗
1 )

2

a +(ξ1 +ξ ∗
1 )+g

−d(ξ2 +ξ
∗
2 ).

The series expression for the system described in equation (9), subject to the condition i+ j > 4, is
derived as follows:

dξ1

dt
=a10ξ1 +a01ξ2 +a20ξ

2
1 +a11ξ1ξ2 +a02ξ

2
2 +a30ξ

3
1 +a21ξ

2
1 y+a03ξ

3
2 +G1(ξ1,ξ2), (10)

dξ2

dt
=b10ξ1 +b01ξ2 +b20ξ

2
1 +b11ξ1ξ2 +b02ξ

2
2 +b30ξ

3
1 +b21ξ

2
1 ξ2 +b03ξ

3
2 +G2(ξ1,ξ2),
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where

a10 = s− 2sξ ∗
1

L
− ab(1+g(ξ2 +ξ ∗

2 ))(ξ2 +ξ ∗
2 )

ξ ∗2
1 +aξ ∗

1 +ag
+

abξ ∗
1 (2ξ ∗

1 +a)(1+g(ξ2 +ξ ∗
2 ))(ξ2 +ξ ∗

2 )

(ξ ∗2
1 +aξ ∗

1 +ag)2 ,

a20 =−2s
L
+

ab(1+gξ ∗
2 )ξ

∗
2 (3ξ ∗

1 +a)
(ξ ∗2

1 +aξ ∗
1 +ag)2 − abξ ∗

1 (2ξ ∗
1 +a)2(1+gξ ∗

2 )ξ
∗
2

(ξ ∗2
1 +aξ ∗

1 +ag)3 ,

a30 =
ab(1+g(ξ2 +ξ ∗

2 ))(ξ2 +ξ ∗
2 )

(ξ ∗2
1 +aξ ∗

1 +ag)2 − ab(4ξ ∗
1 +a)(2ξ ∗

1 +a)(1+g(ξ2 +ξ ∗
2 ))(ξ2 +ξ ∗

2 )

(ξ ∗2
1 +aξ ∗

1 +ag)3

− abξ ∗
1 (2ξ ∗

1 +a)3(1+g(ξ2 +ξ ∗
2 ))(ξ2 +ξ ∗

2 )

(ξ ∗2
1 +aξ ∗

1 +ag)4 ,

a01 =−abξ ∗
1 ξ ∗2

2 (1+gξ ∗
2 )

ξ ∗2
1 +aξ ∗

1 +ag
, a02 = 0, a03 = 0,

a21 =
abξ ∗

1 (2ξ ∗
1 +a)(1+g(ξ2 +ξ ∗

2 ))(ξ2 +ξ ∗
2 )

(ξ ∗2
1 +aξ ∗

1 +ag)2 +
ab(1+gξ ∗

2 )ξ
∗
2 (3ξ ∗

1 +a)
(ξ ∗2

1 +aξ ∗
1 +ag)2

− abξ ∗
1 (2ξ ∗

1 +a)2(1+gξ ∗
2 )ξ

∗
2

(ξ ∗2
1 +aξ ∗

1 +ag)3

b10 =
abξ ∗

2 (ξ1 +ξ ∗
1 )(1+gξ ∗

2 )

(ξ1 +ξ ∗
1 )

2 +a(ξ1 +ξ ∗
1 )+ag

, b01 =
ab(1+gξ ∗

2 )ξ
∗
1

ξ ∗2
1 +aξ ∗

1 +ag
+

abξ ∗
1 g

ξ ∗2
1 +aξ ∗

1 +ag
−1,

with G1(ξ1,ξ2) = ∑ai jξ
i
1ξ

j
2 and G2(ξ1,ξ2) = ∑bi jξ

i
1ξ

j
2 . As a result, the determinant of Jacobian ma-

trix provides the system’s first Lyapunov coefficient σ . We are unable to speculate on the sign of the
Lyapunov number σ since its expression is so complex as follows:

σ =− 3π

2a01∆
3
2
[(a10b10(a2

11 +a11a02)a02b11)+a10a01(b2
11 +a20b11 +a11b02)

+b2
10(a11a02 +2a02b20)−2a10b10(b2

20 −a20a02)−2a10a01(a2
20 −b20b02)

−a2
01(b11b20 +2a20b20)+(a01b10 −2a2

10)(b11b02 −a11a20)− (a2
10

+a10b10)3(b01b03 −a01a30)+2a10((a21 +b12)+(b10a12 −a01b21))],

where ∆ represents the Jacobian matrix’s determinant. We shall calculate the sign of σ numerically as it
is theoretically nearly impossible.

