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ABSTRACT 

Satellite remote sensing is effectively used for environmental monitoring and change detection for the sustainable 

development of human society. While several methods exist for classifying satellite images, relatively few studies 

have focused on comparing these methods, especially considering the dimensional ratio and spatial distribution 

of the target phenomena. This study evaluates the performance of three classification methods including ANN, 

SVM, and an integrated approach that simultaneously uses three spectral indices of NDVI, GNDVI and, NDBI. 

The overall accuracy and kappa coefficient were calculated from the confusion matrix to statistically evaluate the 

three methods. Considering that statistical parameters are strongly sensitive to the dispersion and spatial 

distribution of the test points, a visual comparison was performed by overlaying the classified images with 

corresponding Google Earth imagery. Comparisons were made for several sample areas, which were categorized 

based on whether the land uses were integrated or scattered. Based on overall accuracy and kappa coefficient, the 

methods were ranked as SVM (97.36% and 0.9622), integrated spectral indices (94.06% and 0.9136), and ANN 

(93.42% and 0.9051). The visual comparison confirmed that SVM provided the best overall performance, 

consistent with the statistical results. Despite its lower overall accuracy, ANN was found more effective method 

in narrow areas compared to the other methods. Therefore, ANN is only recommended for detecting land uses 

with high levels of interference/integration with other features like rivers and roads that are surrounded by some 

other land uses.  
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INTRODUCTION 

Changes in land use/cover, along with the destruction of productive lands, are among the most significant threats 

to the environment (Ganasri & Ramesh 2016; Rawat et al. 2016). Land changes are typically driven by the 

conversion of natural resources, such as vegetation and agricultural lands, into urban and residential land uses. 

These changes are typically caused by human activities such as deforestation, urbanization, and excessive grazing. 

This phenomenon impacts regional climates and leads to significant environmental changes (Rahimi-Ajdadi & 

Khani 2022). Forests provide a wide range of ecological products and functions, including balancing the carbon 

cycle, regulating the water cycle, supporting food supply, mitigating climate change, and many other known and 

unknown benefits (Slee 2007). On the other hand, agriculture is one of the most important economic sectors in 

countries. This sector plays a crucial role in job creation and food security, contributing significantly to the 

country's Gross Value Added (GVA; Talukdar et al. 2020). The destruction of forests and agricultural lands, along 

with the reduction of their productive capacity, poses a serious threat to the economic and social well-being of 

both current and future generations (Haregeweyn et al. 2012; Keno & Suryabhagavan 2014). Due to the ongoing 

changes in land use, timely information about land cover/use, and human activities is vital for decision-making 

and planning (Knorn et al. 2009). The preparation of land use maps using traditional methods, such as land 
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surveying and analog maps, is not feasible on a large scale due to high costs and time constraints (Ghorbani et al. 

2016). Today, satellite imagery and remote sensing techniques are widely used across various sectors, including 

agriculture, natural resources, and land use mapping, due to their periodic availability, spectral and radiometric 

diversity, integrated perspective, and digital format (Zhang et al. 2007). There are various methods for delineating 

thematic phenomena and extracting information from land use maps, including supervised and unsupervised 

classification techniques. Supervised classification is performed based on training samples provided by the user, 

followed by classification methods such as maximum likelihood, ANN, minimum distance, SVM, and others 

(Mather & Tso 2016). The unsupervised classification method is carried out without user intervention, with 

spectral classification based on the mathematical differences in spectral values. Unlike supervised classification, 

this method is used when the user lacks sufficient information about the study area and is dealing with large 

volumes of data (Talukdar et al. 2020). The spectral indices method is another unsupervised technique, calculated 

using specific spectral bands. It combines several spectral bands to present data in an optimal and meaningful 

way. This method provides images with more detailed information compared to standard sensor bands. The 

spectral indices method offers numerous advantages, including the ability to highlight one or more phenomena, 

generate new information, simplify the interpretation and processing of satellite images, and improve 

classification accuracy in the production of thematic maps. Various spectral indices can be used either as 

intermediate or final products (Xu 2008). Spectral indices have been widely used to investigate vegetation changes 

