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Abstract. We develop a continuous-time optimal control model for allocating agricultural crop residues
between bioenergy production and soil fertility restoration. The system includes a circular reinvestment
channel: a portion of the accumulated bioenergy stock is reinvested to enhance soil fertility, thereby
closing the loop between energy use and ecological regeneration. The dynamics are governed by a three-
state system with a single allocation control. The objective is to maximize a discounted net benefit that
accounts for energy revenue, soil value, and operational costs. We apply the Pontryagin Maximum Prin-
ciple in current-value form to derive necessary optimality conditions and a bang—interior—bang control;
no singular arc under our parameterization. Direct optimization confirms a quasi-turnpike phase and
shows how the planning horizon and reinvestment efficiency shift switching times and interior duration.
The results highlight the strategic role of energy reinvestment in sustainable residue management.
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1 Introduction

Sustainable use of crop residues is at the intersection of environmental stewardship, agricultural produc-
tivity, and the development of renewable energy. As by-products of harvesting operations, residues such
as straw, stalks, and husks represent a globally abundant biomass resource estimated at about 3.8 billion
tonnes per year (dry matter) worldwide in the early 2000s [25]; see also [35] for broader AFOLU con-
text. Their potential applications range from soil fertility enhancement through organic matter recycling
to energy generation via biochemical or thermal processes. However, these alternative uses are inherently
competitive: returning residues to the soil supports long-term ecosystem health, while diverting them to
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energy production yields short-term economic gains. This trade-off is particularly critical in systems
where soil organic carbon stocks are vulnerable and organic inputs are scarce.

To address such allocation challenges, mathematical modeling, particularly in the field of bioeco-
nomics, has played a central role. The foundational work of of Clark [12], Gordon [27], and others
introduced dynamic frameworks that link biological processes to economic optimization. Subsequent
models have extended these ideas to agricultural systems, incorporating soil dynamics, crop productiv-
ity, and market behavior [3, 20, 38]. In parallel, policy-oriented assessments such as the US billion-ton
update [30] and EU biomass reports have evaluated sustainable removal thresholds for crop residues
to preserve soil functions. The circular bioeconomy literature further advances this view by promoting
residue reintegration strategies such as composting, biochar application, or digestate recycling to close
carbon and nutrient loops [2,26].

Despite these developments, most assessments rely on static criteria or scenario analysis, with limited
integration of dynamic feedback between ecological and economic components. This is where control
theory provides a powerful framework. Optimal control methods, especially Pontryagin’s Maximum
Principle (PMP) [4, 24, 31], enable the formal derivation of time-dependent allocation strategies. In
agricultural contexts, PMP has been applied to irrigation scheduling [27], pest control [34], and soil
nutrient management [41], but few models integrate biomass use, energy recovery, and soil regeneration
into a unified optimization framework.

Recent contributions to bioeconomic modeling highlight the potential of PMP and related meth-
ods in capturing complex sustainability trade-offs. Studies have examined optimal resource allocation
in ecological and technological systems, including microbial metabolite production [6], species selec-
tion [16, 17], and anaerobic digestion [23]. In the domain of waste-to-energy, previous work [8, 9] em-
ployed PMP to optimize investment and valorization strategies under environmental constraints, while
[10] demonstrated how direct optimization methods can numerically resolve state-constrained control
problems with feedback effects in waste recovery chains.

Building on this foundation, we propose a continuous-time optimal control model that allocates
agricultural residues between energy production and soil fertility restoration. The model introduces
a reinvestment mechanism whereby a fraction of the accumulated energy output enhances future soil
productivity representing conservation spending, nutrient cycling, or infrastructure co-benefits. This
circular feedback is embedded within a nonlinear three-state dynamical system and studied through
the PMP framework. We derive necessary optimality conditions, characterize the structure of optimal
trajectories, and explore the resulting strategies through direct numerical optimization, analyzing their
sensitivity to reinvestment efficiency and planning horizon.

The contribution of this work is threefold:

* It advances control-based bioeconomic modeling by endogenizing ecological feedbacks from en-
ergy production to soil systems.

* It operationalizes circular bioeconomy principles within a rigorous dynamic optimization frame-
work, moving beyond static allocation rules.