7 Spatio-temporal system

In this section, we extend the system (3) to a spatiotemporal framework by incorporating spatial diffusion
based on the system’s reaction kinetics. Let the spatial domain be denoted by Ω ⊂R2 with boundary ∂Ω,
such that Ω = Ω∪∂Ω. The random movement of the prey and predator populations is modeled through
diffusion terms, resulting in a coupled reaction–diffusion system. The general form of the spatiotemporal
model is given as follows:

∂ξ1

dt
= φ1(ξ1,ξ2)+D1∇

2
ξ1, (11a)
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∂ξ2

dt
= φ2(ξ1,ξ2)+D2∇

2
ξ2. (11b)

Let the prey and predator densities be denoted by ξ1(n, p, t) and ξ2(n, p, t), respectively, where ∇2 ≡
∂ 2

∂n2 +
∂ 2

∂ p2 represents the two-dimensional Laplacian operator. The parameters D1 and D2 denote the diffu-
sion coefficients of the prey and predator populations, respectively, characterizing the random movement
of individuals within the spatial domain. Using the dimensionless reaction kinetics approach described
in Section 2, we derive the nondimensional form of the proposed spatiotemporal model as follows:

∂ξ1

dt
= φ1(ξ1,ξ2)+∇

2
ξ1, (12a)

∂ξ2

dt
= φ2(ξ1,ξ2)+d1∇

2
ξ2. (12b)

Here, d1 =
D1
D2

represents the ratio of diffusion coefficients. The spatial variables are made dimensionless
as n̄ = n√

D1
and p̄ = p√

D2
. For simplicity, the overscore notation is omitted. In the resulting dimensionless

reaction-diffusion system (12), all parameters are positive and nondimensional:

ξ1(n, p,0)≥ 0, ξ2(n, p,0)≥ 0, (n, p) ∈ Ω,

δξ1

δn
=

δξ2

δ p
, (n, p) ∈ Ω, t ≥ 0.

Here, we examine the diffuse instability requirement of model (12) and try to understand how predator
collaboration affects potential possibilities for pattern formation.

8 Turing instability

A stable homogenous state of equilibrium changes to an unstable one when there are small-amplitude
perturbations in the coupled reaction-diffusion system nonuniform disturbance. Turing instability is
now functional, and it fulfils the requirement. Hence we show ξ1(n, p, t) = ξ ∗

1 ,ξ2(n, p, t) = ξ ∗
2 is in a

constant, uniform state. It should be noted that ξ ∗
1 and ξ ∗

2 relate to stable/unstable nodes/focuses, not
saddle points, in the time model (3). The homogeneous steady state is locally asymptotically stable in
the temporal model (3) if A11 +A22 < 0, A11A22 −A12A21 > 0 . So given the minimal perturbation

ξ1 = ξ
∗
1 + ∈1 eλ t cos(Knn)cos(Kp p),

ξ2 = ξ
∗
1 + ∈1 eλ t cos(Knn)cos(Kp p),

is necessary, where λ is the growth impact eigenvalue and 0 < ε1,ε2 ≪ 1. The wave vector K1 =
K(Kn,Kp) also has a wave-number K = |k1|. The system of solutions is transformed into linear after
inserting

J(k2
1) =

[
A11 −K2

1 −λ A12
A21 A22 −d1k2

1 −λ

]
,

where A11, A12, A21, and A22 are same as the matrix A3 in the Subsection 4.1 and characteristic equation
of the Jacobian matrix is given by

λ
2 −Trk1λ +Detk1 =0.



Co
rre

ct
ed

Pr
oo

fHunting cooperation in prey-predator models 13

Solving it for the λ gives

λ (k1) =
1
2
(trk1 ±

√
trk1 −4detk1),

where

TrJ(k2
1) = A11 +A22 − k2

1(1+d1)≡ Tr(A3)− k2
1(1+d1),

DetJ(k2
1) = (A11 − k2

1)(A22 −dk2
1)−A12A21 ≡ dk4

1 − k2
1(d1A11 +A22)+Det(A3).