(Lunetta et al. 2006; Markogianni et al. 2013; Gandhi et al. 2015), evaluating the expansion of urban areas 

(Varshney 2013; Sinha et al. 2016), managing crop production (Bandyopadhyay et al. 2014; Li et al. 2019), 

assessment of agricultural drought (Wu et al. 2015; Zambrano et al. 2016), investigating spatial-temporal changes 

in the earth's thermal pattern (Madanian et al. 2018) and hydrology (Rokni et al. 2014; Sarp & Ozcelik 2017).  

According to the literature, one of the disadvantages of supervised classification is its requirement for extensive 

fieldwork and skilled personnel to provide training samples, making the process time-consuming and labor-

intensive (Adjorlolo et al. 2012). On the other hand, these classifications are sensitive to factors such as time, 

plant growth stage, image quality, weather conditions, and cloud cover, requiring repeated collection of training 

samples (Zhong et al. 2011). In most studies, spectral indices are typically applied to specific categories of land 

cover, as their accuracy tends to decrease significantly with an elevation in the number of classes. For instance, 

the study by Ramos and Renza  (Ramos et al. 2018) on vegetation indices demonstrated that NDVI is largely 

dependent on the percentage change in vegetation cover. By this method, determining a suitable and general 

threshold is one of the key challenges in the classification process. Most previous studies have directly or 

indirectly compared supervised classification algorithms against one another (Caruana & Niculescu-Mizil 2006; 

Jog & Dixit 2016; Toosi et al. 2019). A clear research gap exists in the comparison between supervised 

classification methods and spectral indices. Additionally, when comparing supervised methods, validation is often 

not conducted in a comprehensive manner. It is typically performed based on a limited number of test points, 

without considering their spatial distribution or scattering characteristics. In other words, the accuracy of the 

classification algorithm is evaluated using statistical methods, without regard for the size, extent, or distribution 

of the test points. This approach is highly sensitive to the spatial distribution of the test points. For example, the 

placement of test points within a class, whether in the center or near the border (where spectral mixing may occur) 

can significantly impact accuracy. However, to minimize the effect of spectral interference at borders, users 

typically select test points located at the center of each class. Accordingly, this study provides a comprehensive 

evaluation of supervised (ANN, SVM) and unsupervised (an integrated spectral indices approach combining 

NDVI, GNDVI, and NDBI) classification methods for satellite imagery analysis. Unlike previous studies, this 

research uniquely incorporates both statistical accuracy metrics (overall accuracy and kappa coefficient) and 

detailed visual comparison techniques. The visual analysis, in particular, offers deeper insights into the methods' 

performance in detecting narrow areas and mixed land uses, which are often challenging to classify. This dual-

evaluation approach enables a more nuanced understanding of the strengths and limitations of each method, 

paving the way for improved classification strategies in remote sensing applications. 

MATERIALS AND METHODS 

Study area 

The study area located in Iran, in the central county of Rudsar City, which is the easternmost City of Guilan 

Province. Rudsar is located in longitude 50° 12' 34'' to 50° 22' 30'' E and latitude 10'' 02' 37° to 32'' 12' 37° N and 

is adjacent to the Caspian Sea from the north and east (Fig. 1).  
 



 
Fig. 1. The location of the study area in Guilan Province, Northwest Iran. 

 

The average annual temperature in the region is 16.5 °C and the average annual precipitation is 1201 mm. The 

average maximum temperature in the hottest month of the year is July at 25.7 °C and the average minimum 

temperature in the coldest months of the year is January and February at 1.8 °C. Due to having a humid 

subtropical climate, Rudsar is one of the best agricultural places in the province and all of the land is covered 

by vegetation except built-up area and water bodies. The diagram of the work steps is shown in Fig. 2. 
 

Data collection and dataset preparation 

The OLI sensor image of Landsat 8 in the year 2020 was used to prepare land use maps of Rudsar (Table 1). 

