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Abstract. Here we construct an approximate spline-interpolation solution of the Cauchy problem for
the Laplace equation. Our construction describes two different methods based on solution of integral
equations. The first method involves singular integral equation, and the second one is based on solution
of a Fredholm equation. We present the linear and the polynomial examples clarifying the construction
approaches.
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1 Introduction

Recall the formulation of the problem. Let D be a simply connected domain in the XY H space, S =
{(x(s,h),y(s,h))} be a connected component of the surface of D in this space with parameters s ∈
[s0(h),s1(h)], h ∈ [min{PrH(D)},max{PrH(D)}], here PrH(D) is the projection of D onto the coordinate
axis H. There are given two real-valued functions φ(s) and ψ(s), s ∈ S. The harmonic in D function
u(x,y,h) with the properties

u(x(s,h),y(s,h)) = φ(s,h),
∂u(x,y)

∂
−→
ν

|x=x(s,h),y=y(s,h) = ψ(s,h), (1)

where s ∈ [s0(h),s1(h)], h ∈ [min{PrH(D)},max{PrH(D)}], and −→
ν is the exterior normal to S, is to be

found in the whole domain D.
The problem is clearly an ill-posed one since we do not have any uniquely predefined rule how to

reconstruct the solution.
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Figure 1: Modified problem

There exist extensive studies on the solution of the problem [9, 12]. The authors mainly apply reg-
ularization method or cost functions and a boundary control to solve this problem [3]. It is possible to
apply purely imaginary quaternions to similar problems [1, 2], though the result, in general, will also be
a quaternion-valued function. Also in this case commutative multiplication is lost and the expressions
become cumbersome.

Here we construct the spline-interpolation solution of Cauchy problem for 3D Laplace equation.
This paper generalizes articles [6, 7] applying the technique of [5]. More properly, we combine the 3D
problem solution technique of [5] with the plane Cauchy problem solutions of [6,7] in order to construct
the solution of the spatial Cauchy problem by reducing it to the set of plane problems.

Our first goal is to describe the appearing variety of the similar plane problems. In order to do this
we consider plane sections of the set S and reconstruct the polynomial on h solution in each slice of the
initial solid D between two adjacent plane sections. We present two different methods of solution. The
first is based on solution of the singular equation under condition of smooth boundary surface. We also
apply Theorem 2 of [7]. The second approach is based on approximate solution of the integral Fredholm
equation that is sometimes called Symm equation [11].

First we reduce the 3D problem to the set of the plane problems. Then we construct two different
linear spline-interpolation solutions. Finally, we present the solution of degree 3 on the coordinate h.

2 Construction of the approximate solution

Let us reduce the initial spatial problem to the set of plane problems.
Assume that the solid D is bounded by the surface ∂D. Assume also that S ⊂ ∂D is a connected

subset of this surface.
Let us introduce the planes pl parallel to the plane XOY . Assume that their equations are h = hl ,

l = 0, . . . ,L. Consider the curves Γl that are the sections S
⋂

pl of the surface S by the planes pl , see Fig.
1.

The normal to the surface S vector −→ν naturally splits into two components, namely, the vector −→ν h
parallel to the XY -plane, and the vector −→ν v parallel to the axis H.

Note that since we know u|S it is possible to reconstruct the directional derivative ∂u
∂
−→
τ
(s), here −→

τ is
the vector tangent to S and normal to Γl(s) in the XY plane for s ∈ Γl , l = 0, . . . ,L.

Since the vectors −→
ν (s) and −→

τ (s) form a base of the plane normal to Γl(s) the vector −→ν h(s) is a
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linear combination of these vectors. So for any l = 0, . . . ,L, there exist functions n1l(s), n2l(s) such
that −→ν h(s) = n1l(s)

−→
ν (s)+n2l(s)

−→
τ (s). This allows us to reduce the spatial problem to the set of plane

problems by passing from the boundary restriction on ∂u
∂
−→
ν

to that on ∂u
∂
−→
ν h

.
Indeed, the second boundary condition then provides us with the boundary condition at the plane

pl parallel to XOY , l = 0, . . . ,L. Consider two adjacent sections of S by the planes h = h0 and h = h1.
Denote these curves by Γ0 and Γ1. So we have

u|Γ0 =U0,
∂u

∂
−→
ν h

|Γ0 =V0, (2)

and

u|Γ1 =U1,
∂u

∂
−→
ν h

|Γ1 =V1. (3)