The conditions for Turing instability at the steady state (ξ ∗
1 ,ξ

∗
2 ) are given by

A11 +A22 < 0,

A11A22 −A12A21 > 0,

d1A11 +A22 > 2
√

d1(A11A22 −A12A21).

Now, we get the equation of bifurcation turing curve as follows:

d1A11 +A22 =2
√

d1(A11A22 −A12A21). (13)

By solving the equation (13) at k1 = KT , we get

k2
T =

d1A11 +A22

2d1
. (14)

As outlined in Subsection 4.1, given that A22 > 0, it follows that A11 < 0 in order for the condition
A11 +A22 < 0 to hold under certain parametric restrictions. Furthermore, to guarantee that k2

1 = k2
T re-

mains positive at the Turing bifurcation threshold, the term dA11 +A22 > 0 must hold. This, in turn, im-
plies that d1 < 1 in order to satisfy the conditions for Turing instability. Consequently, the self-diffusion
coefficient for the predator population is lower than that of the prey population in model (12). This result
is not limited to a specific functional response, but rather holds for a class of prey-dependent functional
responses that incorporate hunting cooperation. This is a critical aspect of spatio-temporal prey-predator
models involving cooperative hunting, as in most cases, the self-diffusivity of prey is typically greater
than that of predators. This suggests that, on average, predators move faster than their prey. When hunt-
ing cooperation is incorporated, the Turing instability conditions are satisfied, and the general expectation
that d1 > 1 is revised. In this framework, the rate of movement (diffusivity) of the prey population within
a given domain is higher than that of the predators. This can be understood by considering that the prey
are actively moving in search of food while also attempting to maintain a safe distance from the preda-
tors. In contrast, predators, who are hunting cooperatively, move in packs, resulting in a lower overall
diffusion rate. This does not impact their prey-catching efficiency, as their cooperative hunting behaviour
compensates for the reduced individual speed. It is important to note that, in the absence of cooperative
hunting, predators would need to move faster than the prey to effectively capture them. However, the
formation of stationary predator patches requires that the predators move more slowly when cooperating
during hunting. To gain a more detailed understanding of this phenomenon, numerical simulation results
should be considered. For a diffusion ratio d1 < 1, a Turing instability may occur, and the corresponding
critical wavenumber kT satisfies the relation:

k2
T =

det(JE1)

d
, with d1 > 0.
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The wavelength at the Turing bifurcation threshold is given by

λ =
2π

km
,

where km is the wavenumber corresponding to the maximum real part of the positive eigenvalue of the
linearized system.

If the necessary condition is satisfied and the minimum value of k2
1 becomes negative within a specific

range, a Turing instability may arise. Specifically, instability occurs when there exists a value of k2
1 within

the interval:

k2
1 ∈(

dA11 +A22 −
√
(dA11 +A22)2 −4d det(JA3)

2d
,

dA11 +A22 +
√
(dA11 +A22)2 −4d det(JA3)

2d
).

If this condition holds, then the homogeneous steady state E3(ξ
∗
1 ,ξ

∗
2 ) is unstable with respect to the

reaction-diffusion model defined by (12). In summary, the emergence of spatial patterns through diffusion-
driven instability is governed by the above criteria, and the onset of a Turing instability can be described
within this analytical framework.

9 Numerical simulation

We have derived analytical formulations for spiral and target solutions from the linear amplitude equa-
tions (12). To support these findings, we present numerical simulations using the forward Euler method
combined with a Laplacian discretization of the coupled reaction-diffusion system with no-flux bound-
ary conditions. Simulations are performed on a two-dimensional grid of size 1×200, with grid spacings
∆n = 1 and ∆p = 0.0012, and a time step of ∆t = 0.01.

To illustrate the dynamics, we first consider the parameter set L = 0.81,a = 3.15,b = 1,g = 1.78,d =
0.11,s = 1.94. In this case, f (ξ1) = 0 has two positive roots, and only (0.6727,0.2031) corresponds to
an interior steady state, as shown in Figure 2a. With a second parameter set L = 0.8,a = 3.1,b = 1,g =
1.7,d = 0.1,s = 1.75, two coexistence equilibria emerge: (0.38845,0.34594) and (0.4987,0.3586), cor-
responding to the non-negative steady states of system (3), depicted in Figure 2b.