* It provides a generalizable methodology for evaluating sustainable residue management strategies
under competing objectives.
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Related work and positioning. This paper contributes to the optimal control of residue—energy sys-
tems by introducing an explicit energy-to-soil reinvestment state channel: a fraction of accumulated
bioenergy is fed back to the soil, enhancing soil organic carbon (SOC) and, through it, crop productivity.
Prior optimization studies in the biomass/waste domain largely treat residues as a supply and logistics
problem aimed at cost-effective energy delivery or storage management, without a dynamic soil-feedback
state that closes the loop from energy to fertility [29, 33]. Empirically, the loop we model has two well-
documented sides: removing residues reduces SOC on average (a recent global review reports an ~ 11%
decrease in topsoil SOC under residue harvest), while stabilizing carbon from residues (e.g., via biochar)
tends to increase SOC substantially (meta-analysis mean ~ 26%) [1, 37]. Embedding this evidence into
a tractable three-state OCP allows us to study how the economic environment (energy and soil prices)
and the reinvestment efficiency jointly shape the timing of residue diversion vs. soil return. Our finite-
horizon results complement the broader literature on turnpike behavior where long-horizon optima spend
most time near a steady state by showing when the reinvestment channel still yields bang—interior—bang
patterns typical of systems with strong economic steady states [21,36].

This paper is structured as follows: Section 2 introduces the mathematical formulation of the system,
defining the state dynamics, control variable, and key bioeconomic assumptions. Section 3 formally
states the optimal control problem (OCP), including the objective functional and admissible trajectories.
Section 4 presents the analytical framework based on the PMP, characterizing the necessary optimality
conditions and the switching behavior of the control. Section 5 illustrates the numerical resolution of
the OCP using direct optimization methods, and compares control policies under different reinvestment
scenarios and planning horizons.

2 Mathematical formulation

We propose a continuous-time dynamical model that captures the allocation of agricultural crop residues
between two competing pathways: the restoration of soil fertility and the generation of bioenergy. This
formulation is motivated by a central trade-off in circular bioeconomy systems: diverting biomass to
energy delivers immediate economic benefits but may undermine soil health, while returning biomass to
the soil supports long-term productivity at the expense of forgone energy.

A distinguishing feature of the model is the inclusion of a feedback mechanism whereby cumulative
bioenergy output contributes positively to future soil fertility. This reinvestment captures the indirect
benefits of energy use such as infrastructure development, adoption of improved farming practices, or
income-driven conservation and embeds a memory effect in the system dynamics. From a control-
theoretic standpoint, this structure allows for the emergence of path-dependent behaviors and long-term
policy impacts, making it well suited for sustainability analysis.

To maintain tractability and analytical transparency, we adopt a linear-affine structure in both state
and control variables. This choice enables the application of Pontryagin’s Maximum Principle and fa-
cilitates the derivation of qualitative properties of optimal solutions. Although saturation effects and
nonlinear interactions are acknowledged in empirical systems, we defer their inclusion to companion
studies.

The model tracks the evolution of three interdependent state variables:

* S(1): Soil organic matter content (tC/ha), representing long-term soil fertility;
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* R(t): Residue biomass available at time ¢ (t/ha);

* E(t): Cumulative bioenergy output up to time 7 (MJ/ha).

We use u(t) € [0, 1] exclusively as the allocation control (fraction of residues diverted to energy), where
u(t) denotes the proportion of biomass directed to energy production, and the remainder 1 — u(t) is
returned to the soil.

The system is governed by the following set of coupled differential equations:

S(t) = (1 —u(t))R(t) — 8sS(t) + OE(t), (1)
R(t) =n(S) —¥R(r), )
E(1) = Bu(t)R(r) — SpE(1), 3)
with initial conditions,
S(0)=Sy>0, R(0)=Ry>0, E(0)=0. )

Each equation models a distinct dynamic process. Equation (1) describes the evolution of soil fertility
as a balance between enrichment from biomass return, natural decay, and energy-driven reinforcement.
Equation (2) links residue biomass availability to soil quality and includes losses due to decomposition
or diversion. We assume residue productivity is linear: 1(S) = pS with p > 0. Equation (3) captures
energy accumulation through conversion, with degradation of usable output over time.

The model depends on the following parameters:

* « [tC/t]: Efficiency of soil enrichment via residue return;

o Js [1/year]: Natural decay rate of organic matter in the soil;

p [t/(tC-year)]: Residue productivity per unit soil fertility;

* v [l/year]: Loss rate of residue biomass;

L]

B [MJ/t]: Energy yield per ton of residue;

O [1/year]: Decay rate of accumulated energy;

0 [tC/(MJ-year)]: Efficiency of energy reinvestment into soil.

