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Abstract. In this paper, the rate of decay for the radius of spatial analyticity for solutions of the
nonlinear wave equation

∂
2
t u−∆u+ |u|p−1u = 0,

on Rd ×R is studied. In particular, for a class of analytic initial data with a uniform radius of analyticity
σ0, we obtain an asymptotic lower bound σ(t) ≥ a0|t|−

2
3 when d = 1 and σ(t) ≥ a0|t|−

3
2 when d = 2

on the uniform radius of analyticity σ(t) of solution u(·, t) as |t| →+∞ . This is an improvement of the
work [D. O. da Silva, A. J. Castro, Global well-posedness for the nonlinear wave equation in analytic
Gevrey spaces, J. Differential Equations 275(2021) 234–249], where the authors obtained a decay rate
of order σ(t)≥ a0(1+ |t|)−( p+1

2 ) when d = 1 and σ(t)≥ a0(1+ |t|)−( p+1−ε

1−ε
) when d = 2 as |t| →+∞ for

large time t, where ε > 0 is arbitrary. We used an approximate conservation law in a modified Gevrey
space, contraction mapping principle, interpolation and Sobolev embedding to obtain the results.

Keywords: Nonlinear wave equation, modified Gevrey space, approximate conservation, radius of analyticity, decay
rate for the radius.
AMS Subject Classification 2010: 35Q40, 35Q55, 37L70.

1 Introduction

In this paper, we consider the Cauchy problem for the nonlinear wave (NLW) equation
∂ 2

t u−∆u+ |u|p−1u = 0, x ∈ Rd , t ∈ R,
u(x,0) = f (x),
∂tu(x,0) = g(x),

(1)
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where u : Rd ×R→ C, p > 1 be any odd integer, and ∆ = ∑
d
j=1 ∂ 2

x j
.

The following energy is conserved under the flow of (1):

E(t) =
1
2

∫
Rd

(
|∂tu|2 + |▽u|2 + 2

p+1
|u|p+1

)
dx = E(0), ∀ t. (2)

The NLW equation (1) has a long history and many results are known. For a detailed exposition, we
refer the readers that [20] and the references therein. Local well-posedness of (1) in the homogeneous
Sobolev spaces Ḣs(R2) has been showed by Lindblad and Sogge [14] with optimal regularity given by

s(p) =

{
3
4 −

1
p−1 if 3 ≤ p ≤ 5,

1− 2
p−1 if p ≥ 5.

We refer the readers also to see the refinements of Nakamura and Ozawa [15]. These results that are
obtained for the homogeneous Sobolev spaces can be extended to the inhomogeneous Sobolev spaces Hs

by a simple integration in time argument [3].
The main concern of this work is to estimate the radius of spatial analyticity for the solution of

the Cauchy problem (1), given initial data in a class of analytic functions. A class of analytic function
spaces suitable for our analysis is the modified Gevrey class introduced in [4]. This space is denoted by
Hσ ,s = Hσ ,s(Rd) and consists of functions such that{

φ ∈ L2
x(Rd) : ∥φ∥Hσ ,s =

∥∥cosh(σ |ξ |)⟨ξ ⟩s)φ̂(ξ )
∥∥

L2
ξ
(Rd)

< ∞

}
,

where ⟨ξ ⟩2 = 1+ |ξ |2 and φ̂(ξ ) denotes the spatial Fourier transform of φ(x) which is given by1

φ̂(ξ ) := Fx[φ ](ξ ) =
∫
Rd

e−i(x·ξ )
φ(x)dx.

The authors in [4] obtained this space from the Gevrey space Gσ ,s(Rd) by replacing the exponen-
tial weight eσ |ξ | with the hyperbolic weight cosh(σ |ξ |). The Gevrey space Gσ ,s = Gσ ,s(Rd) was first
introduced in [6] via the norm

∥φ∥Gσ ,s =
∥∥∥eσ |ξ |⟨ξ ⟩s

φ̂

∥∥∥
L2

ξ
(Rd)

(σ ≥ 0,s ∈ R).