We now reduce our problem (1) to the set of problems between adjacent sections pl−1 and pl of the
surface subset S, l = 1, . . . ,L. The formulation of the modified problem is as follows: given the values of
the functions U0(s), V0(s), s ∈ Γ0, and that of the functions U1(s), V1(s), s ∈ Γ1, it should be possible to
reconstruct the harmonic function in this slice bounded by ∂D. It is well-known that the plane Cauchy
problem is equivalent to construction of the analytic function in the domain bounded by the curve Γ j

⋃
Γ′

j
given its values at the points of Γ j, j = 0,1. Here we define the curve Γ′

j as (∂D\S)
⋂

p j, j = 0,1.
Our next goal is to reduce this spatial problem to the set of plane Cauchy problems. In order to solve

the last we naturally turn to the complex analysis. We first introduce the complex variable z = x+ iy.

Next we search for the solution u polynomial on h: u(z,z,h) =
n
∑

k=0
uk(z,z)hk. The boundary conditions

on the set of curves Γl , l = 0, . . . ,L, allow us to find the coefficients uk(z,z), k = 1, . . . ,n. In the case of
linear spline we cannot introduce in our constructions the boundary condition on ∂u

∂
−→
τ

. In order to do this,
we should assume k to be greater than 1. The approximate solution function u(x,y,h) is then a spline in
h over the set of intervals [hl−1,hl], l = 1, . . . ,L.

3 Linear spline

Let us search for the spline-interpolation solution u(x,y,h) linear on h in each slice: u(z,z,h) = u0(z,z)+
u1(z,z)h, h ∈ [p0, p1]. Then the functions u0, u1 are both harmonic functions on z,z at each end of the
slice and we find the missing values of the functions U0, V0 and U1,V1 serving as boundary conditions
(2, 3) at the points of the surface ∂D\S at these ends as in [6].

We reconstruct the surface step by step for each adjacent splice between pl−1 and pl , l = 1, . . . ,L. As
in [5] the approximation of the boundary conditions at the surface ∂D is O(∆(h)), here ∆(h) is the step
of the partition h0,h1, . . . ,hL.

It remains to find the approximation of the upper and lower auxiliary curves, i.e. the values of the
harmonic functions u0(z,z) and u1(z,z) in each slice.

Since we construct the spline in one slice between two adjacent plane sections of D it suffices to
consider only the first slice bounded by the planes p0, p1.

We already presented two methods of the curve reconstruction [6]. Both of them involve the mapping
of the unit disc D1 onto the domain Dl partly bounded by Γl , l = 0, . . . ,L.



Co
rr

ec
te

d
Pr

oo
f4 E. Shirokova, P. Ivanshin

3.1 Singular integral equation method

The first method involves Sokhotsky’s formula. We interpret this formula as the system of equations on
the unknown points on the curve completing Γl , l = 0,1 to the closed curve. We assume that the upper
part of the unit circle maps onto Γl , l = 0,1. After this we reconstruct the complete boundary of the
unknown solid as the ruled surface with directrices given by Γ0

⋃
Γ′

0 and Γ1
⋃

Γ′
1.

Recall the construction scheme for each curve. Due to [4, 10] the necessary and sufficient condition
for f (z(s)), s ∈ s ∈ [s0(hl),s1(hl)], and for all l ∈ {1, . . . ,L} to be the boundary values of the holomorphic
in Dl function is the relation

f (z(s)) =
1
πi

T∫
0

f (z(t))z′(t)
z(t)− z(s)

dt, s ∈ [s0(hl),s1(hl)]. (4)

Let us separate the values of f (z(t)) on the known part of the curve from that on the unknown part
of the curve:

φ
′(s)+ iψ(s) =

1
πi

∫
Γ

(φ ′(t)+ iψ(t))z′(t)
z(t)− z(s)

dt

+
1
πi

∫
Γ′

(φ̃(t)+ iχ̃(t))z′(t)
z(t)− z(s)

dt,s ∈ [s0(hl),s1(hl)], (5)

φ̃(s)+ iχ̃(s) =
1
πi

∫
Γ

(φ ′(t)+ iψ(t))z′(t)
z(t)− z(s)

dt

+
1
πi

∫
Γ′

(φ̃(t)+ iχ̃(t))z′(t)
z(t)− z(s)

dt,s ∈ [s1(hl),s0(hl)]. (6)