The satellite image was obtained from the US Geological Survey website. Due to the importance of proper 

identification of agricultural land cover in the region, satellite image was used in June (Rahimi-Ajdadi 2022). 

The image has good conditions including minimal cloud cover prior to image acquisition.  
 

Table 1. Detailed information about the satellite data. 

Resolution Bands Row Path Sensor Satellite Date Data Source 

30 m 11 34 165 OLI Landsat 8 2020/06/22 
USGS 

series archive 

 

Image preprocessing 

Atmospheric and radiometric corrections play a crucial role in improving classification accuracy by 

standardizing spectral values across images. Radiometric correction adjusts pixel intensity to ensure consistent 

reflectance values, while atmospheric correction removes interference from atmospheric particles such as dust 

and moisture. These corrections are essential for accurate land use classification, particularly in SVM and 

spectral index methods, which depend on precise spectral values to differentiate between classes. Without these 

corrections, spectral distortions can result in misclassification, particularly in areas with variable atmospheric 

conditions or image quality issues. After performing the radiometric correction, the atmospheric correction was 

done using QUAC algorithm, which is one of the powerful algorithms for atmospheric correction of 

multispectral and hyperspectral satellite images (Bernstein et al. 2005; Vibhute et al. 2015). Geometrical 

correction was not performed, since the Landsat Level 1 image used already includes radiometric and 

geometrical corrections through ground control points and a digital elevation model (USGS 2018). 

 



 
Fig. 2. Methodology of the study. 

 

Image classification 

ANN and SVM classifiers 

The first step in image classification using supervised methods is identifying the different land uses in the studied 

area. To classify land uses and collect training samples, GPS control points were obtained during field surveys. 

Additionally, Google Earth images were used to further identify land uses and gather more control points. Four 

classes, built-up area, farmland, forest, and water body were considered for Rudsar. Subsequently, 75% of the 

collected control points were used to classify the satellite images using the SVM and ANN classifiers. ANN 

classifier simulates and analyses natural phenomena like biological neural networks (human nerve structure) 

(Dixon & Candade 2008). This model has been the most popular among network classifiers over the past two 

decades. It exists in several forms, with the multilayer perceptron being the most common (Kotsiantis et al. 2007). 

In an artificial neural network, training samples enter through the input layer and, after being multiplied by the 

weights of the neurons, are passed to the hidden layers. This process is repeated iteratively, optimizing the weight 

values and minimizing the error. Due to advantages such as parallel processing, flexibility, and intelligence, ANNs 

play a crucial role in solving complex problems, including pattern recognition, clustering, modeling, 

identification, and prediction. While flexible and powerful in handling non-linear relationships, ANNs can be 

computationally intensive, sensitive to data quality, and prone to overfitting without adequate data. SVM is a non-

parametric, supervised statistical method used for classification and regression tasks. Developed based on 

statistical learning theory in the 1960s, it has demonstrated relatively good performance compared to other 

methods (Mountrakis et al. 2011). The points in SVM can be considered as support vectors that have the smallest 

distance to the decision boundary. It creates an optimal hyperplane to separate classes by maximizing the margin 

between them, ideal for high-dimensional data. Increasing the data dimension in this method leads to better results. 



Specifically, if classes overlap in the spectral space, the data are projected into a higher-dimensional space to 

improve differentiation. The primary goal of the SVM classification method is to maximize the margin between 

two classes while minimizing the generalization error as much as possible (Zhang et al. 2007). Its limitations 

include high computational costs, especially with large datasets, and potential overfitting in noisy data. 