Observe that the Gevrey and modified Gevrey spaces satisfy the following embedding properties.
For all s,s′ ∈ R and 0 ≤ σ < σ ′, we have

Gσ ′,s′ ⊂ Gσ ,s, i.e., ∥φ∥Gσ ,s ≲ ∥φ∥Gσ ′,s′ . (3)

Hσ ′,s′ ⊂ Hσ ,s, i.e., ∥φ∥Hσ ,s ≲ ∥φ∥Hσ ′,s′ . (4)

For σ = 0, we have
G0,s = H0,s = Hs,

1x ·ξ stands for the usual dot product ∑
d
j=1 x jξ j for all x j,ξ j ∈ R.
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where Hs = Hs(Rd) denotes the standard Sobolev space consisting of functions

∥φ∥Hs =
∥∥⟨ξ ⟩s

φ̂
∥∥

L2
ξ
(Rd)

< ∞.

For 2 ≤ q < ∞, we have the Sobolev embedding

∥φ∥Lq(Rd) ≲ ∥φ∥Hs if s ≥ d
(

1
2
− 1

q

)
> 0, (5)

∥φ∥Lq(Rd) ≲ ∥φ∥Ḣs if s = d
(

1
2
− 1

q

)
> 0, (6)

where Ḣs denotes the homogeneous Sobolev space of order s. Furthermore, we have 2

∥φ∥L∞(Rd) ≲ ∥φ∥
H

d
2 + . (7)

By the Paley-Wiener Theorem, the radius of analyticity of a function can be related to decay proper-
ties of its Fourier transform. It is therefore natural to take data for (1) in Gσ ,s. For σ > 0, any function in
Gσ ,s has a radius of analyticity of at least σ at each point x ∈ Rd . This fact is contained in the following
theorem, whose proof can be found in [13, p. 174] in the case s = 0 and d = 1; the general case follows
from a simple modification.

Lemma 1 ( Paley-Wiener Theorem). For σ ≥ 0,s ∈ R, the function φ ∈ Gσ ,s if and only if φ(·) is the
restriction to the real line of a function Ψ(·+ iy) which is holomorphic in the strip

Sσ = {x+ iy ∈ C : |y|< σ} ,

and satisfies the bound
sup
|y|<σ

∥Ψ(·+ iy)∥Hs
x
< ∞.

The exponential and hyperbolic weights are equivalent in the sense that

1
2

eσ |ξ | ≤ cosh(σ |ξ |)≤ eσ |ξ |, ξ ∈ Rd , (8)

from which, we find
1
2
∥φ∥Gσ ,s ≤ ∥φ∥Hσ ,s ≤ ∥φ∥Gσ ,s .

In other words, the associated Hσ ,s and Gσ ,s–norms are equivalent, i.e.,

∥φ∥Hσ ,s ∼ ∥φ∥Gσ ,s =
∥∥∥eσ |ξ |⟨ξ ⟩s

φ̂

∥∥∥
L2

ξ
(Rd)

. (9)

Therefore, (9) guarantees that the statement of Paley-Wiener Theorem still holds for functions in Hσ ,s.
The study of spatial analyticity of solutions to nonlinear Cauchy problems was initiated by Kato and

Masuda [12]. Since then, several mathematicians have considered the Cauchy problem for a variety of
equations with initial data in Gσ ,s–spaces (see, for example e.g., [2, 5, 17, 18, 21–23] and the references

2Here, a+= a+ ε for sufficiently small ε > 0.
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therein). For studies with initial data in the modified Gevrey spaces see for example [4, 7–10] and
references therein

Coming back to (1), the asymptotic lower bound for the radius of spatial analyticity of the solutions
has been established by da Silva and Castro [3], who obtained a decay rate of order σ(t)≥ c(1+ |t|)−( p+1

2 )

when d = 1 and σ(t)≥ c(1+ |t|)−( p+1−ε

1−ε
) when d = 2 as |t| →+∞, where ε > 0 is arbitrary. The strategy

in [3] is as follows:

1. Prove a local well-posedness by standard fixed-point argument in Gσ ,s ×Gσ ,s−1 with a lifespan
T > 0.

2. Establish an almost conservation law in Gσ ,1 ×Gσ ,0.

3. By shrinking σ gradually, they used repeatedly the local well-posedness and the almost conserva-
tion law on the intervals [0,T ], [T,2T ], · · · , and obtained a global bound of solution on [0,δ ] for
arbitrarily large δ . This idea was introduced by Selberg and Tesfahun in [19], where it was applied
to the 1D Dirac-Klein-Gordon equations.