Additionally, we find equilibria (0.000848,0.0000585) and (0.4239,0.0281) for the parameter set
s = 0.069,L = 10.569,b = 2.181,g = 0.09,a = 0.358,d = 0.001. Now, we can solve system (12) for
numerical simulatioon of spiral pattern by setting following initial conditions:

ξ1(n, p,0) =

{
ξ ∗

1 + ε(ξ1 −1200)(ξ2 −2800), (ξ1 −100)2 +(ξ2 −50)2 < 200
ξ ∗

1 , otherwise
(15a)

ξ2(n, p,0) =

{
ξ ∗

2 + ε(ξ1 −1200)(ξ2 −2800), (ξ1 −150)2 +(ξ2 −100)2 < 200
ξ ∗

2 , otherwise
(15b)

Figure 3 displays stability regions with red, yellow, and blue representing unstable, saddle, and sta-
ble regions, respectively. For L = 3.695,s = 0.896,b = 28.269,a = 0.369,d = 17.952, and varying g
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(0.089,0.001,0.00001 in panels a-c), the saddle region expands or contracts with changes in g. Simi-
larly, for L = 3.695,s = 0.896,b = 28.269,a = 0.369,g = 0.009 and d = 5.952, reducing d increases the
stable region.

In this Figure 4 shows the global stability of the system (2) using the same parametric values are
s = 0.896,L = 3.695,d = 0.009,a = 0.369, b = 21.269,g = 17.952. It shows that the Lyapunov function
is positive and that its time derivative is negative, as demonstrated in Theorem 2.

In Figure 5, the black, green, blue, and purple curves represent the stable, unstable, limit point, and
Hopf bifurcation curves, respectively. In Figures 5a and 5b, the points labeled H and GH correspond to
the Hopf and generalized Hopf bifurcation points, respectively. In the Hopf bifurcation diagram shown
in Figure 5c, the green curve denotes the stable region, indicating that the Hopf bifurcation between the
parameter g and the prey–predator population is stable.

Figure 6 presents the numerical results corresponding to the parameter values in Table 3. Figure
6a shows an unstable limit cycle in the time series. Increasing the parameter g stabilizes both prey and
predator populations, as illustrated in Figure 6d. Similarly, syatem stabilization is observed with an
increase b as shown in Figure 6d.

Figure 7 shows time series of prey and predator populations exhibiting oscillatory behavior. Pop-
ulation peaks alternate, consistent with ecological intuition: prey increase → predator increase (with
delay) → prey decrease → predator decrease. The predator curve lags behind the prey, characteristic of
predator-prey dynamics. Oscillations appear sustained, suggesting either a non-dissipative system or a
short simulation time.

The dynamic behavior of the prey–predator system under different conditions is illustrated in Figures
8 and 9. In Figure 8, the system exhibits a non-constant steady state, where both prey and predator popu-
lations oscillate rather than settling at a fixed equilibrium. As the diffusion coefficient d1 increases from
very small values up to 1, the spatial distribution of populations remains irregular, indicating persistent
instability. In contrast, Figure 9 shows that at higher diffusion d1 = 5, the system stabilizes, and both
populations converge to a steady state. This suggests that increased diffusion, which enhances mixing
between species, reduces spatial fluctuations and promotes equilibrium in population densities.

Spatial patterns are explored in Figures 10 and 11. Initial disturbances across the domain generate
patterns over time. Within approximately five days, populations spread throughout the area, leaving some
regions with fewer predators. Over longer durations (up to 500 days), high population densities persist
near domain boundaries, while predator presence remains in the core.

Figure 10 presents the spatial distribution of prey and predator populations. Prey densities are visual-
ized with contour lines overlaid on a heatmap, revealing patchy distributions with high-density regions in
yellow/red and low-density regions in blue. Predator populations show similar patchiness, but with lower
overall density. Overlapping contours indicate predator-prey proximity, reflecting predator influence on
prey distribution.