We consider relations (5) and (6) as two singular integral equations [4, 10]. The free term
1
πi

∫
[s0(hl),s1(hl)]

(φ(t)+iχ(t))z′(t)
z(t)−z(s) dt of equation (6) contains the known functions φ(s) and χ(s) and is thus also

known. So we can solve (6) with respect to φ̃(s)+ iχ̃(s), s∈ [s1(hl),s0(hl)]. After finding φ̃(s)+ iχ̃(s) we
check if the function φ ′(s)+ iψ(s), s ∈ [s0(hl),s1(hl)], satisfies equation (5). Now if φ ′(s)+ iψ(s) meets
(5) then the function f (z(t)) is the boundary value of a holomorphic in Dl function by (4). Therefore we
formulate the following

Theorem 1. Let Dl for any l ∈ {1, . . . ,L} be a one-connected domain with the smooth boundary Γ∪Γ′,
where Γ = {z(s) = x(s)+ iy(s),s ∈ [s0(hl),s1(hl)]}, s being the natural parameter of Γ, Γ′ = {z(s) =
x(s)+ iy(s),s ∈ [s1(hl),s0(hl)]}. Let the data defined by the formulation of the Cauchy problem be given
at the points of Γ. Let φ ′(s), s ∈ [s0(hl),s1(hl)], be of the Hölder class and ψ(s), s ∈ [s0(hl),s1(hl)], be

continuous. Then this Cauchy problem is solvable if and only if the known function φ ′(s)+ i
s∫

0
ψ(t)dt,



Co
rre

ct
ed

Pr
oo

fSpline-interpolation solution of Cauchy problem ... 5

s ∈ [s0(hl),s1(hl)], satisfies the relation

φ
′(s)+ iψ(s) =

1
πi

∫
Γ

(φ ′(t)+ iψ(t)dτ)z′(t)
z(t)− z(s)

dt

+
1
πi

∫
Γ′

(φ̃ ′(t)+ iχ̃(t))z′(t)
z(t)− z(s)

dt, s ∈ [s0(hl),s1(hl)],

where φ̃(s)+ iχ̃(s), s ∈ [s1(hl),s0(hl)], is the solution of the singular integral equation

φ̃(s)+ iχ̃(s) =
1
πi

∫
Γ′

(φ̃(t)+ iχ̃(t))z′(t)
z(t)− z(s)

dt

+
1
πi

∫
Γ

(φ ′(t)+ iψ(t))z′(t)
z(t)− z(s)

dt, s ∈ [s1(hl),s0(hl)].

The solution of the solvable Cauchy problem has the form

w(x,y) = Re[
∫  1

2πi

∫
Γ

(φ ′(t)+ iψ(t))z′(t)
z(t)− x− iy

dt +
1

2πi

∫
Γ′

(φ̃(t)+ iχ̃(t))z′(t)
z(t)− x− iy

dt

dz].

In order to find the domains D j, j = 0, . . . ,L, we construct the curves Γ′
j. In order to do this in its turn

we consider integral equation (6) as a system over the unknown points on this curve. Note that under the
assumption that the curve Γ j is the image of the semicircle and the curve Γ′

j is the image of the other
semicircle, the problem is solvable [6, 7].

This statement is a natural generalization of [6, Theorem 1]. The only difference is that we simul-
taneously solve the plane problem for all the domains D j, j = 0, . . . ,L. This difference itself poses the
stability requirement on the solution of the algebraic linear equation system relative to singular equation
(6). Note that the relative system matrix is nondegenerate [7] and continuously depends on the curve Γ′

of the system.
Also by [5] the convergence rate of the approximate solution to the exact one equals

O(max{∆h(φ),∆h(ψ)}, A
N ). Here ∆hφ is the continuity modulus of the function φ , ∆hψ is the conti-

nuity modulus of the function ψ , A is a constant, and N is the number of nodes at the boundary curve
Γ.

Example 1. We fix the cylinder D1 × [0,1] as D and Γ× [0,1] as S. Here Γ is an upper half-circle
{cos(t),sin(t)}, t ∈ [0,π]. Consider the mapping (cos(t),sin(t)) 7→ (cos(t),sin(t)+ 0.2sin(4t)) at the
lower section, l = 0, and (cos(t),sin(t)+0.15sin(3t)+0.2sin(4t)) at the upper section, l = 1, t ∈ [0,π].
We reconstruct from equation (6) the curve Γ′

l , l = 0,1. In this case the matrix of the system relative to
Theorem 1 is the same for both ends of the cylinder. Only difference lies in the right-hand sides of the
linear systems. So the construction of the approximate linear spline-interpolation solution is correct. Fig.
2 shows the result of calculations.