The persistence of spatial analyticity of (1) in the periodic setting was dealt by Guo and Titi in [11].
As a consequence of the embedding (4) and the existing well-posedness theory in H1(Rd)×L2(Rd),

the Cauchy problem (1) with initial data f ,g ∈ Hσ0,1(Rd)×Hσ0,0(Rd) for some σ0 > 0 has a unique and
global in time solution.

The main result in this paper is as follows.

Theorem 1 (Decay rate for the radius of analyticity). Let d = 1 or 2 and p > 1 be any odd integer. If
( f ,g) ∈ Hσ0,1 ×Hσ0,0 for σ0 > 0, then for any δ > 0 the global solution u of (1) satisfies

(u,∂tu) ∈C
(
[0,δ ];Hσ(t),1 ×Hσ(t),0

)
, (10)

where the radius of spatial analyticity σ(t) satisfies an asymptotic rate of decay

σ(t)≥ a0|t|−
2
3 when d = 1,

and
σ(t)≥ a0|t|−

3
2 when d = 2,

as |t| →+∞. Here, a0 > 0 is a constant which depends on the initial data norm.

Notation. For any positive numbers a and b, the notation a ≲ b stands for a ≤ cb, where c is a positive
constant that can be determined by known parameters in a given situation but whose values are not crucial
to the problem at hand and may differ from line to line. We also denote a ∼ b to mean b ≲ a ≲ b.

2 Local well-posedness result

The first step in the proof of Theorem 1 is to prove the following local well-posedness result, where the
radius of analyticity remains constant.
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Theorem 2. Let p > 1 be any odd integer and d = 1 or 2. Given ( f ,g) ∈ Hσ ,1 ×Hσ ,0 for σ > 0, there
exists a time T > 0 and a unique solution

(u,∂tu) ∈C
(
[0,T ];Hσ ,1 ×Hσ ,0) ,

of the Cauchy problem (1) on Rd × [0,T ]. Moreover, the solution depends continuously on the initial
data. Furthermore, the existence time is given by

T = a0 (∥ f∥Hσ ,1 +∥g∥Hσ ,0)−(p−1) , (11)

for some constant a0 > 0. In addition, the local solution u satisfies the bound

sup
t∈[0,T ]

(∥u∥Hσ ,1 +∥∂tu∥Hσ ,0)≲ ∥ f∥Hσ ,1 +∥g∥Hσ ,0 . (12)

Proof. Consider the Cauchy problem for the linear wave equation
∂ 2

t u−∆u = F(·, t),
u(·,0) = f (·),
∂tu(·,0) = g(·),

(13)

whose solution is given by Duhamel’s formula

u(t) = ∂tW (t) f +W (t)g+
t∫

0

W (t − s)F(·,s)ds, (14)

where

W (t) =
sin(t|D|)

|D|
.

To obtain an energy inequality from (14), we need the following estimates.

Lemma 2. ([16, Lemma 4.1]) For any s ∈ R and any integer d ≥ 1, we have

∥∂tW (t) f∥Hs(Rd) ≲ ∥ f∥Hs(Rd), (15)

∥W (t)g∥Hs(Rd) ≲ ∥g∥Hs−1(Rd). (16)

Now, applying cosh(σ |D|) to both sides of (14) and taking H1(Rd)–norm to both sides and then
using Lemma 2, we obtain the energy inequality

sup
t∈[0,T ]

(
∥u∥Hσ ,1(Rd)+∥∂tu∥Hσ ,0(Rd)

