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Abstract.  In this paper, the rate of decay for the radius of spatial analyticity for solutions of the
nonlinear wave equation
u—Au+|ulP'u=0,

on R x R is studied. In particular, for a class of analytic initial data with a uniform radius of analyticity
0p, we obtain an asymptotic lower bound o (¢) > a0|t]*% whend = 1 and o(¢) > aolt]*% when d =2
on the uniform radius of analyticity o(¢) of solution u(+,7) as |t| — oo . This is an improvement of the
work [D. O. da Silva, A. J. Castro, Global well-posedness for the nonlinear wave equation in analytic
Gevrey spaces, J. Differential Equations 275(2021) 234-249], where the authors obtained a decay rate
of order o(¢) > ap(1+ |t|)*(pT+l) whend =1 and 6(t) > aop(1 + |t|)’(p%€) when d = 2 as |t| — oo for
large time ¢, where € > 0 is arbitrary. We used an approximate conservation law in a modified Gevrey
space, contraction mapping principle, interpolation and Sobolev embedding to obtain the results.
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1 Introduction

In this paper, we consider the Cauchy problem for the nonlinear wave (NLW) equation

OPu—Au+|ulP~'lu=0, xcR? tcR,

u(x,O) = f(x)v (D
at”(xvo) = g(x),
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where u : R? x R — C, p > 1 be any odd integer, and A = ):‘;:1 8,%,.
The following energy is conserved under the flow of (1):

1 2
E(t) = E/Rd <|(9tu]2+]Vu|2+p+1|u\p+l>dX—E(O), V. )

The NLW equation (1) has a long history and many results are known. For a detailed exposition, we
refer the readers that [20] and the references therein. Local well-posedness of (1) in the homogeneous
Sobolev spaces H*(IR?) has been showed by Lindblad and Sogge [14] with optimal regularity given by

We refer the readers also to see the refinements of Nakamura and Ozawa [15]. These results that are
obtained for the homogeneous Sobolev spaces can be extended to the inhomogeneous Sobolev spaces H*
by a simple integration in time argument [3].

The main concern of this work is to estimate the radius of spatial analyticity for the solution of
the Cauchy problem (1), given initial data in a class of analytic functions. A class of analytic function
spaces suitable for our analysis is the modified Gevrey class introduced in [4]. This space is denoted by
HC* = H°*(R?) and consists of functions such that

{«p € L(RY): 9]l = |eosh(GIEI)(E))(E) |2y < oo},
where (£)%2 = 14|&|? and ¢ (&) denotes the spatial Fourier transform of ¢ (x) which is given by’
6(8):= FLo)E) = [ e Do
The authors in [4] obtained this space from the Gevrey space G°*(R¢) by replacing the exponen-

tial weight ¢®l%| with the hyperbolic weight cosh(c|&|). The Gevrey space G®* = G®*(R?) was first
introduced in [0] via the norm

19 llgm: =||e1(&)¢ (6>0,5€R).

Lz (RY)

Observe that the Gevrey and modified Gevrey spaces satisfy the following embedding properties.
For all 5,5’ € Rand 0 < 0 < ¢’, we have

G™ C G, e, [lloes SIPllgos- )
HO CHO, ie, [|9lluos S [0 o “)

For o0 = 0, we have
GO,S — HO,S —H

Ix. & stands for the usual dot product ):?:1 xj&; forallx;, & € R.
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where H® = H*(R?) denotes the standard Sobolev space consisting of functions

HQ)HHy = H<§>S¢; L%(Rd) < oo,
For 2 < g < o, we have the Sobolev embedding
. 1 1
191l omaey S QMo ifs>d 27y > 0, 5)
< . 1 1
10l < N0l ifs=d (5=2) >0, ©)

where H* denotes the homogeneous Sobolev space of order s. Furthermore, we have >

101 2=rey S 191l g )

H2t'

By the Paley-Wiener Theorem, the radius of analyticity of a function can be related to decay proper-
ties of its Fourier transform. It is therefore natural to take data for (1) in G°. For ¢ > 0, any function in
G°* has a radius of analyticity of at least ¢ at each point x € R¥. This fact is contained in the following
theorem, whose proof can be found in [13, p. 174] in the case s = 0 and d = 1; the general case follows
from a simple modification.