Modeling rationale (linearity). We adopt a linear—affine structure as a calibrated local model around
the operating corridor of interest. On the soil side, first-order input—decay kinetics are widely used for
SOC turnover and accurately fit long-term bare-fallow datasets across diverse edaphic and climatic con-
ditions [28]. On the agronomic side, crop/soil-productivity responses are well described by concave,
saturating laws (e.g., Mitscherlich “diminishing returns”), for which a linear law is the first-order ap-
proximation near the calibrated range [15]. Within this corridor, the linear—affine specification yields
parsimony, identifiability, and transparent optimality conditions.

Remark 1. The inclusion of E(t) as a dynamic state variable plays a pivotal role in shaping system
behavior. By linking past energy production to current soil dynamics, the model introduces a form
of delayed reinforcement that affects both the timing and structure of optimal strategies. This feature
supports simulation of sustainability-oriented policies such as reinvestment subsidies or incentive-based
conservation programs.
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Lemma 1 (Positivity). Let u(-) € [0,1], o, B,7,8s,0¢ > 0, and 6 > 0. If S(0),R(0),E(0) > O, then the
solution of (1)—(3) satisfies S(t),R(t),E(t) > 0 forall t € [0, T].

Proof. From (3), E = BuR — 8gE > —8gE with E(0) > 0. By comparison/Gronwall, E(¢) > 0 for all
t (standard Gronwall estimate). From (2), R = pS — YR > —yR and R(0) > 0 imply R(t) > 0. From
(1), S = a(1 —u)R — 855 + OE > —8sS and S(0) > 0 yield S(¢) > 0. Hence the nonnegative orthant is
forward positivity for the system. O

Remark 2. A companion manuscript develops a multi-objective variant with explicit fertility constraints
and mild saturation in the soil-productivity channel, showing that the qualitative bang—interior-bang
policy structure persists under those extensions []1]. We therefore retain the linear—affine baseline here
and refer readers to that analysis for the saturated case.

3 Statement and existence of the OCP

The goal is to determine a time-dependent control policy u*(+) that maximizes the total discounted net
benefit over a finite horizon [0,7]. The benefit reflects a trade-off between energy revenue and soil
fertility value, penalized by operational costs related to biomass logistics and energy conversion.

The objective functional is given by,

T
() = /0 e [pEE(1) +psS(t) — C(u(1))] dr, ©)
where,
* E(t) [GJ-ha~!-yr~!]: instantaneous energy output rate;

* S(¢) [tC-ha~']: soil organic matter, representing long-term soil fertility;

pe [$/MIJ]: unit price of usable bioenergy;

ps [$/tC]: economic valuation of soil fertility;
 C(u) = ciu+ cou? [$/ha-yr]: operational cost of diverting residues to energy, with:

— c¢1 [$/ha-yr]: linear cost coefficient (e.g., residue collection, transport);

— ¢7 [$/ha-yr]: nonlinear cost coefficient (e.g., processing complexity, diminishing efficiency);
L) [yr‘l]: economic or social discount rate.
The control function u(t) is measurable and constrained to,
U :={u(-) € L*([0,T};[0,1])}, (6)

with u(7) = 0 indicating full residue return to soil and u(¢) = 1 indicating complete diversion to energy.
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Remark 3. The quadratic cost function C(u) = ciu+ cou® reflects both basic operational expenses
and additional costs that grow with higher diversion rates. The convex shape accounts for practical
challenges such as reduced processing efficiency, limited residue availability, or increased labor demand
when more biomass is sent to energy. This makes the cost structure realistic and grounded in actual
logistical trade-offs not just a mathematical simplification.

The optimal control problem becomes,

ma J(u),
u(-)eé/ (u)

subject to the dynamic system (1)—(3) and initial conditions (4).

Before proceeding with the application of the PMP, it is essential to establish that the optimal control
problem stated above is well-posed. In particular, we must ensure that the admissible control set is
nonempty and that the system of differential equations admits bounded solutions for any admissible
control. Furthermore, we seek to guarantee the existence of at least one optimal control that maximizes
the objective functional over the given time horizon. These foundational properties are formalized in the
following theorem.

Theorem 1 (Existence of Optimal Control and Boundedness of State Trajectories). Fix a final time
T > 0. Suppose,

1. The production law is fixed to the working model (S) = pS with p > 0.
2. The cost function C : [0,1] — R is continuous.

3. The admissible control set is

U ={ueL”(]0,T];[0,1])};
4. The parameters o, Js, O, Y, B, pe, ps, 0 are strictly positive and 6 > 0;
5. The initial state satisfies S(0) = So > 0, R(0) = Ry > 0, and E(0) = 0.