)
≲ (∥ f∥Hσ ,1(Rd)+∥g∥Hσ ,0(Rd))+

∫ T

0
∥F(·,s)∥Hσ ,0(Rd)ds, (17)

for T > 0 and d = 1,2.
To use the standard fixed point argument in proving Theorem 2, we need the nonlinear estimate∥∥|u|p−1u

∥∥
Hσ ,0(Rd)

≲ ∥u∥p
Hσ ,1(Rd)

, (18)
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Proof. Putting V = cosh(σ |D|)u, (18) reduces to∥∥∥cosh(σ |D|)
[
|sech(σ |D|)V |p−1 sech(σ |D|)V

]∥∥∥
L2

x(Rd)
≲ ∥V∥p

H1(Rd)
. (19)

From triangle inequality we have

ξ =
p

∑
j=1

ξ j ⇒ |ξ | ≤
p

∑
j=1

|ξ j|. (20)

Morovere, we have from [4] that

cosh(σ |ξ |)
p

∏
j=1

sech(σ |ξ j|)≤ 2p. (21)

By Plancherel’s Theorem, (20) and (21), we have

LHS of (19) =
∥∥∥Fx

{
cosh(σ |D|)

[
|sech(σ |D|)V |p−1 sech(σ |D|)V

]}
(ξ )

∥∥∥
L2

ξ
(Rd)

=

∥∥∥∥∥∥∥
∫

ξ=∑
p
j=1 ξ j

[cosh(σ |ξ |)
p

∏
j=1

sech(σ |ξ j|)]
p

∏
j=1

V̂ (ξ j)
p

∏
j=1

dξ j

∥∥∥∥∥∥∥
L2

ξ
(Rd)

≲

∥∥∥∥∥∥∥
∫

ξ=∑
p
j=1 ξ j

p

∏
j=1

|V̂ (ξ j)|
p

∏
j=1

dξ j

∥∥∥∥∥∥∥
L2

ξ
(Rd)

= ∥U p∥L2
x(Rd),

where U = F−1
x

[
|V̂ |

]
.

Here by Sobolev embedding, we obtain

∥U p∥L2
x(Rd) = ∥U∥p

L2p
x (Rd)

≲ ∥U∥p
H1(Rd)

= ∥V∥p
H1(Rd)

, (22)

where p ≥ 1 is any integer. This proves (19), and hence (18).

Proof of estimate (21). From the definition of cosine hyperbolic function, we have

cosh(σ |ξ |)
p

∏
j=1

sech(σ |ξ j|) =
eσ |ξ |+ e−σ |ξ |

∏
p
j=1(e

σ |ξ j|+ e−σ |ξ j|)
·2p−1.

Since the fraction is less than or equal to one by the key inequality, we obtain

cosh(σ |ξ |)
p

∏
j=1

sech(σ |ξ j|)≤ 1 ·2p−1.

Also, since 2p−1 ≤ 2p for p ≥ 1, the inequality (21) is proven. That is

cosh(σ |ξ |)
p

∏
j=1

sech(σ |ξ j|)≤ 2p.
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Now, the integral form of (1) is given by Duhamel’s formula as

u(t) = ∂tW (t) f +W (t)g+
t∫

0

W (t − s)|u(s)|p−1u(s)ds. (23)

Then define a mapping

Γ(u)(t) = ∂tW (t) f +W (t)g+
t∫

0

W (t − s)|u(s)|p−1u(s)ds. (24)

Consider the closed ball B in X such that

B = {u ∈ X : ∥u∥X ≤ 2c(∥ f∥Hσ0 ,1 +∥g∥Hσ0 ,0)} ,

where
X =C

(
[0,T ];Hσ ,1 ×Hσ ,0)

equipped with the norm
∥u∥X = sup

t∈[0,T ]
(∥u∥Hσ ,1 +∥∂tu∥Hσ ,0).