Lemma 1 ( Paley-Wiener Theorem). For 6 > 0,s € R, the function ¢ € G°* if and only if §(-) is the
restriction to the real line of a function (- + iy) which is holomorphic in the strip

Se ={x+iyeC:|y| <o},
and satisfies the bound

sup [[¥(-+iy) |y < ee-

lyl<o
The exponential and hyperbolic weights are equivalent in the sense that
1
5ecfé\ < cosh(o|&]) <%, &R, (8)

from which, we find
1
S19llgos < [[@llmos < [[@lgo-.

In other words, the associated H®* and G°*—norms are equivalent, i.e.,

1905 ~ Illgos = [[e°1%1(E)6

- ©)
Therefore, (9) guarantees that the statement of Paley-Wiener Theorem still holds for functions in H%>*.
The study of spatial analyticity of solutions to nonlinear Cauchy problems was initiated by Kato and
Masuda [12]. Since then, several mathematicians have considered the Cauchy problem for a variety of
equations with initial data in G®*—spaces (see, for example e.g., [2,5, 17, 18,21-23] and the references

2Here, a+ = a + € for sufficiently small £ > 0.
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therein). For studies with initial data in the modified Gevrey spaces see for example [4, 7-10] and
references therein

Coming back to (1), the asymptotic lower bound for the radius of spatial analyticity of the solutions
has been established by da Silva and Castro [3], who obtained a decay rate of order ¢ (¢) > ¢(1+ |t])_(pT+l)
whend =1and o(r) > ¢(1+ |t|)7(%) when d = 2 as |t| — oo, where € > 0 is arbitrary. The strategy
in [3] is as follows:

1. Prove a local well-posedness by standard fixed-point argument in G°* x G°*~! with a lifespan
T > 0.

2. Establish an almost conservation law in G°! x G0,

3. By shrinking o gradually, they used repeatedly the local well-posedness and the almost conserva-
tion law on the intervals [0,7],[T,2T],---, and obtained a global bound of solution on [0, §] for
arbitrarily large 6. This idea was introduced by Selberg and Tesfahun in [19], where it was applied
to the 1D Dirac-Klein-Gordon equations.

The persistence of spatial analyticity of (1) in the periodic setting was dealt by Guo and Titi in [11].

As a consequence of the embedding (4) and the existing well-posedness theory in H! (R?) x L?(R%),
the Cauchy problem (1) with initial data f, g € H%(R?) x H%9(R¥) for some 6y > 0 has a unique and
global in time solution.

The main result in this paper is as follows.

Theorem 1 (Decay rate for the radius of analyticity). Let d = 1 or 2 and p > 1 be any odd integer. If
(f,g) € HO! x HO for 6 > 0, then for any 8 > 0 the global solution u of (1) satisfies

(u,du) € C ([o, ), HOW x H"(t)’(’) : (10)
where the radius of spatial analyticity o (t) satisfies an asymptotic rate of decay
2
o(t) > apl|t| 3 when d =1,

and
3
o(t) > aplt|” 2 when d =2,

as |t| — +oo. Here, ag > 0 is a constant which depends on the initial data norm.

Notation. For any positive numbers a and b, the notation a < b stands for a < ¢b, where c is a positive
constant that can be determined by known parameters in a given situation but whose values are not crucial
to the problem at hand and may differ from line to line. We also denote a ~ b to mean b < a < b.

2 Local well-posedness result

The first step in the proof of Theorem 1 is to prove the following local well-posedness result, where the
radius of analyticity remains constant.
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Theorem 2. Let p > 1 be any odd integer and d = 1 or 2. Given (f,g) € H%' x H°? for ¢ > 0, there
exists a time T > 0 and a unique solution

(u,&,u) eC ([O,T];HGJ « HG,O) ’

of the Cauchy problem (1) on R? x [0,T]. Moreover, the solution depends continuously on the initial
data. Furthermore, the existence time is given by

T = ao (|| fll o + gl geo) ", (11)

for some constant ay > 0. In addition, the local solution u satisfies the bound

sup ([lullgos + | rull o) S Fllmon + llglloo- (12)

t€[0,T]
Proof. Consider the Cauchy problem for the linear wave equation
0?u—Au=F(-t),

u('70) :f(')7 (13)
(9;14(',0) :g()v

whose solution is given by Duhamel’s formula

t

u(t) = atW(t)f+W(t)g+/W(t—s)F(~,s)ds, (14)
0
where ) (I\D])
W(t) = T.