Then the optimal control problem,

T -8t -
max J(u)i= [ e [ppE(e) + psS(e) ~ Clu(r)] i,

subject to the dynamic system,
S(t) = a(1 —u(t))R(t) — 8S(t) + OE(t),

R(t) = pS(t) — YR(1),
E(r) = Bu(t)R(t) — 6gE(t),

admits at least one optimal control u* € 7. Moreover, the associated state trajectories (S*,R*,E™)
remain uniformly bounded on [0,T].
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Proof. Step 1: Boundedness of state trajectories. By the positivity Lemma 1, S,R,E >0on [0,T]. Hence
S<aR—8sS+6OE, R=pS—YyR, E<PBR-E.
Summing yields

%(S—FR—#—E) < (p—85)S+(0+B— 7R+ (6—8)E < Co(S+R+E),

for Cy := max{p — 8s, a + B — v, 0 — S } + Os + Y+ 0. By Gronwall inequality,
S(t)+R(t) +E(t) < (So+Ro+Eo) e fort € [0,T],

so (S,R, E) are uniformly bounded on [0,7].

Step 2: Existence of an optimal control. The right-hand side is Carathéodory and control-affine in
u; the control set [0, 1] is compact, so the velocity set f(,x,[0,1]) is convex. Moreover, substituting
E = BuR — SgE gives a continuous running payoff

0(t,x,u) = e % (pe(BuR — SgE) + psS — C(u)),

continuous in (¢,x,u) on the compact control set. By the Filippov—Cesari existence theorem for Bolza
problems with compact controls and convex velocity sets (see, e.g., Clarke, [13]; Vinter, [39]), there
exists an optimal u* € % with associated bounded state (S*, R*,E*). O

4 The PMP analysis

To derive necessary conditions for optimality in the crop residue allocation problem, we apply the PMP
in the current-value formulation. This approach simplifies the structure of the Hamiltonian by elimi-
nating the discounting exponential e % from the integrand in the objective functional (5), making both
analytical and numerical treatments more tractable. The structure follows the methodology presented
in [24], Sect. 8 of Part II.

Let A = (As, Az, Ag) be the vector of costate (adjoint) variables associated with the state variables
(S,R,E). We use the term current-value pseudo-costate for e%2;(t), i € {S,R,E}, where A; are the
standard costates in current-value form. The current-value Hamiltonian for our system is defined as,

H = ppPuR+ psS — C(u) + As[oe(1 —u)R — 35S + OE] + Ag[n(S) — YR+ A [BuR — SgE].  (7)
We reorganize the Hamiltonian as follows:
H = h(S,R, 1) +h(A)uR — C(u), ®)
where
* h(S,R,A) :=psS+ AsaR — As0sS + AsOF + Ag[n(S) — YR| — Ag OcE,
(A) :==pePB —Asoc+ AeP.

gl
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The adjoint dynamics are given by

: oH

As = OAs — o5 = OAs — [ps — Asds + Arn'(S)],

: oH

AR=31R—ﬁ:57LR—[(PE+)»E)ﬁu—7Lga(l—u)—)LRy], ©)

g = 8Ap — [0As — ApSg].
Since the final state is free, the transversality conditions are the following.
As(T) = Ag(T) = Ae(T) =0. (10)
Switching function:

¢(r) = ?Z(I) = (peB —ads(t) +BAs(t)) R(t) — (c1+2¢cou(t)). (11)

Bang at bounds when ¢ (7) < 0; interior u(¢) solves ¢(r) = 0.
The PMP maximization condition implies that for almost every ¢ € [0, 7],

u*(t) € arg max H(t). (12)
uel0,1]

To determine the explicit form of the optimal control u*(¢), we apply the Karush-Kuhn-Tucker (KKT)
conditions directly, using the fact that the control cost is quadratic and the control is bounded.

Proposition 1 (Structure of the Optimal Control). Let u*(t) denote the optimal control for the problem
defined in Section 2, and suppose C(u) = cju+ cou? with ¢1,ca > 0. Then for almost every t € [0,T],
u*(t) is given by

0, ifh(t)R(t) < cy,
W)= min{m’l}’ ifROR (1) > c1, -

2C2
where h(t) := pgB — As(t) ot + A& (1) B.

Proof. Let L(u,W;,W,) denote the Lagrangian associated with the constrained maximization of the
Hamiltonian
L=H+W1(0—u) —i—Wz(M— 1), with W, W, > 0.

The KKT conditions state that the optimal control u*(¢) satisfies

oL _9H w0
du Jdu ! 2T

Wi (t) =0, Wa(l—u'(t)) =0.