In view of (17) and (18), we have

∥Γ(u)(t)∥X ≤ c∥ f∥Hσ0 ,1 + c∥g∥Hσ0 ,0 + c
∫ T

0

∥∥|u(s)|p−1u(s)
∥∥

Hσ ,0 ds

≤ c∥ f∥Hσ0 ,1 + c∥g∥Hσ0 ,0 + cT sup
t∈[0,T ]

∥u∥p
Hσ ,1 . (25)

If we choose 0 < T < 1 sufficiently small such that

T =
1

c2p (∥ f∥Hσ0 ,1 +∥g∥Hσ0 ,0)
p−1 , (26)

then for any u ∈ B and initial data’s f ,g, (25) yields

∥Γ(u)(t)∥X ≤ 2c(∥ f∥Hσ0 ,1 +∥g∥Hσ0,0) . (27)

This implies that Γ maps B onto itself.
Next, we prove that the map Γ is a contraction map on B. To do this, we need the estimate3

|a|p−1a−|b|p−1b ≲ (|a|+ |b|)p−1|a−b|. (28)

Now, for u,v ∈ B with the same choice of T , doing as above and applying (28), we obtain

∥Γ(u)(t)−Γ(v)(t)∥X ≤ T c2p−1 (∥ f∥Hσ0 ,1 +∥g∥Hσ0 ,0)
p−1 ∥u− v∥X

≤ 1
2
∥u− v∥X ,

which proves that Γ is a contraction map on B. Therefore by contraction mapping principle, (1) has
unique solution in X . Continuous dependence on the initial data can be shown by using the difference
estimate. Thus, we proved that the Cauchy problem (1) is locally well-posed in Hσ ,1 ×Hσ ,0.

3For the justification of this estimate we refer the readers to [1, equation 18 on page 10].
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3 Approximate conservation law

The second step in the proof of Theorem 1 is to prove an approximate conservation law for the norm of
the solution, that involves a small parameter σ > 0 and which reduces to the exact energy conservation
law in taking the limit as σ → 0. To do this, for a solution u of (1), we put

vσ = cosh(σ |D|)u,

where D =−i▽ with Fourier symbol ξ . Then we define a modified energy associated with the function
vσ by

Eσ (t) =
1
2

∫
Rd

(
|∂tvσ |2 + |▽vσ |2 +

2
p+1

|vσ |p+1
)

dx.

For σ = 0, we have the conservation

E(t) = E(0) for all 0 ≤ t ≤ T.

However, this fails to hold for σ > 0. In what follows, we will use equation (1) and Theorem 2 to prove

Eσ (t)≤ Eσ (0)+T

∥∥∥∥∥∥
∫
Rd

∂tvσ (x, ·) ·N(vσ (x, ·))dx

∥∥∥∥∥∥
L∞

T

. (29)

Proof. Differentiate Eσ (t) with respect to time t and then applying integration by parts in the spatial
variable and (1), we obtain

d
dt

Eσ (t) =
∫
Rd

∂tvσ

[
∂ 2

t vσ −∆vσ + |vσ |p−1vσ

]
dx

=
∫
Rd

∂tvσ

[
cosh(σ |D|)

[
∂ 2

t u−∆u
]
+ |vσ |p−1vσ

]
dx

=
∫
Rd

∂tvσ

[
−cosh(σ |D|)

[
|sech(σ |D|)vσ |p−1 sech(σ |D|)vσ

]
+ |vσ |p−1vσ

]
dx

=
∫
Rd

∂tvσ ·N(vσ )dx,

where

N(vσ ) =−cosh(σ |D|)
[
|sech(σ |D|)vσ |p−1 sech(σ |D|)vσ

]
+ |vσ |p−1vσ . (30)

Therefore, integrating and using Hölder’s inequality in time yields

Eσ (t) = Eσ (0)+
t∫

0

∫
Rd

∂tvσ (x,s) ·N(vσ (x,s))dxds

≤ Eσ (0)+
T∫

0

∣∣∣∣∣∣
∫
Rd

∂tvσ (x,s) ·N(vσ (x,s))dx

∣∣∣∣∣∣ds
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≤ Eσ (0)+T

∥∥∥∥∥∥
∫
Rd

∂tvσ (x, ·) ·N(vσ (x, ·))dx

∥∥∥∥∥∥
L∞

T

. (31)

Lemma 3. For ∂tvσ ∈ L2
x and vσ ∈ H1, we have the following estimate∣∣∣∣∣∣

∫
Rd

∂tvσ ·N(vσ )dx

∣∣∣∣∣∣≤Cσ
2θ∥∂tvσ∥L2

x
∥vσ∥p

H1 , (32)

for some constant C > 0, where θ = 3
4 when d = 1 and θ = 1

3 when d = 2.