 

Integrated spectral indices method 

Spectral indices are derived from mathematical calculations involving two or more spectral bands, enabling the 

identification of specific phenomena. The images generated using spectral indices provide new data that is not 

present in the original images. This method is computationally efficient but struggles in regions with mixed or 

narrow land-use areas due to overlapping spectral responses. All the primary mathematical operators can be 

applied to satellite images; however, division, subtraction, addition, and multiplication are the most commonly 

used, in that order of priority. In this research, the NDVI, GNDVI, and NDBI indices were utilized to identify and 

extract water bodies, forests, and built-up areas, respectively. The NDVI, GNDVI, and NDBI indices were 

selected due to their sensitivity to specific land features. NDVI and GNDVI are responsive to chlorophyll content 

and are effective for distinguishing different types of vegetation, while NDBI is particularly useful for identifying 

built-up areas and distinguishing water bodies. It should be mentioned that seasonality plays a crucial role in the 

effectiveness of spectral indices such as NDVI, GNDVI, and NDBI for land classification. The NDVI and GNDVI 

indices are sensitive to vegetation growth stages and perform optimally during peak growth seasons, such as spring 

and summer, when plants exhibit higher reflectance in the near-infrared spectrum. Seasonal fluctuations can cause 

changes in the values of these indices, and if images are captured during periods of low plant growth, these changes 

may lead to misclassification. In contrast, NDBI, which is used to detect built-up areas, is less affected by seasonal 

changes. However, surface conditions, such as variations between wet and dry states, can produce different 

reflectance values. For this reason, June was selected for data collection in this study to capture the peak vegetation 

growth period, maximizing spectral differentiation between various areas, including vegetation and built-up 

regions. This strategic timing minimized the risk of misclassification, particularly in agricultural and forested 

areas, ultimately enhancing the accuracy of land classification. 

 

NDVI index 

The NDVI is used to detect changes in vegetation cover (Knight et al. 2006; Guerschman et al. 2009; Malik et al. 

2020). This index is calculated as the difference between the near-infrared (NIR) and red (Red) bands, as shown 

in Equation 1: 

NDVI = 
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
                                                           (1) 

 

The NDVI values range from -1 to +1. Typically, negative values are associated with water bodies, while values 

closer to +1 indicate a higher density of vegetation. Rocks and barren soils, which exhibit similar spectral 

reflectance in the red and NIR bands, usually have values close to zero (Mehta et al. 2021). 

 

GNDVI index 

The GNDVI (Green Normalized Difference Vegetation Index) is similar to the NDVI, but the green band is used 

in place of the red band. Compared to the NDVI, the GNDVI exhibits greater sensitivity to chlorophyll 

(Buschmann & Nagel 1993). The GNDVI is calculated according to Equation 2:  

 

GNDVI = 
𝑁𝐼𝑅−𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅+𝐺𝑟𝑒𝑒𝑛
                                                                (2) 

 

NDBI index 

The NDBI (Normalized Difference Built-up Index) is used to identify urban areas and is derived from two spectral 

bands: SWIR1 and NIR. The NDBI is calculated as shown in Equation 3: 

 

NDBI = 
𝑆𝑊𝐼𝑅1−𝑁𝐼𝑅

𝑆𝑊𝐼𝑅1+𝑁𝐼𝑅
                                                                     (3) 

 



SWIR1 refers to the shortwave infrared band (Band 6), while NIR to the near-infrared band (Band 5) of the 

Landsat 8 satellite. The NDBI values range from -1 to +1, where urban built-up areas are represented by positive 

values. In contrast, vegetation cover yields negative values due to its high reflectance in the near-infrared range. 

After completing the pre-processing stage, three maps were generated using each spectral index. A threshold was 

then defined to extract the desired land use from each index. This threshold is typically determined through trial 

and error and relies on the user's experience (Sezgin & Sankur 2004). There are also automated methods, such as 

Otsu thresholding, which perform thresholding based on statistical information from the image, without requiring 

user input. A trial-and-error approach is employed to determine the thresholds for these indices, enabling 

adjustments based on the specific spectral characteristics of the area and local conditions. Since threshold values 

can be influenced by factors such as seasonal variations and topographic changes, this flexible method allowed 

for the adaptation of thresholds using prior knowledge of the area, thereby maximizing classification accuracy 

within this particular geographical context. This approach facilitated optimal separation between land classes and 

minimized classification errors in areas with similar characteristics. 