To obtain an energy inequality from (14), we need the following estimates.
Lemma 2. ([/6, Lemma 4.1]) For any s € R and any integer d > 1, we have
1OW () f | s ety S 1115 e (15)
W ()8l prs (may S 11811as-1 (me)- (16)

Now, applying cosh(c|D|) to both sides of (14) and taking H'(R¢)—norm to both sides and then
using Lemma 2, we obtain the energy inequality

T
sup (o1 sy + 1oy ) S (Mo oy = Ngleoise) + [ NFCo8) eoisnds, — 17)
1€(0,T] 0

forT >0andd =1,2.
To use the standard fixed point argument in proving Theorem 2, we need the nonlinear estimate

H|u’p_1uHH0.0(Rd) S/ ||u||£loi,l(Rd)7 (18)



Proof. Putting V = cosh(c|D|)u, (18) reduces to

Hcosh(G|D|) [|sech(G|D|)V|p*1 sech(6|D])V}

L2(R9)

From triangle inequality we have
p P
=Y &=E<) gl
J=1 J=1

Morovere, we have from [4] that
p
cosh(c|&]) Hsech(6|§j|) <27,
=1
By Plancherel’s Theorem, (20) and (21), we have

LHS of (19) = ﬂx{cosh(o\DD [ysech(o|p|)V|P*1sech(o|D|)v}}(5,)

T. Getachew, B. Shiferaw

SV ey

Lz (R?)
p P p

—| [ lcosh(olE [ sech(olg; NI TT V(&) [T 4%

E=v" s A

j=15J Lé(Rd)

S H (&) |ndz;,

52): 5} E(Rd)
= HUPHLg(Rd)7

where U = .77 [|X7|]
Here by Sobolev embedding, we obtain
10PNl 2may = U7

SN gay = VI

2p Rd H! ]Rd

where p > 1 is any integer. This proves (19), and hence (18).

H'(R4)?

Proof of estimate (21). From the definition of cosine hyperbolic function, we have

eclﬂ _|_ 676‘5‘

p—1

cosh(a1&]) [ Tsech(o1E,1) =

J=1

H?:] (€918 - e=0l8i) 2

Since the fraction is less than or equal to one by the key inequality, we obtain

cosh(G\&DIE[lsech(G]éj]) <1-2071
=

Also, since 27! < 27 for p > 1, the inequality (21) is proven. That is

cosh(o|&]) fllsech(6|§j|) <27

(19)

(20)

21

(22)
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Now, the integral form of (1) is given by Duhamel’s formula as

t

u(t)=oWt)f+wit)g+ /W(t —5)|u(s) [P~ u(s)ds.
0

Then define a mapping
t
() (1) = JW (1) f + W (1)g + / Wt — 5)|u(s)|?~ u(s)ds.
0
Consider the closed ball £ in X such that

P ={ue X |lullx <2c(flger+llgllgao)},

where
X =C([0,T;;H"" x H?)

equipped with the norm

lullx = sup (JJullgor + [[dullgoo)-
t€[0,T]

In view of (17) and (18), we have

T
IT@)@)llx < ellfllgeor +cllgllgooo +C/0 [[u(s)1"~ u(s)]| oo ds

< c|| fll oot +ellgllgono +T sup [ullfe,-
1€[0,T]

If we choose 0 < T' < 1 sufficiently small such that
T — 1
= 9y =
2P ([l fll g0 + N8l rovo)
then for any u € & and initial data’s f, g, (25) yields

T @)llx < 2¢ (11l oo + N8l o) -

This implies that I maps % onto itself.

)

Next, we prove that the map I is a contraction map on . To do this, we need the estimate’

jal?~ta—1b/"~1b < (lal + |61}~ |a —b.

Now, for u,v € Z with the same choice of T, doing as above and applying (28), we obtain

IE() (1) =) (@)llx < Te2?~" (1 llgoor + gl o00)” ™" llue—=vllx

<— 21 H H
u—vy
X

(23)

(24)

(25)

(26)

(27)

(28)

which proves that I is a contraction map on %. Therefore by contraction mapping principle, (1) has
unique solution in X. Continuous dependence on the initial data can be shown by using the difference

estimate. Thus, we proved that the Cauchy problem (1) is locally well-posed in H%! x H?,

3For the justification of this estimate we refer the readers to [1, equation 18 on page 10].

O
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3 Approximate conservation law

The second step in the proof of Theorem 1 is to prove an approximate conservation law for the norm of
the solution, that involves a small parameter ¢ > 0 and which reduces to the exact energy conservation
law in taking the limit as ¢ — 0. To do this, for a solution u of (1), we put

ve = cosh(o|D|)u,

where D = —iV with Fourier symbol &. Then we define a modified energy associated with the function
Vs by

1
Eolt) =3 [, (190al+ [7vo+

For o = 0, we have the conservation

p+1|v°‘p+l>dx'
E(t)=E(0) forall 0<r<T.