Proof. Recall that

N(vσ ) =−cosh(σ |D|)
[
|sech(σ |D|)vσ |p−1 sech(σ |D|)vσ

]
+ |vσ |p−1vσ .

By the Cauchy-Schwarz inequality, we have∣∣∣∣∣∣
∫
Rd

∂tvσ ·N(vσ )dx

∣∣∣∣∣∣≤ ∥∂tvσ∥L2
x
∥N(vσ∥L2

x
.

Thus, we are reduced to prove

∥N(vσ )∥L2
x
≲ σ

2θ∥vσ∥p
H1 . (33)

To proceed with the proof, we need the following Lemma whose proof is found in [4, Lemma 3].

Lemma 4. Let p > 1 be any odd integer such that ξ = ∑
p
j=1 ξ j for ξ j ∈ R. Then∣∣∣∣∣1− cosh(|ξ |)

p

∏
j=1

sech(|ξ j|)

∣∣∣∣∣≤ 2p
p

∑
j ̸=k=1

|ξ j||ξk|.

By symmetry, we may assume that |ξ1| ≤ |ξ2| ≤ · · · ≤ |ξp|. Then, from Lemma 4 (see [4, Lemma
3]),

|K(σξ )|=

∣∣∣∣∣1− cosh(σ |ξ |)
p

∏
j=1

sech(|σξ j|)

∣∣∣∣∣≤ 2pCσ
2|ξp−1||ξp|. (34)

It is easy to see that

|K(σξ )| ≤ 1. (35)

Now, interpolation between (34) and (35) yields

|K(σξ )| ≤ 2p [
σ

2|ξp−1||ξp|
]θ

,
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for any 0 ≤ θ ≤ 1. In particular choosing θ = 3
4 when d = 1 (respectively, θ = 1

3 when d = 2) yields

|K(σξ )| ≤ 2p
σ

3
2 |ξp−1|

3
4 |ξp|

3
4 when d = 1, (36)

|K(σξ )| ≤ 2p
σ

2
3 |ξp−1|

1
3 |ξp|

1
3 when d = 2. (37)

By taking the Fourier transform of N(vσ ) we obtain

|Fx[N(vσ )](ξ )|=

∣∣∣∣∣∣∣
∫

ξ=∑
p
j=1 ξ j

K(σξ )
p

∏
j=1

v̂σ (ξ j)
p

∏
j=1

dξ j

∣∣∣∣∣∣∣
≲

∫
ξ=∑

p
j=1 ξ j

|K(σξ )|
p

∏
j=1

|v̂σ (ξ j)|
p

∏
j=1

dξ j.

Now, let
wσ = F−1

x (|v̂σ |) .

If d = 1, then using Plancherel’s Theorem, (36), Hölder’s inequality, and Sobolev embedding, we obtain

∥N(vσ )∥L2
x
= ∥Fx[N(vσ )](ξ )∥L2

ξ

≲ σ
3
2

∥∥∥∥∥∥∥
∫

ξ=∑
p
j=1 ξ j

|ξp−1|
3
4 |ξp|

3
4

p

∏
j=1

|v̂σ (ξ j)|
p

∏
j=1

dξ j

∥∥∥∥∥∥∥
L2

ξ

≲ σ
3
2

∥∥∥∥∥∥∥
∫

ξ=∑
p
j=1 ξ j

|ξp−1|
3
4 |ξp|

3
4

p

∏
j=1

ŵσ (ξ j)
p

∏
j=1

dξ j

∥∥∥∥∥∥∥
L2

ξ

≲ σ
3
2

∥∥∥wp−2
σ · |D|

3
4 wσ · |D|

3
4 wσ

∥∥∥
L2

x

≲ σ
3
2

∥∥∥wp−2
σ

∥∥∥
L∞

x

∥∥∥∥[|D|
3
4 wσ

]2
∥∥∥∥

L2
x

≲ σ
3
2 ∥wσ∥p−2

L∞
x

∥∥∥|D|
3
4 wσ

∥∥∥2

L4
x

≲ σ
3
2 ∥wσ∥p−2

H
1
2 +

∥∥∥|D|
3
4 wσ

∥∥∥2

H
1
4

≲ σ
3
2 ∥wσ∥p

H1 ∼ σ
3
2 ∥vσ∥p

H1 .