The steps used for extracting different land use classes are given below: 

1. Applying the threshold for NDVI to extract water bodies; 

2. Applying the threshold for GNDVI to extract forests; 

3. Using logical functions in the image calculator tool to remove mutual pixels of water bodies and forests; 

4. Applying the threshold for NDBI to extract built-up lands; 

5. Using logical functions in the image calculator tool to remove mutual pixels of water bodies and forests from 

built-up lands; 

6. Using logical functions in the image calculator tool in order to remove water bodies, forests and built-up lands 

from the entire image resulting in extraction of farmland area; 

7. Using mathematical functions in the image calculator tool to merge all four layers/classes and prepare a land 

use map of Rudsar. 

 

Accuracy assessment 

Statistical parameters 

Post-classification was conducted to assess how well the classification results align with the actual conditions on 

the ground (Rahimi-Ajdadi & Khani 2022). For accuracy assessment, a confusion matrix was generated using 

training and testing data. The overall accuracy, kappa coefficient of agreement, producer's accuracy, and user's 

accuracy were calculated from the confusion matrix as accuracy criteria (Maryantika & Lin 2017).  

The overall accuracy represents the average classification accuracy and is calculated as the ratio of correctly 

classified pixels to the total number of pixels classified across all classes. The overall accuracy (OA) is computed 

using Equation 4 (Mather & Tso 2016): 

 

OA= 
1

𝑁
 ∑ 𝑎𝐾𝐾

𝑁
𝐾=1                                                                         (4) 

 

where,  N = the total number of classified pixels, and ∑ aKK
N
K=1  = the total number of pixels on the main diameter 

of the confusion matrix (the total number of correctly classified pixels; Richards 1999). The kappa coefficient is 

another parameter that measures the classification accuracy in comparison to a completely random classification 

(Mather & Tso 2016). The kappa coefficient (K) is calculated using Equation 5 (Tallón-Ballesteros & Riquelme 

2014): 

K = 
𝑁 ∑ 𝑋𝑖𝑖 − ∑ 𝑋𝑖+𝑋+𝑖

𝑟
𝑖=1

𝑟
𝑖=1

𝑁2− ∑ 𝑋𝑖+𝑋+𝑖
𝑟
𝑖=1

                                                              (5) 

where, N = the total number of ground control points, 𝑋𝑖+= the sum of the elements on the ith row, and 𝑋+𝑖= the 

sum of the elements on the jth column. In the confusion matrix, the producer's accuracy, user's accuracy, 

commission error, and omission error are also provided. The producer's accuracy is calculated as the ratio of 

correctly classified pixels to the total number of pixels in the corresponding column, while the user's accuracy is 

determined by the ratio of correctly classified pixels to the total number of pixels in the corresponding row 

(Ghafari et al. 2018). The commission error represents the percentage of pixels that do not belong to the intended 

class but are incorrectly assigned to it. The omission error refers to the percentage of pixels that originally 



belonged to the intended class but were incorrectly classified into another class (Alipour et al. 2016). To evaluate 

the accuracy of the classification, GPS control points obtained from field surveys, as well as Google Earth satellite 

images, were used. For each class, 70% of the pixels were selected as training samples for classification, while 

the remaining 30% were used as test samples. 

 

Visual assessment 

A visual observation was conducted to compare the performance of the SVM, ANN, and integrated spectral 

indices methods in detecting regions with narrow areas or spatially mixed land uses. First, a boundary for the 

desired class/land use was drawn in KMZ format using Google Earth Pro software. To minimize error, the Google 

Earth image closest in time to the satellite image was selected. Given the high resolution of the Google Earth 

image, the real image and ground reference were considered. This image was then imported into ArcMap, where 

the land use boundary was carefully delineated using the sketch tool. The boundary created in Google Earth Pro 

was transferred to ArcMap as a shapefile and used to crop the classification maps generated by the three 

classification methods. Additionally, the area values corresponding to each region were extracted from the table 

of content (table of descriptive information) each layer and compared with the real values. 