However, this fails to hold for ¢ > 0. In what follows, we will use equation (1) and Theorem 2 to prove

Ec(t) < EG(O) +T /atva(xv ) 'N(vg(x, ~))dx . (29)

Ly

Proof. Differentiate Es(7) with respect to time ¢ and then applying integration by parts in the spatial
variable and (1), we obtain

d S— |
—Es(t) = / ove [8,2v0 — Avg + \vc,]pflﬁ] dx
dt R
= /latvg [cosh(G\DD [8t2u—Au} + |Vg‘p71%i| dx
R(
= /d dvs [—cosh(o|D|) [|sech(c|D|)vs "' sech(o|D|)Vs| + |ve|’ V5] dx
R
:/ dvg - N(vs)dx,
R4
where
N(vs) = —cosh(|D|) [|sech(c|DI)vo|" " sech(a]D])75] + [vol” Vs (30)
Therefore, integrating and using Holder’s inequality in time yields

Eo(t) = Eo(0)+ / / Ivo(x,s) - N(v(x,s))dxds

0 R4

T
< Eg(0) + / / Ivo(x,5) - N(ve (x,s))dx|ds
0 Irpd
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<Eo(0)+T | [ dvolx.) - N(vo(x,))dx| - 31

Ly

Lemma 3. For djvs € LJZC and vs € H', we have the following estimate
[ oo Niva)ax| < o™ avollivollfy: (32)
d

for some constant C > 0, where 6 = % whend =1 and 6 = % when d = 2.

Proof. Recall that
N(vg) = —cosh(a|D|) [| sech(c|D|)vg|P~! sech(o|D|)vs] + N =

By the Cauchy-Schwarz inequality, we have
[ ave-No)ds| < avalliz INvolls
d

Thus, we are reduced to prove
INWo)l2 S 0% [vellfy- (33)

To proceed with the proof, we need the following Lemma whose proof is found in [4, Lemma 3].

Lemma 4. Let p > 1 be any odd integer such that & = Z‘}’:] EjforE; € R. Then

1 Zcosh(g [ sech(lED| <2 Y I11E
j=1 J#k=1

By symmetry, we may assume that |&;| < |&,| <--- <|&,|. Then, from Lemma 4 (see [4, Lemma

3D,

p
|K(0&)| = |1—cosh(o|E]) [ [sech(|o&;l)| < 27Co?(E,1]IE,- (34)
j=1
It is easy to see that
|K(c&)| <1. (35)

Now, interpolation between (34) and (35) yields

K(0€)| <27 [6%&,111E]]°,
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for any 0 < 0 < 1. In particular choosing 8 = % when d = 1 (respectively, 0 = % when d = 2) yields
K(08)] 270281 g |F whend =1, (36)
K(0E)| <2°67|E,1|3|E,|5 whend =2. (37)

By taking the Fourier transform of N(vs) we obtain

ZNe Sl =| [ K [RE T4

j=1
:Z?:I S

< [ ool

4
(&I T ] 4;-
52):5'):1 & ! y'

=1

Now, let
we =-F, " (IVsl).

If d = 1, then using Plancherel’s Theorem, (36), Holder’s inequality, and Sobolev embedding, we obtain

3 3. 3~ P
INGo)llz = 7N (a)l(S)lz S 03 / &p—1131&p 17 [TV (ENIT T dE;
=1 =1
E=X7_.& / / 12
G
3 3. 3 —~ P
LA B AT § (1) § €S
j=1 j=1
§:Z?=l‘§.i ! / Lé
<o |[wh 2 |D|3we - D|iwe .
3| p—2 3 2
< o2 |we []D|4wg}
Ly L)%
3 =2 312
S ot Jwollf27 | IDlwa |,
3
St wel” |IDlws|
3 3
S o2 |well ~ o7 [lvslly

Similarly, for d = 2, we choose Holder’s exponents % =3 and % = 6, and the by using Plancherel’s
Theorem, (37), Holder’s inequality, and Sobolev embedding, we obtain

NGz = 7N @l S0t | [ &8I0 [TI7E) [T
=X a = 12
¢
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2 L L — -
Y &1 1181 TTws (8 [T 48,
E=X7 16 a o Lé
<ol |wh - IDliwe - Dl wg
z:
,SG% wh [\Dﬁwo}
1
2
<ot wallys [IDRwol |,
2
Sotwol” 2 |ipws |
p—1)

Iwsllf, ~ &% [voll%,

Now, our almost conservation law is stated as follows.