Since H is differentiable and C(u) = cju + cou?, we have

5= R()R(t) — C'(u(t)) = h(t)R(t) — (c1 +2cou(t)).
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Setting this derivative equal to zero for interior solutions yields

h(t)R(t) — ¢y
2¢y '

u(t) =

We then enforce the box constraints u € [0, 1] using complementary slackness:

u* (t) :min{max{o,il(t)R(t)_cl},l}.

2¢)
This expression leads to the piecewise structure in (13). O

The value of h(t) determines the marginal benefit of allocating crop residues to bioenergy. If this
marginal gain is too low, all residue is returned to soil; if it is high, full diversion to energy occurs.
Intermediate values yield interior control values.

Link to application. In the crop—energy setting, the current-value costates Ag, Ag, Ag are the shadow
values of soil fertility, residue stock, and accumulated energy. The switching function ¢ (z) = dH/du
compares the marginal benefit of sending one more unit of residue to energy with its opportunity cost
for soil: @(¢)>0 pushes u to the upper bound (more energy), ¢ (¢)<0 pushes u to the lower bound (more
soil), and ¢ (¢) ~ 0 yields an interior allocation where marginal values balance. This decision rule is the
operational link from PMP theory to residue-management policy (how much to divert vs. return at each
time). Over medium/long horizons, the observed mid-horizon interior phase acts as a quasi-turnpike: the
system stays near a steady allocation for most of the horizon, moving only near the endpoints. Relative
to our previous waste-to-energy OCPs, which establish the PMP framework and direct-method verifi-
cation on waste recovery and investment, [&, 9] the present model adds a reinforcement channel from
accumulated energy back to soil (reinvestment), creating the explicit energy—soil feedback that drives the
interior phase and the comparative statics in Section 5.

5 Numerical simulations

To approximate the solution of the optimal control problem formulated in Section 4, we implement a di-
rect optimization approach using a discretization-based method. This approach transforms the continuous-
time optimal control problem into a nonlinear programming (NLP) problem, which can then be solved
efficiently using modern solvers.

All simulations are performed in the Julia programming language, leveraging the JuMP modeling
interface and the interior-point solver Ipopt. Following the methodology outlined in [7], we discretize
the state and control trajectories using a Crank-Nicolson scheme, which provides a good balance
between accuracy and stability.

The numerical resolution proceeds by dividing the time interval [0,7] into N uniform steps. The
control variable u(z) is approximated as piecewise constant over each time step, and the state variables
(S(¢),R(¢),E(t)) are approximated using implicit midpoint integration. This allows the resulting NLP to
preserve the smooth structure of the continuous system and support a high convergence precision.

The discretization settings and solver tolerances used in the simulations are summarized in Table 1.
The values for the model parameters and the economic coefficients used in the objective function are
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Table 1: Discretization and solver configuration settings

Discretization method Crank-Nicolson

Number of time steps (N) 2000

NLP tolerance (absolute) 10°10

Control discretization

Piecewise constant

provided in Table 2. These values are selected to reflect plausible trade-offs between soil fertility and
bioenergy production, consistent with empirical studies in residue management and bioenergy systems.

Table 2: Model parameters: values and interpretations

Parameter Value Interpretation

Y (Residue decay rate) 0.20 Share of residues lost naturally over time; estimated from
seasonal soil decay data.

Os (Soil degradation rate) 0.05 Annual decline in soil fertility without residue input; as-
sumed low to reflect slow degradation.

a (Residue return efficiency) 0.25 Proportion of returned biomass that boosts soil fertility;

B (Energy conversion efficiency) 0.35

p (Soil productivity factor) 0.50

6 (Discount rate) 0.02

pe (Unit energy price) 1.00

ps (Soil fertility value) 0.80

c1, ¢y (Cost coefficients) 0.80, 1.00
T (Planning horizon) 25

0 (Reinvestment efficiency) 0.20

O (Energy degradation rate) 0.03

calibrated to represent moderate composting efficiency.
Energy yield from converting residues; estimated from
anaerobic digestion efficiency ranges.

Contribution of soil fertility to crop residue production; as-
sumed for moderate responsiveness.

Reflects economic preference for present vs future benefits;
standard assumed annual rate.

Normalized unit price of bioenergy; baseline for compara-
tive analysis.

Economic value of soil health per unit; assumed to weigh
against short-term energy gain.

Marginal and quadratic costs of diverting biomass to en-
ergy; calibrated to yield interior control.

Total time in years for optimization; assumed to capture
both transient and long-term effects.

Proportion of energy returns reinvested in soil fertility; es-
timated to model circular bioeconomy.

Loss rate of accumulated usable energy; assumed to ensure
bounded energy stock.

The initial conditions are assumed as follows:

S(0)=1.0, R(0)=0.5, E(0)=0.