Figure 11 further illustrates spatial heterogeneity. Predator densities range from 3.345886× 10−5

(blue) to 3.345906× 10−5 (red), with higher concentrations in the lower-left quadrant. Prey densities
range from 2× 10−32 to 1.4× 10−31, clustering in the upper-left and lower-left regions. These patterns
suggest spatial refuges and avoidance behavior by prey, while predators track prey movement. The
contrast between fragmented predator distributions and broader prey clusters is consistent with Turing-
type instabilities arising from differing diffusion rates.

Overall, these simulations demonstrate the importance of spatial structure in predator-prey systems.
Reaction-diffusion dynamics generate diverse patterns, highlighting ecological processes such as pursuit,
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(a) (b) (c) (d)

Figure 3: Bassin of attraction for both prey and predator population for system (3)

(a) (b)

Figure 4: The diagram illustrates the global stability of the system (3).

(a) (b) (c)

Figure 5: The diagram depicts the bifurcation figure between the parameters and the prey and predator populations.
The parametric values are s = 0.896,L = 3.695,d = 0.009,a = 0.369, b = 21.269,g = 17.952.

avoidance, and localized refuges. Spatial heterogeneity plays a critical role in species coexistence, long-
term persistence, and the impact of mobility on ecological interactions.
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Table 3: Parameters values for Figure 6 are s = 0.896,L = 3.695,d = 0.009,a = 0.369

Numerical values of the variable Steady point Figure no.
b = 17.269,g = 7.952 (0.5342344851, 0.4094659226) 6a
b = 17.269,g = 11.952 (0.8503280596, 0.5865597609) 6b
b = 17.269,g = 17.952 (1.436287906, 0.7866760849) 6c
b = 21.269,g = 17.952 (1.017856282, 0.6607721259) 6d

0 20 40 60 80 100 120 140 160 180 200

Time

0

0.5

1

1.5

2

2.5

3

3.5

P
o

p
u

la
ti
o

n

1

2

(a)

0 20 40 60 80 100 120 140 160 180 200

Time

0

0.5

1

1.5

2

2.5

3

3.5

P
o

p
u

la
ti
o

n

1

2

(b)

0 0.5 1 1.5 2 2.5 3

1
(Prey Population)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
(P

re
d

a
to

r 
P

o
p

u
la

ti
o

n
)

0 20 40 60 80 100 120 140 160 180 200

Time

0

0.5

1

1.5

2

2.5

3

P
o

p
u

la
ti
o

n

1

2

(c)

0.5 1 1.5 2 2.5 3 3.5

1
(Prey Population)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

2
(P

re
d

a
to

r 
P

o
p

u
la

ti
o

n
)

0 20 40 60 80 100 120 140 160 180 200

Time

0

0.5

1

1.5

2

2.5

3

3.5

4

P
o

p
u

la
ti
o

n

1

2

(d)

Figure 6: Limit cycle with the time series of system (3)

(a) (b) (c) (d)

Figure 7: The diagram depicts the time series by changing the parameter of values as follows: (a) to (e) as s,
( f ) as g with constant time t = 10 of the system (12). For a = 3.6995,L = 3.9185,d = 3.182,s = 8.1883,b =
1.813, t = 10,d1 = 0.0001 and (a) the value of g = 2.3824, (b)g = 7.382, (e) g = 9.482. For a = 3.6997,L =
3.9186,d = 3.282,s = 7.4723,b = 1.813 (f), the value of g = 7.1885 are represented on the graph by the prey-
predator population in red and black, respectively.
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(a) d1 = 0.0001 (b) d1 = 0.0001 (c) d1 = 1 (d) d1 = 1

Figure 8: A non-constant steady state system (12) s = 0.896,L = 3.695,b = 28.269,g = 0.009,a = 0.369,d =
22.752

(a) d1 = 5 (b) d1 = 5

Figure 9: At d1 = 5, the diagram shows the stable behaviour of the system (12) and the parameter values same as
Figure 8.
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Figure 10: Depicts the effects of b on the models used. We get the strip pattern formations with the other values
of parameters fixed. For M = 700,s = 0.0009,L = 15.369,b = 1.359,a = 1.768,d = 0.001,d1 = 0.000001,dt =
0.001,dx = 1

8 ,ε = 10−11 and (0.4323096062,0.1471388727) equilibrium point, with change the parameter g as
follows: (a) g = 3.496, (b) g = 3.528.