Theorem 3 (Approximate conservation law). Letd =1 or 2, ¢ > 0 and p > 1 be any odd integer. Let
(f,8) € H%' x H®? and u be the the local solution of (1) on RY x [0, T] obtained in Theorem 2. Then,
we have
sup Eg(t) < Eg(0)+cT6%°2E4(0)]"T (38)
1€[0,T]
where 0 be as given in Lemma 3.

Proof. We have from (12)

2 2
(Wollzzr +19msliziz)” = (Nallzror + 1l ze0)

< c(Iflor +llglloo)?
< 2¢|vs (-, 0)lI7 +2C1Idvo (-, 0) 72
< 20E4(0), |
which in turn implies that
Vo llzzm + 19ve |z < cv/2Es(0). (39)
Now, using (29), (32) and (39) we obtain
Es(1) < Es(0) +cT([0vo 2 [N (Vo r2
< Eq(0 CTGZGHalVGHL”UHvGHLwHI
< Eg(0) +cT6%%\/2E4(0)\/2E(0)
~ Eg(0) +cT6* [2E4(0)]"T

)
)+
)
)



12 T. Getachew, B. Shiferaw

4 Proof of Theorem 1

Suppose that (f,g) € H%' x H% for some oy > 0. This implies
Ve, (+,0) = cosh(op|D|) f(-) € H', e, (-,0) = cosh(cp|D|)g(:) € L2.
Then we have by the Sobolev embedding that
Eq,(0) < |]V<;0(-,0)H12ql + HatVGo('aO)Hi% + ||Vco('70)HZTI <oo.

Now, we can construct a solution on [0, 8] for arbitrarily large time & by following the techniques pre-
sented in [22]. This is achieved by applying the approximate conservation law Theorem 3, so as to repeat
the local result in Theorem 2 on successive short time interval of size T to reach § by adjusting the strip
width parameter ¢ € (0, 0p] of the solution according to the size of 8. The goal is to prove that for a
given parameter ¢ € (0, 0p| and large &,

sup Eq(t) < 2Eq,(0) for o >c5 m, (40)
t€[0,9]

where ¢ > 0 depends only on the initial data norm, and 6 be as in Theorem 3. This would imply &5 () < o0
for all 7 € [0, 8] and hence for all 7 € [0, 8] the solution u to (1) satisfies

(u, du) (1) € H®'xH°? foro > ¢85
It remains to prove (40). Since cosh(x) is increasing function for x > 0, for 6 < oy we have
Es(0) < Eg,(0). an

Now, for a given parameter ¢ € (0, 0p] and #; € [0, T], we have by Theorem 2, Theorem 3 and (41),
20 5
sup Eq(t) <Es(0)+cTo"Es* (0)
t€[0,10)
pl

< Eg,(0)+cTo*Es (0).

Thus
sup Eq (1) <2Eg,(0), (42)
t€(0,t0]
provided
p—1
TG ES (0) < 1. 43)

Then we can apply Theorem 2, with initial time ¢ = ¢y and the time step 7 in (11) to extend the
solution from [0,1#y] to [tg,fo+ T']. By Theorem 3 and (42), we obtain

sup  Eq(t) < Eq(to) + T 0% (2Eq,(0))'7 . (44)
t€lto,to+T)

In this way, we can cover all time intervals [0, T], [T,2T], [2T,3T] etc., and obtain

p+l

Es(T) < E5(0)4cT 6% (2E4,(0)) 2,
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p+l

Eg(2T) < E¢(T) +cT c?° (21560(0))T
< Eg(0) +2¢T 6% (2E4,(0)) 7
Es(3T) < E¢(2T) +cTc*° (2E00(0))T
< Eo(T) +2¢T6% (2Eq, (0) ™
< Eo(0) +3¢T 6 (2E4,(0))'7

SR

Pt

Eg(nT) < Eg(0) +ncTc*® (2E5,(0)) 2 .
This argument continues until
cnT 62 (2E4,(0))"" < Eqy(0), (45)

and then we have reached the final time
6 =nT,

when
e

enTo?® (2E4(0)) 7 <1.

Finally, the condition (43) satisfies for o such that

p—

enTo?? (2E4(0)) 7 =1.

Therefore .
>

20— 571 ¢ (2E5(0) 2 .

1-p

1
It gives (40) if choose ¢ < (5_1 ¢ (2Eq, (0))7) *  This completes the proof of Theorem 1.
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