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Spline-interpolation solution of Cauchy problem for a
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Abstract. Here we construct an approximate spline-interpolation solution of the Cauchy problem for
the Laplace equation. Our construction describes two different methods based on solution of integral
equations. The first method involves singular integral equation, and the second one is based on solution
of a Fredholm equation. We present the linear and the polynomial examples clarifying the construction
approaches.
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1 Introduction

Recall the formulation of the problem. Let D be a simply connected domain in the XY H space, S =
{(x(s,h),y(s,h))} be a connected component of the surface of D in this space with parameters s €
[so(h),s1(h)], h € [min{Pry (D)}, max{Pry(D)}], here Pry (D) is the projection of D onto the coordinate
axis H. There are given two real-valued functions ¢(s) and y(s), s € S. The harmonic in D function
u(x,y,h) with the properties

d
u(x(s,h),y(s,h)) = ¢(Sah)a %yf)b:x(s,h),y:y(s,h) = W(Sah)a (1)

where s € [so(h),s1(h)], h € [min{Pry (D)}, max{Prg(D)}], and V is the exterior normal to S, is to be
found in the whole domain D.

The problem is clearly an ill-posed one since we do not have any uniquely predefined rule how to
reconstruct the solution.
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Figure 1: Modified problem

There exist extensive studies on the solution of the problem [Y, | 2]. The authors mainly apply reg-
ularization method or cost functions and a boundary control to solve this problem [3]. It is possible to
apply purely imaginary quaternions to similar problems [1, 2], though the result, in general, will also be
a quaternion-valued function. Also in this case commutative multiplication is lost and the expressions
become cumbersome.

Here we construct the spline-interpolation solution of Cauchy problem for 3D Laplace equation.
This paper generalizes articles [0, 7] applying the technique of [5]. More properly, we combine the 3D
problem solution technique of [5] with the plane Cauchy problem solutions of [6,7] in order to construct
the solution of the spatial Cauchy problem by reducing it to the set of plane problems.

Our first goal is to describe the appearing variety of the similar plane problems. In order to do this
we consider plane sections of the set S and reconstruct the polynomial on /4 solution in each slice of the
initial solid D between two adjacent plane sections. We present two different methods of solution. The
first is based on solution of the singular equation under condition of smooth boundary surface. We also
apply Theorem 2 of [7]. The second approach is based on approximate solution of the integral Fredholm
equation that is sometimes called Symm equation [11].

First we reduce the 3D problem to the set of the plane problems. Then we construct two different
linear spline-interpolation solutions. Finally, we present the solution of degree 3 on the coordinate /.

2 Construction of the approximate solution

Let us reduce the initial spatial problem to the set of plane problems.

Assume that the solid D is bounded by the surface dD. Assume also that § C dD is a connected
subset of this surface.

Let us introduce the planes p; parallel to the plane XOY. Assume that their equations are & = Ay,
[=0,...,L. Consider the curves I'; that are the sections S( p; of the surface S by the planes p;, see Fig.
1.

The normal to the surface S vector V naturally splits into two components, namely, the vector 7h
parallel to the XY -plane, and the vector 7v parallel to the axis H.

Note that since we know uy it is possible to reconstruct the directional derivative %(s), here 7 is
the vector tangent to S and normal to I7(s) in the XY plane fors € I,/ =0,...,L.

Since the vectors 7(s) and ?(s) form a base of the plane normal to I'(s) the vector Vi (s)is a
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linear combination of these vectors. So for any [ = 0,...,L, there exist functions ny;(s), ny(s) such
that Vh(s) =n ”(S)V(s) +ny (s)?(s) This allows us to reduce the spatial problem to the set of plane
problems by passing from the boundary restriction on a‘%” to that on %‘7’.

Indeed, the second boundary condition then provides us with the boundary condition at the plane
p; parallel to XOY, [ =0,...,L. Consider two adjacent sections of S by the planes & = hy and h = h;.
Denote these curves by I'g and I';. So we have

du
M|F0 - UO7 ﬁ;’ro - VOJ (2)
and
du
ulr, = Ui, ﬁ;!r. =V. (3)
We now reduce our problem (1) to the set of problems between adjacent sections p;_1 and p; of the
surface subset S,/ = 1,...,L. The formulation of the modified problem is as follows: given the values of

the functions Uy(s), Vo(s), s € 'y, and that of the functions U (s), Vi(s), s € I', it should be possible to
reconstruct the harmonic function in this slice bounded by dD. It is well-known that the plane Cauchy
problem is equivalent to construction of the analytic function in the domain bounded by the curve I'; | J F;
given its values at the points of I';, j = 0, 1. Here we define the curve I'; as (dD\ S)p;, j =0, 1.