10 Discussion and conclusion

This study investigates the impact of cooperative predation on the emergence and evolution of spatiotem-
poral patterns in predator–prey systems. Using both analytical and numerical methods, we demonstrate
that stable spatial patterns can develop when predator diffusivity is significantly lower than that of the
prey. These findings apply to a broad class of parameterized systems, including reaction–diffusion mod-
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Figure 11: This diagram depicts the Turing patterns changing the values of b with the other parameter values
staying the same, showing the effect of b on the model and the spot and strip pattern creation that occurs. For
M = 1000,s = 0.1699,L = 10.369,b = 1.359,a = 5.468,d = 0.01,d1 = 0.000001,dt = 0.01,dx = 0.25,ε = 10−11

and (0.4323096062,0.1471388727) equilibrium point, with change the parameter b as follows: (a) the value of
g = 2.682, (b) g = 2.696, (c) g = 2.728, (d) g = 2.742.

els originally developed for chemical processes. To explore this, we consider prey-dependent functional
responses that vary with prey density, including forms that exhibit saturation at high prey concentrations.
Such functional responses are crucial for modeling cooperative predator behavior and understanding its
role in pattern formation.

Our analysis begins by identifying the conditions for local asymptotic stability and Hopf bifurcations
in the temporal system. We then extend the model spatially to examine the emergence of distinct spatial
structures—such as stripes, spots, and mixed formations—through numerical simulations. The onset of
Turing instability is derived analytically, and simulations confirm the conditions under which spatially
heterogeneous patterns appear. Without cooperative predation, the model fails to produce Turing-type
patterns under biologically realistic parameters. In contrast, when predator cooperation is included,
spatial patterns arise from the interaction between limited predator mobility and the faster diffusion of
prey. This diffusion imbalance promotes spatial separation, enabling stable coexistence between species.

Under cooperative hunting, areas of high prey density correspond to regions of lower predator den-
sity, and vice versa. This inverse relationship reflects an adaptive behavioral response: predators ag-
gregate strategically to optimize hunting success while avoiding overexploitation of prey-rich areas.
The model demonstrates that diverse spatial structures—including spots, stripes, and maze-like forma-
tions—can emerge when parameters favor unlimited resource access and high functional responsiveness.
Although temporal bifurcations may also occur, realistic spatiotemporal dynamics depend strongly on
initial conditions and feedback mechanisms within the system. Even when patterns appear static, they
are maintained by continuous dynamic interactions as predator and prey populations fluctuate over time.
Predators track prey movements across the landscape, contributing to the observed spatiotemporal com-
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plexity.
From an ecological perspective, cooperative predation enhances the long-term stability of preda-

tor–prey coexistence. Group hunting behaviors have been documented in species such as wolves, lions,
hyenas, chimpanzees, jackals, and cheetahs, where predation efficiency tends to saturate with increasing
group size. Predators typically occupy regions adjacent to prey-rich zones, improving hunting efficiency
while minimizing competition. Simulations indicate that predators and prey often occupy distinct but
adjacent regions, enabling effective predation without direct overlap. By positioning themselves at the
periphery of prey-dense areas, predators reduce prey detection and escape rates. Over time, predator
movements closely mirror prey migrations, maintaining dynamic equilibrium and preventing overex-
ploitation.

In contrast, non-cooperative predation often leads to prey overexploitation and population collapse.
In our model, the lower diffusion coefficient of predators ensures spatial constraint, promoting localized
and sustainable predation. Cooperative hunting behavior, as supported by ecological theory [9], provides
significant advantages in predator–prey dynamics.

Incorporating cooperative predation into predator–prey models greatly enhances their ecological re-
alism and expands their applicability. The analytical and numerical framework developed in this study
provides a robust approach for investigating pattern formation in spatially extended ecosystems. Given
the scarcity of models that explicitly address group predation within reaction–diffusion frameworks, this
work offers novel insights into coordinated hunting dynamics.

Future research could build upon these findings to explore spatial invasion, population persistence,
and heterogeneous species distributions. Further studies should also examine the effects of more com-
plex functional responses, such as the Holling type IV response, which accounts for saturation in preda-
tion rates. Additionally, incorporating environmental feedback, adaptive foraging strategies, and habitat
heterogeneity could reveal new mechanisms driving spatiotemporal pattern formation in natural ecosys-
tems.
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