Parameter context. The normalized energy price Pe=1.0 is mapped to representative EU anchors:
recent feed-in reference prices for biomass €153 — €176/MWh and biogas €192— €219/MWh (Greece
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schedules), and the EU emergency cap on inframarginal market revenues at €180/MWh. [14, 19] A
policy-facing proxy for soil valuation Ps is the carbon price: EU ETS reports place 2023-24 averages
roughly €65- €85/tCO, (= €240 — €310 per ¢C using 11C = 3.667 tCO;).(see, [18,32])

Finally, 6 = 0.2 is a low—moderate reinforcement consistent with observed SOC responses: meta-
analyses report SOC increases from residue return around ~11% and large, persistent SOC gains under
biochar additions. [5,40]

Optimal control « * (t) and switching structure

Control & Switch Function
o

— " (t) (JUMP) \
— W)R(1) — ¢,
— — (hR—¢,)/2c, \

0 5 10 15 20 25
Time

Figure 1: Optimal allocation u(¢) (top) and switching function ¢(z) (bottom), cf. Eq. (11). Zeros of ¢ identify
candidate switches; on intervals where ¢ () = O the interior control solves the KKT condition, while ¢ (1) <0 (resp.
> 0) pushes the optimum to the lower (resp. upper) bound.
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Figure 2: States S(r) (soil), R(¢) (residue), and E(r) (cumulative energy). The mid-horizon plateau coincides with
interior operation in u(t); early/late drifts reflect bang phases. Parameters as in Table 2

The benchmark simulation over a 25-year horizon provides insight into the structure of the optimal
policy and the system’s dynamic response to reinvestment and decay mechanisms. The optimal con-
trol trajectory and switching structure are shown in Figure 1 , while the corresponding current-value

To improve visual clarity in Figure 1, the switching function A(¢)R(t) — ¢| and its scaled version were clamped using
clamp01(x) = clamp(x, -2.0, 2.0). This operation does not alter the computed control u*(z), but limits the plotted
range of the switching expressions to the interval [—2,2] for graphical readability.
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Ag(t) Current-value A4(t)
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Figure 3: On the left: the adjoint costate trajectories As(z), Ag(#), and Ag () obtained via JuMP for the reinvestment
model. On the right: the corresponding current-value pseudo-costates ¢ Ag (), e¥ A(r), and €% Az (). The de-
caying profiles reflect the diminishing marginal value of state variables under discounting and confirm consistency
with the PMP.

costate variables and adjoint trajectories are reported in Figure 3, respectively. The evolution of the state
variables S(z), R(¢), and E(¢) is depicted in Figure 2.

The optimal control u*(¢) (blue curve in Figure 1) exhibits a nontrivial structure with three distinct
regimes. It starts at its upper bound, allocating all residues to energy production in the early phase (up
to ¢ /= 2.5), then transitions to an interior control value around u ~ 0.65 during a middle interval where
reinvestment builds soil fertility while maintaining a moderate energy supply. Around ¢ ~ 10, the control
switches sharply to its lower bound u = 0, fully diverting residues back to the soil. This reflects the shift
in the sign of the switching function (¢)R(t) — ¢| (green curve), which falls below zero, indicating that
the marginal value of energy production is lower than the combined cost and fertility opportunity. As
the horizon approaches its end (¢ ~ 23), the control switches again to u = 1, favoring immediate energy
gain, consistent with the terminal transversality conditions and time-discounted preferences.

The behavior of the adjoint variables, shown in Figure 3, confirms the structure predicted by the
Pontryagin Maximum Principle. Each adjoint A;(¢) decays monotonically toward zero, satisfying the
transversality condition A;(T) =0 fori € {S,R, E'}. The initial values of Ag(0) and Az (0) are significantly
higher than that of Az (0), reflecting the high marginal shadow prices of long-term soil fertility and usable
energy early in the planning horizon.

State trajectories (Figure 2) show rapid exponential growth of S(¢) and R(z), consistent with the
positive feedback created by reinvestment. The energy stock E(f) remains nearly flat over most of the
horizon but rises sharply in the final phase when u(¢) — 1 again. This confirms that the system initially
prioritizes building capital (fertility and productivity), then exploits the accumulated potential near the
horizon.
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Overall, the optimal solution highlights a dynamically efficient policy that balances early reinvest-

ment with late-stage energy exploitation. It confirms that even under energy decay and reinvestment
efficiency losses, a three-phase control policy can maximize the cumulative benefit from both soil and

bioenergy resources.