Our next goal is to reduce this spatial problem to the set of plane Cauchy problems. In order to solve
the last we naturally turn to the complex analysis. We first introduce the complex variable z = x + iy.

n
Next we search for the solution « polynomial on A: u(z,z,h) = ¥, ui(z,Z)h*. The boundary conditions
k=0

on the set of curves I';, [ =0,...,L, allow us to find the coefficients u(z,z), k = 1,...,n. In the case of
linear spline we cannot introduce in our constructions the boundary condition on aa” . In order to do this,
we should assume & to be greater than 1. The approximate solution function u(x,y, ) is then a spline in

h over the set of intervals [h;_1,hy], [ =1,...,L.

3 Linear spline

Let us search for the spline-interpolation solution u(x,y, ) linear on 4 in each slice: u(z,7Z,h) = uy(z,z) +
ui(z,2)h, h € [po, p1]. Then the functions ug, u; are both harmonic functions on z,7 at each end of the
slice and we find the missing values of the functions Up, V and Uy, V) serving as boundary conditions
(2, 3) at the points of the surface dD\ S at these ends as in [6].

We reconstruct the surface step by step for each adjacent splice between p;_; and p;, [ =1,...,L. As
in [5] the approximation of the boundary conditions at the surface dD is O(A(h)), here A(h) is the step
of the partition hg, Ay, ..., hy.

It remains to find the approximation of the upper and lower auxiliary curves, i.e. the values of the
harmonic functions u(z,z) and u;(z,Z) in each slice.

Since we construct the spline in one slice between two adjacent plane sections of D it suffices to
consider only the first slice bounded by the planes pg, p;.

We already presented two methods of the curve reconstruction [6]. Both of them involve the mapping
of the unit disc D' onto the domain D; partly bounded by I';, I =0, ..., L.
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3.1 Singular integral equation method

The first method involves Sokhotsky’s formula. We interpret this formula as the system of equations on
the unknown points on the curve completing I';, / = 0,1 to the closed curve. We assume that the upper
part of the unit circle maps onto I';, [ = 0,1. After this we reconstruct the complete boundary of the
unknown solid as the ruled surface with directrices given by I'o I, and I'; UT}.

Recall the construction scheme for each curve. Due to [4, 10] the necessary and sufficient condition
for f(z(s)), s € s € [so(h;),s1(h)], and forall / € {1,...,L} to be the boundary values of the holomorphic
in D; function is the relation

T
10/ e t, s € [soll),s1(h)]. (4)

Let us separate the values of f(z(z)) on the known part of the curve from that on the unknown part
of the curve:

7riF z(t) —z(s)
L1 (@(0)+ix (1) (1)
+ap Z(t)—Z(S) dl‘,SE [SO(hl)asl(hl)]’ (5)

L1 S0 4t € [s1 (), 50 (). (©)

We consider relations (5) and (6) as two singular integral equations [4, 10]. The free term
% Ik %%Mdt of equation (6) contains the known functions ¢ (s) and y/(s) and is thus also
[so(Fr),s1 ()]
known. So we can solve (6) with respect to ¢ (s) +i% (s), s € [s1(h;),s0(h;)]. After finding ¢ (s) +iF (s) we
check if the function ¢'(s) +iy(s), s € [so(h;),s1 ()], satisfies equation (5). Now if ¢'(s) +iy(s) meets
(5) then the function f(z(¢)) is the boundary value of a holomorphic in D; function by (4). Therefore we
formulate the following

Theorem 1. Let D, for anyl € {1,...,L} be a one-connected domain with the smooth boundary T UT”,

where T = {z(s) = x(s) +iy(s),s € [so(h),s1(h)]}, s being the natural parameter of T, I" = {z(s) =

x(s)+1y(s),s € [s1(h),s0(h;)]}. Let the data defined by the formulation of the Cauchy problem be given

at the points of I'. Let ¢'(s), s € [so(h),s1(l;)], be of the Hélder class and y(s), s € [so(h;),s1(h;)], be
N

continuous. Then this Cauchy problem is solvable if and only if the known function ¢'(s) +1 [ w(t)dt
0
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€ [so(hy),s1(hy)), satisfies the relation