This construction naturally extends to the general case of a non-cylindrical solid D. We should
consider the combination of the mapping f1 that maps the boundary of the cylindrical slice S1× [hl−1,hl]
into the relative slice of D and the boundary data on this slice.
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Figure 2: The first part is the approximation of solution as the closed surface. The second part is the approximation
of the solution function at upper section. The last part is the approximation of the solution function at the lower
section.

3.2 Method of an auxiliary conformal mapping

The second method applies the auxiliary conformal mapping.
First we consider closures Γ′

l of the curves Γl , l = 0, . . . ,L, so that the poles of the functions given on
these curves do not belong to the domains Dl bounded by the closures Γ′

l
⋃

Γl .
Next we reconstruct the conformal mappings of the unit disk D1 onto the domains Dl , l = 0, . . . ,L.
The construction of this map is given, e.g. in [8] and involves reparametrization of the initial bound-

ary curve. We construct this reparametrization through approximate solution of the Fredholm integral
equation.

Theorem 2 ([8]). For any domain Dl , l = 0, . . . ,L, with boundary — a simple smooth closed curve Γ,
defined by a Fourier polynomial, one can construct with any accuracy a function mapping Dl onto the
unit circle by solving an integral equation reduced to a finite system of linear equations.

Finally, we reconstruct the function u as the linear on h spline approximating the auxiliary conformal
mappings.

Example 2. We fix the cylinder D1 × [0,1] as D and Γ× [0,1] as S. Here Γ is an upper half-circle
{cos(t),sin(t)}, t ∈ [0,π]. Assume that the boundary conditions are given at the half-circles (cos(t),sin(t)),
as (cos(t),sin(t)−0.1sin(2t)+0.3cos(3t)) and (cos(t),sin(t)−0.25sin(2t)+0.3cos(3t)) at the lower
and upper sections, t ∈ [0,π].

In order to complete the contours, we simply extend the boundary data to the parameter values
t ∈ [π,2π]. So we have to find the approximate mappings of the unit disc onto the domains bounded
by the curves (cos(t),sin(t)−0.1sin(2t)+0.3cos(3t)) and (cos(t),sin(t)−0.25sin(2t)+0.3cos(3t)) at
the lower and upper sections. Fig. 3 presents the solution in this case.

This construction as in Example 1 naturally extends to the general case of a non-cylindrical solid
D. But here we consider the combination of the analytic mappings fl−1 and fl that map the ends of the
cylindrical slice S1 × [hl−1,hl] into the relative ends of the slice of the initial domain D and the boundary
data on this slice.
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Figure 3: The first part is the approximation of the solution as the closed surface. The second part is the approxi-
mation of the solution function at the upper section, red contour is the initial curve, green curve is the reconstructed
part, blue one is the approximation. The last part is the approximation of the solution function at the lower section,
red contour is the initial curve, green curve is the reconstructed part, blue one is the approximation.

4 Polynomial spline

We search for the solution u(z,z,h) polynomial on h: u(z,z,h) =
n
∑

k=0
uk(z,z)hk in each slice between the

planes pl−1 and pl , l = 1, . . . ,L.
The curves Γ j

⋃
Γ′

j bound the domain D j, j = 0, . . . ,L. In order to glue the derivatives uh(z,z), z∈D j,
j = 1, . . . ,L− 1 in the adjacent slices and take into consideration the condition on ∂u

∂
−→
τ

we necessarily
consider splines of degree greater than 1 [5].

The construction is similar to one given in the previous section. The only difference is the recurrent
formula allowing us to reconstruct u0, u1 through the terms with greater. degrees of h:

k(k−1)uk(z,z) = 4∂z∂zuk−2(z,z). (7)

So we split the coefficients into two groups, namely, the even and the odd sets. In order to glue the
solutions in the lower end of the slice we consider the even coefficients. Odd coefficient set allows us
both to meet the boundary condition at the top curve and to minimize the integral norm of the differences
between the derivatives with respect to h at the common lower end of the slice.