Similarly, for d = 2, we choose Hölder’s exponents 2
1−θ

= 3 and 2
θ
= 6, and the by using Plancherel’s

Theorem, (37), Hölder’s inequality, and Sobolev embedding, we obtain

∥N(vσ )∥L2
x
= ∥Fx(N(vσ ))(ξ )∥L2

ξ

≲ σ
2
3

∥∥∥∥∥∥∥
∫

ξ=∑
p
j=1 ξ j

|ξp−1|
1
3 |ξp|

1
3

p

∏
j=1

|v̂σ (ξ j)|
p

∏
j=1

dξ j

∥∥∥∥∥∥∥
L2

ξ
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≲ σ
2
3

∥∥∥∥∥∥∥
∫

ξ=∑
p
j=1 ξ j

|ξp−1|
1
3 |ξp|

1
3

p

∏
j=1

ŵσ (ξ j)
p

∏
j=1

dξ j

∥∥∥∥∥∥∥
L2

ξ

≲ σ
2
3

∥∥∥wp−2
σ · |D|

1
3 wσ · |D|

1
3 wσ

∥∥∥
L2

x

≲ σ
2
3

∥∥∥wp−2
σ

∥∥∥
L6

x

∥∥∥∥[|D|
1
3 wσ

]2
∥∥∥∥

L3
x

≲ σ
2
3 ∥wσ∥p−2

L6(p−1)
x

∥∥∥|D|
1
3 wσ

∥∥∥2

L6
x

≲ σ
2
3 ∥wσ∥p−2

H
1− 1

3(p−1)

∥∥∥|D|
1
3 wσ

∥∥∥2

H
2
3

≲ σ
2
3 ∥wσ∥p

H1 ∼ σ
2
3 ∥vσ∥p

H1 .

Now, our almost conservation law is stated as follows.

Theorem 3 (Approximate conservation law). Let d = 1 or 2, σ > 0 and p > 1 be any odd integer. Let
( f ,g) ∈ Hσ ,1 ×Hσ ,0 and u be the the local solution of (1) on Rd × [0,T ] obtained in Theorem 2. Then,
we have

sup
t∈[0,T ]

Eσ (t)≤ Eσ (0)+ cT σ
2θ [2Eσ (0)]

p+1
2 , (38)

where θ be as given in Lemma 3.

Proof. We have from (12)(
∥vσ∥L∞

T H1 +∥∂tvσ∥L∞
T L2

x

)2
=
(
∥u∥L∞

T Hσ ,1 +∥∂tu∥L∞
T Hσ ,0

)2

≤ c(∥ f∥Hσ ,1 +∥g∥Hσ ,0)2

≤ 2c∥vσ (·,0)∥2
H1 +2C∥∂tvσ (·,0)∥2

L2
x

≤ 2cEσ (0),

which in turn implies that

∥vσ∥L∞
T H1 +∥∂tvσ∥L∞

T L2
x
≤ c

√
2Eσ (0). (39)

Now, using (29), (32) and (39) we obtain

Eσ (t)≤ Eσ (0)+ cT∥∂tvσ∥L∞
T L2

x
∥N(vσ∥L∞

T L2
x

≤ Eσ (0)+ cT σ
2θ∥∂tvσ∥L∞

T L2
x
∥vσ∥p

L∞
T H1

≤ Eσ (0)+ cT σ
2θ
√

2Eσ (0)
√

2Eσ (0)
p

∼ Eσ (0)+ cT σ
2θ [2Eσ (0)]

p+1
2 .
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4 Proof of Theorem 1

Suppose that ( f ,g) ∈ Hσ0,1 ×Hσ0,0 for some σ0 > 0. This implies

vσ0(·,0) = cosh(σ0|D|) f (·) ∈ H1, ∂tvσ0(·,0) = cosh(σ0|D|)g(·) ∈ L2
x .