L[ (9'(t) +iw()d7)Z (1)
o'(s) +iy(s) = mr/ (O —2) dt
+% (¢f(rz)(;;i_icz(2;g(t)dt, s € [so(),s1 ()],

where ¢ (s) +i%(s), s € [s1(h;),s0(hy)], is the solution of the singular integral equation

5 i7(1)Z (1)
¢ (s) F/ —2(s) 2
1 (¢()+ y(1)Z (1)
+ ;/ 0 -2 dt, s € [si(h;),s0(h)).

The solution of the solvable Cauchy problem has the form

wixy) =Re[ [ { - /(¢’(t)+illf(t))z’(t) as L /( (r))+'5i A0 O

2mi z(t) —x—iy (1 iy
r

r‘/

In order to find the domains D;, j=0,...,L, we construct the curves F’ In order to do this in its turn
we consider integral equation (6) as a system over the unknown points on thls curve. Note that under the
assumption that the curve I'; is the image of the semicircle and the curve F; is the image of the other
semicircle, the problem is solvable [6,7].

This statement is a natural generalization of [0, Theorem 1]. The only difference is that we simul-
taneously solve the plane problem for all the domains D;, j =0, ...,L. This difference itself poses the
stability requirement on the solution of the algebraic linear equation system relative to singular equation
(6). Note that the relative system matrix is nondegenerate [7] and continuously depends on the curve I'”
of the system.

Also by [5] the convergence rate of the approximate solution to the exact one equals
O(max{A4(9),An(y)},%). Here Ay¢ is the continuity modulus of the function ¢, A,y is the conti-
nuity modulus of the function y, A is a constant, and N is the number of nodes at the boundary curve
I.

Example 1. We fix the cylinder D' x [0,1] as D and I" x [0,1] as S. Here I is an upper half-circle
{cos(t),sin(z)}, t € [0,7]. Consider the mapping (cos(z),sin(¢)) — (cos(t),sin(z) + 0.2sin(47)) at the
lower section, [ = 0, and (cos(z), sin(¢) +0.15sin(3¢) +0.2sin(4¢)) at the upper section, [ = 1, ¢ € [0, 7].
We reconstruct from equation (6) the curve I}, [ = 0, 1. In this case the matrix of the system relative to
Theorem 1 is the same for both ends of the cylinder. Only difference lies in the right-hand sides of the
linear systems. So the construction of the approximate linear spline-interpolation solution is correct. Fig.
2 shows the result of calculations.

This construction naturally extends to the general case of a non-cylindrical solid D. We should
consider the combination of the mapping f; that maps the boundary of the cylindrical slice S' x [h;_1, A
into the relative slice of D and the boundary data on this slice.
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Figure 2: The first part is the approximation of solution as the closed surface. The second part is the approximation
of the solution function at upper section. The last part is the approximation of the solution function at the lower
section.

3.2 Method of an auxiliary conformal mapping

The second method applies the auxiliary conformal mapping.

First we consider closures I'; of the curves I';, [ =0, ..., L, so that the poles of the functions given on
these curves do not belong to the domains D; bounded by the closures I' JT7.

Next we reconstruct the conformal mappings of the unit disk D' onto the domains D;, I =0,...,L.

The construction of this map is given, e.g. in [8] and involves reparametrization of the initial bound-
ary curve. We construct this reparametrization through approximate solution of the Fredholm integral
equation.

Theorem 2 ([8]). For any domain D;, [ =0,... L, with boundary — a simple smooth closed curve T,
defined by a Fourier polynomial, one can construct with any accuracy a function mapping D; onto the
unit circle by solving an integral equation reduced to a finite system of linear equations.

Finally, we reconstruct the function « as the linear on 4 spline approximating the auxiliary conformal
mappings.