For example, for n = 3 we have

u0(z,z) = f0(z)+ f0(z)+
1
2
(F2(z)z+F2(z)z),

u1(z,z) = f1(z)+ f1(z)+
3
2
(F3(z)z+F3(z)z).

Here Fj(z) =
∫

f j(z)dz, Fj(0) = 0, j = 2,3.
Note that we reconstruct the solution starting from f2(z) and f3(z). In order to do this we consider

the second derivative of the boundary function with respect to h. Assume that h0 = 0, h1 = 1. Then we
achieve the system {

uh,h(z,z,h0)|Γ0 = 2Re f2(z),
uh,h(z,z,h1)|Γ1 = 6Re f3(z)+2Re f2(z).

(8)
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Figure 4: The polynomial approximation of the approximate solution as the closed surface. The second part is
the approximation of the derivative uh,h at the upper section, red contour is the initial curve, green curve is the
reconstructed part, blue one is the approximation. The last part is the approximation of the derivative uh,h at the
lower section, red contour is the initial curve, green curve is the reconstructed part, blue one is the approximation.

From system (8) we find first Re f3(z), Re f2(z) and then f3(z), f2(z) on the curves Γl , l = 0,1.
We put these functions into the system{

u(z,z,h0)|Γ0 = Re f0(z)+ 1
2 Re(F2(z)z),

uh(z,z,h1)|Γ1 = Re f1(z)+ 3
2 Re(F3(z)z).

(9)

Finally we reconstruct the analytic functions f0(z), f1(z) from (9). Here we apply Theorem 1 four times,
twice for each end of the slice.

So, we have the spline-iterpolation solution of degree 3 on the variable h.
By [5] the convergence rate of the approximate solution to the exact one equals

O(max{∆2
h(φ),∆

2
h(ψ)}, A

N ). Here ∆2
hφ is the continuity modulus of order 2 of the function φ , ∆2

hψ is
the continuity modulus of order 2 of the function ψ , A is a constant, and N is the minimal number of
nodes at the boundary curve Γl , l = 0, . . . ,L.

Example 3. We again fix the cylinder D1 × [0,1] as D and Γ× [0,1] as S. Here Γ is an upper half-
circle {cos(t),sin(t)}, t ∈ [0,π]. Assume that the boundary conditions are given at the half-circles
(cos(t),sin(t)), t ∈ [0,π], as in Example 1. Let us add to the boundary conditions of Example 1 the
assertions on the values of uh,h given by 1

4(cos(t),sin(t)+0.1sin(3t)−0.1sin(4t)) and 1
4(cos(t),sin(t)−

0.1sin(3t)+0.1sin(4t)) at the lower and the upper curve, respectively, t ∈ [0,π].
We reconstruct four auxiliary curves for each boundary condition.
Note that it is easier to reconstruct the boundary surface S as the set of curves since then we simply

reconstruct the set of cubic parabolas by their values at the ends. Fig. 4 presents the solution in this case.
Here we combine the solutions of Example 1 with that for the second derivative uh,h.

5 Examples

Here we compare the approximate solutions given in the first sections of the article to the exact. Con-
sider two sections of the solid at h = 0 and h = 1 (Fig. 5) given by the curves (cos t,sin t), t ∈ [0,π], and
(cos(t)−0.00530516sin(4t),0.606104sin(t)+0.063662sin(3t)−0.212206cos(2t)+0.00530516cos(4t)),
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Figure 5: Approximations of the upper and lower sections of the solid by conformal mappings of the unit disk

Figure 6: Example 4. The differences of the real and imaginary parts of the approximate and exact solutions at
the upper (left column) and lower (right column) sections of the solid. Upper row – solutions with an auxiliary
conformal mapping. Lower row – solutions of the singular integral equation

t ∈ [π,2π]; and (cos t,sin t), t ∈ [0,π], and (0.0143997sin(−4s)+cos(−s),−0.025sin(−3s)−0.5sin(−s)−
0.0143997cos(−4s)−0.231305cos(−2s)), t ∈ [π,2π], respectively. Assume that the data is given at the
semicircle (cos t,sin t), t ∈ [0,π]. Naturally the differences of the exact solutions with the approximate
happen at the points with the greatest curvature. It is the illustration of the problems connected with
conformal approximation of the thin domains or domains with corner points.

Example 4. Consider the function (1+ h
10)z

1
3 . The function given by 1.1cos( t

3)+1.1ısin( t
3) at the

upper section and by cos( t
3)+ ı sin( t

3) at the lower one. Here we have 0 as the branching point of the
reconstructed function (Fig. 6).