Then we have by the Sobolev embedding that

Eσ0(0)≤ ∥vσ0(·,0)∥2
H1 +∥∂tvσ0(·,0)∥2

L2
x
+∥vσ0(·,0)∥

p+1
H1 < ∞.

Now, we can construct a solution on [0,δ ] for arbitrarily large time δ by following the techniques pre-
sented in [22]. This is achieved by applying the approximate conservation law Theorem 3, so as to repeat
the local result in Theorem 2 on successive short time interval of size T to reach δ by adjusting the strip
width parameter σ ∈ (0,σ0] of the solution according to the size of δ . The goal is to prove that for a
given parameter σ ∈ (0,σ0] and large δ ,

sup
t∈[0,δ ]

Eσ (t)≤ 2Eσ0(0) for σ ≥ cδ
− 1

2θ , (40)

where c> 0 depends only on the initial data norm, and θ be as in Theorem 3. This would imply Eσ (t)<∞

for all t ∈ [0,δ ] and hence for all t ∈ [0,δ ] the solution u to (1) satisfies

(u,∂tu)(·, t) ∈ Hσ ,1 ×Hσ ,0 for σ ≥ cδ
− 1

2θ .

It remains to prove (40). Since cosh(x) is increasing function for x ≥ 0, for σ ≤ σ0 we have

Eσ (0)≤ Eσ0(0). (41)

Now, for a given parameter σ ∈ (0,σ0] and t0 ∈ [0,T ], we have by Theorem 2, Theorem 3 and (41),

sup
t∈[0,t0]

Eσ (t)≤ Eσ (0)+ cT σ
2θ E

p+1
2

σ (0)

≤ Eσ0(0)+ cT σ
2θ E

p+1
2

σ0 (0).

Thus
sup

t∈[0,t0]
Eσ (t)≤ 2Eσ0(0), (42)

provided

cT σ
2θ E

p−1
2

σ0 (0)≤ 1. (43)

Then we can apply Theorem 2, with initial time t = t0 and the time step T in (11) to extend the
solution from [0, t0] to [t0, t0 +T ]. By Theorem 3 and (42), we obtain

sup
t∈[t0,t0+T ]

Eσ (t)≤ Eσ (t0)+ cT σ
2θ (2Eσ0(0))

p+1
2 . (44)

In this way, we can cover all time intervals [0,T ], [T,2T ], [2T,3T ] etc., and obtain

Eσ (T )≤ Eσ (0)+ cT σ
2θ (2Eσ0(0))

p+1
2 ,
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Eσ (2T )≤ Eσ (T )+ cT σ
2θ (2Eσ0(0))

p+1
2

≤ Eσ (0)+2cT σ
2θ (2Eσ0(0))

p+1
2

Eσ (3T )≤ Eσ (2T )+ cT σ
2θ (2Eσ0(0))

p+1
2

≤ Eσ (T )+2cT σ
2θ (2Eσ0(0))

p+1
2

≤ Eσ (0)+3cT σ
2θ (2Eσ0(0))

p+1
2 ,

· · · ,

Eσ (nT )≤ Eσ (0)+ncT σ
2θ (2Eσ0(0))

p+1
2 .

This argument continues until

cnT σ
2θ (2Eσ0(0))

p+1
2 ≤ Eσ0(0), (45)

and then we have reached the final time
δ = nT,

when
cnT σ

2θ (2Eσ0(0))
p−1

2 ≤ 1.

Finally, the condition (43) satisfies for σ such that

cnT σ
2θ (2Eσ0(0))

p−1
2 = 1.

Therefore
σ

2θ = δ
−1 · c−1 (2Eσ0(0))

1−p
2 .

It gives (40) if choose c ≤
(

δ−1 · c−1 (2Eσ0(0))
1−p

2

) 1
2θ

. This completes the proof of Theorem 1.
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