Example 2. We fix the cylinder D' x [0,1] as D and T" x [0,1] as S. Here I is an upper half-circle
{cos(?),sin(t)},t € [0, 7]. Assume that the boundary conditions are given at the half-circles (cos(t),sin(z)),
as (cos(t),sin(r) —0.1sin(2¢) +0.3cos(3¢)) and (cos(z),sin(z) — 0.25sin(2¢) 4 0.3 cos(3¢)) at the lower
and upper sections, ¢ € [0, 7.

In order to complete the contours, we simply extend the boundary data to the parameter values
t € [r,2x]. So we have to find the approximate mappings of the unit disc onto the domains bounded
by the curves (cos(z),sin(z) —0.1sin(2¢) +0.3cos(37)) and (cos(t),sin(¢) —0.25sin(2¢) + 0.3 cos(3¢)) at
the lower and upper sections. Fig. 3 presents the solution in this case.

This construction as in Example 1 naturally extends to the general case of a non-cylindrical solid
D. But here we consider the combination of the analytic mappings f;_; and f; that map the ends of the
cylindrical slice S x [h1—1,hy) into the relative ends of the slice of the initial domain D and the boundary
data on this slice.
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Figure 3: The first part is the approximation of the solution as the closed surface. The second part is the approxi-
mation of the solution function at the upper section, red contour is the initial curve, green curve is the reconstructed
part, blue one is the approximation. The last part is the approximation of the solution function at the lower section,
red contour is the initial curve, green curve is the reconstructed part, blue one is the approximation.

4 Polynomial spline

n
We search for the solution u(z,7, ) polynomial on h: u(z,Z,h) = ¥ ui(z,Z)h* in each slice between the
k=0
planes p;_jand p;, [ =1,...,L

The curves I'; UF} bound the domain D, j =0, ..., L. In order to glue the derivatives u;(z,2), z € Dj,
j=1,...,L—1 in the adjacent slices and take into consideration the condition on % we necessarily
consider splines of degree greater than 1 [5].

The construction is similar to one given in the previous section. The only difference is the recurrent
formula allowing us to reconstruct ug, u; through the terms with greater. degrees of h:

k(k— 1)y (2,2) = 40: 001 (2.2). @

So we split the coefficients into two groups, namely, the even and the odd sets. In order to glue the
solutions in the lower end of the slice we consider the even coefficients. Odd coefficient set allows us
both to meet the boundary condition at the top curve and to minimize the integral norm of the differences
between the derivatives with respect to £ at the common lower end of the slice.

For example, for n = 3 we have

1

~(R(2)2+ F(2)),

uo(z,2) zfo(z)+T@+2

m@@:ﬁ@+ﬁ@+;ﬂ@ﬂiﬁ&)

Here F(z) = f f;(z)dz F;(0) = 0. j = 2.3,

Note that we reconstruct the solution starting from f>(z) and f3(z). In order to do this we consider
the second derivative of the boundary function with respect to 4. Assume that 2y = 0, #; = 1. Then we
achieve the system

®)

{uh 1(z,Z,ho) |, = 2Ref2(2),
unn(2,Z,h1)|r, = 6Ref3(z) +-2Refa(z).
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Figure 4: The polynomial approximation of the approximate solution as the closed surface. The second part is
the approximation of the derivative uy,, at the upper section, red contour is the initial curve, green curve is the
reconstructed part, blue one is the approximation. The last part is the approximation of the derivative uy 5, at the
lower section, red contour is the initial curve, green curve is the reconstructed part, blue one is the approximation.

From system (8) we find first Ref3(z), Ref2(z) and then f3(z), f2(z) on the curves I';, [ =0, 1.
We put these functions into the system
u(z,Z, h()) |F0 =Refo (Z) + %RC(FQ(Z)Z)v )
un(2,2,h1)|r, = Refi(z) + 3Re(F3(2)z).

Finally we reconstruct the analytic functions fy(z), fi(z) from (9). Here we apply Theorem 1 four times,
twice for each end of the slice.

So, we have the spline-iterpolation solution of degree 3 on the variable 4.

By [5] the convergence rate of the approximate solution to the exact one equals
O(max{A%(¢),A%(y)},%). Here AZ¢ is the continuity modulus of order 2 of the function ¢, A7y is
the continuity modulus of order 2 of the function v, A is a constant, and N is the minimal number of
nodes at the boundary curve I';, [ =0,... L.