5.1 Comparison with the no-reinvestment scenario (6 = 0)

Control & Switch Function

Optimal control «* (t) and switching structure

o " (1) (JUMP)
——— Wt)R(t) — ¢,
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5

10 15
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Figure 4: No-reinvestment case (0=0): optimal allocation u(¢) and switching function ¢ (¢)=0dH /du. Zeros of ¢
indicate switching times; ¢ <0 = u=0 (all residues to soil), ¢ >0 = u=1 (all to energy), and ¢~0 corresponds to
interior operation O<u<1. Without E—S reinforcement, the policy stays at u=0 for most of the horizon.
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Figure 5: No-reinvestment case (0=0): state trajectories S (soil), R (residue), and E (cumulative energy). Reduced
growth in S and R reflects sustained u=0; E rises only near the terminal window where ¢ becomes positive.

To isolate the effect of energy reinvestment on the system’s dynamics and the structure of the optimal

control policy, we now simulate the model under the same parameters and time horizon, but with the
reinvestment coefficient set to zero: 6 = 0. In this case, energy accumulation no longer contributes to
soil fertility, and the control strategy must rely solely on direct residue return to preserve soil quality. The
resulting control trajectory and switching expressions are displayed in Figure 4, while the corresponding
costate and pseudo-costate trajectories are shown in Figure 6. The resulting state trajectories are plotted
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Figure 6: No-reinvestment case (§=0): costates Ag, Az, Az (left) and current-value pseudo-costates % A; (right).
Transversality A;(T)=0 holds; Ag stays near zero, indicating low marginal value of energy without feedback-
consistent with u=0 over most of the horizon.

in Figure 5.

Compared to the reinvestment benchmark, the optimal control u*(¢) (Figure 4) displays a markedly
different behavior. The control remains pinned at its lower bound u = 0 for the entire duration except
in the final phase, where a brief surge appears as the switching function crosses the optimality thresh-
old. This indicates that, in the absence of reinvestment, the marginal benefit of energy production is
consistently outweighed by the cost and long-term loss in soil fertility.

The costate trajectories in Figures 6 confirm this strategic behavior. The current-value costates Ag()
and Ag(7) dominate the decision structure early on, while Az (f) remains near zero throughout, indicating
that energy has virtually no strategic value when it does not feed back into the soil.

The state dynamics (Figure 5) illustrate a significantly weaker trajectory for soil fertility and residue
stock compared to the reinvestment scenario. The energy stock E(7) only grows near the end, as the
optimizer briefly diverts residue to energy production when the discounting effect renders soil gains less
valuable. This contrasts with the benchmark case where reinvestment allowed simultaneous buildup of
energy and fertility, supporting a more balanced and efficient control policy.

These results highlight the structural importance of the reinvestment mechanism. Without it, the
optimal strategy becomes more conservative and resource-preserving for most of the horizon. Reinvest-
ment not only increases cumulative reward, but also unlocks more aggressive energy policies without
compromising sustainability. This reinforces the circular economy perspective introduced in our model.

5.2 Effect of planning horizon on the optimal strategy

To investigate the impact of the available time horizon on the structure of the optimal control policy and
system dynamics, we simulate the model for two scenarios with different final times: a short horizon
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Figure 8: State trajectories under short 7=15 (top) and long 7=30 (bottom) horizons. Longer horizons enable
compounding via reinforcement: S and R rise more strongly and E builds earlier, matching the interior phase
observed in the control.

T =15 and a longer horizon T' = 30. All parameters, including the reinvestment coefficient 8 = 0.2, are
kept fixed to isolate the effect of time availability.

Figure 7 shows the optimal control trajectories u*(z) and their switching structure. In the short-
horizon case (left panel), the control remains at its lower bound u = 0 over most of the time interval, only
increasing sharply near the end. This reflects a conservative strategy: there is not enough time to benefit
from energy reinvestment, so the optimizer favors residue return to maintain soil fertility. The switching
function A(¢)R(t) — c| remains negative for most of the horizon, confirming that energy diversion is not
economically justified early on.

In contrast, the long-horizon case (right panel) displays a three-phase structure. The control starts at
its upper bound (# = 1), then shifts to an interior value, before eventually returning to # = 0 and finally
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Table 3: Relative sensitivity of the optimized objective (OAT, +10%). Entries are sorted by decreasing |Sye|.