It is important to note that the reconstructed solution at the second part of the curve belongs to the
same branch of the Riemann surface as the given data.

Example 5. Consider the function (1− h
10)z

2. The function given by cos(2t)+ isin(2t) at the upper
section and by 0.9cos(2t)+ 0.9isin(2t) at the lower one. Here the reconstructed function possesses no
poles in the domains (Fig. 7).

Here the differences between the exact and the approximate solutions real and imaginary parts pos-
sess additional peaks due to the existence of such extrema for the initial function.

Example 6. Consider the function (1+ h
10)(z+

1
z ). The function given by 2cos(t) at the upper section

and by 2.1cos(t) at the lower one. Here the reconstructed function has the pole at 0 (Fig. 8).
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Figure 7: Example 5. The differences of the real and imaginary parts of the approximate and exact solutions at
the upper (left column) and lower (right column) sections of the solid. Upper row – solutions with an auxiliary
conformal mapping. Lower row – solutions of the singular integral equation

Figure 8: Example 6. The differences of the real and imaginary parts of the approximate and exact solutions at
the upper (left column) and lower (right column) sections of the solid. Upper row – solutions with an auxiliary
conformal mapping. Lower row – solutions of the singular integral equation

Figure 9: Example 7. The differences of the real and imaginary parts of the approximate and exact solutions at
the upper (left column) and lower (right column) sections of the solid. Upper row – solutions with an auxiliary
conformal mapping. Lower row – solutions of the singular integral equation

Example 7. Consider the function (1+ h
10)

0.1
z2 + 1

z ). The function given by i(−0.1sin(2t)− sin(t))+
cos(t)+0.1cos(2t) at the upper section and by i(−0.2sin(2t)−sin(t))+cos(t)+0.2cos(2t) at the lower
one. The pole at 0 of the reconstructed function is of order 2 (Fig. 9).

References

[1] R.A. Blaya, J.B. Reyes, F. Brackx, H.D. Schepper, F. Sommen, Cauchy integral formulae in quater-
nionic hermitean Clifford analysis, Springer Science and Business Media LLC, 2012.

[2] R.A. Blaya, M.A. Alfaro, Complex and quaternionic Cauchy formulas in Koch snowflakes, Com-
plex Var. Elliptic Equ. 67 (2022) 1287–1298.

[3] J.J.C. Mones, L.H.O. Valencia, J.J.O. Oliveros, D.A. Velasco, Stable numerical solution of the
Cauchy problem for the Laplace equation in irregular annular regions, Numer. Methods Partial
Differ. Equ. 33 (2017) 1799–1822.

[4] F.D. Gakhov, Boundary value problems, Dover Publications, 1990.



Co
rre

ct
ed

Pr
oo

fSpline-interpolation solution of Cauchy problem ... 11

[5] P.N. Ivanshin, E.A. Shirokova, Spline-interpolation solution of 3D Dirichlet problem for a certain
class of solids, IMA J. Appl. Math. 78 (2013) 1109-1129

[6] E.A.Shirokova, P.N. Ivanshin, On Cauchy problem solution for a harmonic function in a simply
connected domain, Issues of Analysis, 12 (2023) 87–96.

[7] P.N. Ivanshin, E.A. Shirokova, On Cauchy Problem Solution for a Harmonic Function in a Simply
Connected Domain with Multi-Component Boundary, Int. J. Comput. Methods 22 (2025) 2450043.

[8] P.N. Ivanshin, E.A. Shirokova, The Approximate Conformal Mapping of a Disk onto Domain with
an Acute Angle, Int. J. Appl. Comput. Math. 9 (2023) 54.

[9] M.M. Lavrentev, V.G. Romanov, S.P. Shishatskiy, Ill-posed Problems of Mathematical Physics and
Analysis, American Mathematical Society, 1986.

[10] N.I. Muskhelishvili, Singular Integral Equations, Dover Publications, 2011

[11] G.T. Symm, An integral equation method in conformal mapping, Numer. Math. 9 (1966) 250–258.

[12] N. Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations, Akademie-Verlag, Berlin,
1995.


	1 Introduction
	2 Construction of the approximate solution
	3 Linear spline
	3.1 Singular integral equation method
	3.2 Method of an auxiliary conformal mapping

	4 Polynomial spline
	5 Examples