Example 3. We again fix the cylinder D! x [0,1] as D and " x [0,1] as S. Here I is an upper half-
circle {cos(z),sin(z)}, r € [0,7]. Assume that the boundary conditions are given at the half-circles
(cos(t),sin(t)), t € [0, 7], as in Example 1. Let us add to the boundary conditions of Example 1 the
assertions on the values of uy, ; given by ; (cos(t),sin(¢) +0.1sin(3¢) — 0.1sin(4)) and % (cos(t), sin(r) —
0.1sin(37) +0.1sin(4¢)) at the lower and the upper curve, respectively, ¢ € [0, 7].

We reconstruct four auxiliary curves for each boundary condition.

Note that it is easier to reconstruct the boundary surface S as the set of curves since then we simply
reconstruct the set of cubic parabolas by their values at the ends. Fig. 4 presents the solution in this case.
Here we combine the solutions of Example 1 with that for the second derivative u;, j,.

S Examples

Here we compare the approximate solutions given in the first sections of the article to the exact. Con-
sider two sections of the solid at 7 = 0 and & = 1 (Fig. 5) given by the curves (cost,sinz), ¢ € [0, 7], and
(cos(t) —0.00530516sin(4¢),0.606104 sin(¢) +0.063662 sin(37) —0.212206 cos(2¢) +0.00530516 cos(47)),
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Figure 5: Approximations of the upper and lower sections of the solid by conformal mappings of the unit disk
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Figure 6: Example 4. The differences of the real and imaginary parts of the approximate and exact solutions at
the upper (left column) and lower (right column) sections of the solid. Upper row — solutions with an auxiliary
conformal mapping. Lower row — solutions of the singular integral equation

t € [m,2x]; and (cost,sint), t € [0, 7], and (0.0143997 sin(—4s) +cos(—s), —0.025 sin(—3s) —0.5sin(—s) —
0.0143997 cos(—4s) —0.231305cos(—2s)), t € [m,27], respectively. Assume that the data is given at the
semicircle (cost,sint), t € [0,7]. Naturally the differences of the exact solutions with the approximate
happen at the points with the greatest curvature. It is the illustration of the problems connected with
conformal approximation of the thin domains or domains with corner points.

Example 4. Consider the function (1 + %)z%. The function given by 1.1cos(%)+ 1.11sin(%) at the
upper section and by cos(%) +1sin(§) at the lower one. Here we have 0 as the branching point of the
reconstructed function (Fig. 6).

It is important to note that the reconstructed solution at the second part of the curve belongs to the
same branch of the Riemann surface as the given data.

Example 5. Consider the function (1 — %)zz. The function given by cos(2¢) + isin(2¢) at the upper
section and by 0.9cos(2¢) + 0.9isin(2¢) at the lower one. Here the reconstructed function possesses no
poles in the domains (Fig. 7).

Here the differences between the exact and the approximate solutions real and imaginary parts pos-
sess additional peaks due to the existence of such extrema for the initial function.

Example 6. Consider the function (14 75)(z+ %) The function given by 2 cos(7) at the upper section
and by 2.1cos(¢) at the lower one. Here the reconstructed function has the pole at 0 (Fig. 8).
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Figure 7: Example 5. The differences of the real and imaginary parts of the approximate and exact solutions at
the upper (left column) and lower (right column) sections of the solid. Upper row — solutions with an auxiliary
conformal mapping. Lower row — solutions of the singular integral equation
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Figure 8: Example 6. The differences of the real and imaginary parts of the approximate and exact solutions at
the upper (left column) and lower (right column) sections of the solid. Upper row — solutions with an auxiliary
conformal mapping. Lower row — solutions of the singular integral equation
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Figure 9: Example 7. The differences of the real and imaginary parts of the approximate and exact solutions at
the upper (left column) and lower (right column) sections of the solid. Upper row — solutions with an auxiliary
conformal mapping. Lower row — solutions of the singular integral equation

Example 7. Consider the function (1+ %) 071 + %) The function given by i(—0.1sin(2¢) —sin(¢)) +
cos(t) 4+ 0.1cos(2¢) at the upper section and by i(—0.2sin(2¢) —sin(z)) 4 cos(7) + 0.2 cos(2t) at the lower
one. The pole at 0 of the reconstructed function is of order 2 (Fig. 9).
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