Parameter ¢ Baseline J(+10%) J(—10%) Si(a)

p 0.5000 970.3507 484.6474 1.7621
o 0.2500 978.8720 479.7091 0.9055
Pg 0.8000 749.5559  629.1333 0.6990
Y 0.2000 594.1146 804.1123  —0.3048
Pr 1.0000 698.2009 680.5154 0.1283
B 0.3500 698.2009 680.5154 0.0449
Os 0.0500 645.1094 736.3796 —0.0331
Ok 0.0300 689.0797  689.0797 0.0000

switching back to u = 1 near the terminal time. This pattern reveals a dynamic reinvestment strategy:
early energy production enables mid-horizon soil enhancement, which is later exploited for increased
residue and energy output.

The associated state trajectories are shown in Figure 8. In the short-horizon case, fertility S(¢) and
residues R(¢) grow moderately, while energy E(¢) rises only in the final phase. In the long-horizon case,
all state variables exhibit strong growth. Soil fertility and productivity accumulate over time, supported
by reinvestment, and energy builds steadily before accelerating at the end.

These simulations highlight the central role of the planning horizon in shaping the control policy.
Short horizons favor conservative allocation, focusing on immediate soil preservation. Long horizons
allow more complex strategies involving reinvestment and exploitation phases, illustrating the temporal
trade-offs inherent to circular bioeconomic systems.

5.3 Sensitivity analysis

We quantify how the optimized objective responds to parameter changes via a local, one-at-a-time (OAT)
study around the calibrated baseline (fixed horizon 7' = 25). Let a denote a scalar parameter from

'@:{PE7PS7a7ﬁ7’Y7 657 6E7p}'

Denote by Jy the optimized objective at baseline and by J(a) the optimized objective when only a is
perturbed. We use a symmetric finite difference with relative step € = 0.10 (i.e., £10%) and report the

relative sensitivity
J(a(1+e¢))—J(a(l —¢)
Srel(a) = 2)8.]0 ) - a.

Hence Spei(a) > 0 indicates that a small increase in a raises J (locally), while Sgj(a) < 0 indicates the
opposite; [Sre1(a)| &~ 1 means a 1% change in a produces roughly a 1% change in J. (The cases 6=0 vs.
0>0 and the effect of varying the planning horizon 7" were analyzed separately in the preceding results
sections and are not repeated here.)

Interpretation. Productivity parameters p (soil — residues) and « (residue return to soil) exert the largest
positive influence on J, followed by Ps. Residue decay 7y is moderately adverse (negative), indicating
higher losses depress performance. Energy-side levers Pz and 8 are positive but smaller at baseline;
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Os is mildly adverse and &g is locally neutral. All perturbations use identical discretization and solver
tolerances to isolate parameter effects (see Section 5).

Policy implications. In our formulation, parameters map cleanly to levers that are widely discussed in
the soil-energy literature. The soil valuation term Ps corresponds to instruments that remunerate soil-
carbon services (e.g., carbon pricing or result-based agri-environmental payments); raising Ps shifts the
optimum toward greater residue return to soil, consistent with integrated assessments showing how in-
centive design affects the economic efficiency of soil-carbon sequestration. [3] In turn, the reinvestment
channel (captured in our model by the effectiveness of residue/energy reinjection into soil fertility) has
concrete agronomic realizations such as biochar return, which is documented to enhance soil properties
and long-term carbon stocks; stronger effectiveness raises the shadow value of soil and favors interior
allocations that expand soil capital. [26] Finally, the energy price Pz summarizes market conditions and
support schemes on the bioenergy side; in our numerical results, its variation primarily shifts switching
times without altering the bang—interior-bang structure.

6 Conclusion

This paper introduced a bioeconomic model for the optimal allocation of agricultural crop residues be-
tween energy production and soil fertility enhancement. Using Pontryagin’s Maximum Principle and
direct numerical optimization, we derived and analyzed optimal control strategies that reflect the trade-
offs between short-term energy revenues and long-term soil regeneration. The model incorporated a
novel reinvestment mechanism, where a portion of the accumulated energy benefits is recycled into the
system to boost soil productivity, capturing a key feedback in circular bioeconomy systems. Our simula-
tions revealed rich control structures including switching arcs and interior regimes whose characteristics
depend strongly on reinvestment efficiency and planning horizon. In particular, the presence of reinvest-
ment enabled more aggressive early-stage energy extraction without compromising long-term ecological
integrity. Comparative analysis with the no-reinvestment scenario underscored the strategic advantage of
circular reinforcement and highlighted its potential to improve sustainability outcomes.

These findings support the relevance of optimal control tools for designing residue management
strategies in agriculture and bioenergy. Future work will extend the model to include stochastic distur-
bances (e.g., yield shocks or energy price fluctuations), spatial dynamics, and alternative reinvestment
pathways such as composting or infrastructure improvements.
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