 

RESULTS AND DISCUSSION 

ANN and SVM classifiers 

The land use maps classified by ANN and SVM are shown in Fig. 3. It can be observed that farmland covers the 

largest area compared to other land uses in both classifiers. The soils in the area beside the Caspian Sea have a 

heavy clay and marsh texture and are predominantly used for rice cultivation, which is the region's primary 

agricultural crop. Built-up land ranks second in terms of area, with a larger calculated area in the ANN map 

compared to the SVM map. The results of the accuracy assessment for the ANN and SVM classifiers are presented 

in Table 2. As shown, the SVM classifier, with an overall accuracy of 97.36% and a kappa coefficient of 0.9622, 

is more accurate than the ANN classifier, which has an overall accuracy of 93.42% and a kappa coefficient of 

0.9051. The highest commission error (15.38%) in the ANN classifier is associated with built-up land, while the 

highest omission error, 12.50%, is also found in the ANN classification for forests. Previous research has shown 

that the performance of ANN and SVM classifiers is quite similar, with a slight advantage for SVM (Huang et al. 

2002; Dixon & Candade 2008; Mokhtari & Najafi 2015). 

 

  

(a) (b) 

Fig. 3. land use map of the study area in two different classifiers of a) SVM and b) ANN. 

 

 

 

 



Table 2. Results of accuracy assessment for SVM and ANN classifiers. 

Artificial Neural Network  Support Vector Machine  

Water body Forest Farmland Built-up 

land 

 Water 

body 

Forest Farmland Built-up 

land 

 

0 0 0 15.38  0 0 6 1.79 Commission (%) 

10 12.50 8.51 0  10 7.50 0 0 Omission (%) 

90 87.50 91.49 100  90 92.50 100 100 Producer accuracy 

(%) 

100 100 100 84.62  100 100 94 98.21 User accuracy (%) 

93.42  97.36 Overall accuracy 

(%) 

0.9051  0.9622 Kappa coefficient 

Table 3 compares the areas of different land uses classified by ANN and SVM. According to the table, the area 

of built-up land in the SVM classification is 2,125.95 ha, while in the ANN classification, this value is 3,279.78 

ha, which is 10% higher than that of SVM. The area of farmland classified by SVM is 8,741.14 ha, whereas the 

corresponding value in the ANN classification is 7,792.88 ha, about 8% less than that of SVM. The results from 

the accuracy assessment and area comparison of the land uses indicate that ANN has the greatest error in 

distinguishing farmland from built-up land. In a similar study conducted by Hazini & Hashim (2015), SVM was 

more accurate than ANN, and ANN exhibited the most error in separating built-up land and vegetation (Hazini & 

Hashim 2015), that is consistent with our result. Forest has the third place in terms of having the largest area in 

both classifiers. It should be mentioned that forests have been faced with many changes in the last two decades 

and deforesting is still ongoing in the studied area.  

Table 3. Results of ANN and SVM classifiers in estimating the area of different land uses. 

Artificial neural network Support vector machine  

Area (%) Area (ha) Area (%) Area (ha) Class 

28.44 3279.78 18.43 2125.95 Built-up land 

67.57 7792.88 75.80 8741.14 Farmland 

3.60 415.43 5.55 640.20 Forest 

0.39 44.29 0.22 25.09 Water body 

 

Integrated spectral indices method 

The optimal thresholds used for each land use for each index are shown in Table 4.  

 

Table 4. Threshold value of each index in each land use class 

Threshold value Type of land use Indices 

-1 to -0.2 Water body NDVI 

0.855 to 1 Forest GNDVI 

-0.275 to 1 Built-up land NDBI 

The scattering of agricultural areas, as well as the number of small rice fields, was notably higher than that of 

other land use classes. This could lead to significant errors in estimating farmland area due to the low spatial 

resolution of Landsat images (with a pixel size of 900 m²). To improve accuracy in delineating farmland, the 

farmland area was derived by subtracting the areas of the other three land uses (as classified by the three indices) 

from the entire study area. The land use map produced using the integrated spectral indices is shown in Fig. 4. 

Visual observation reveals that, similar to the ANN and SVM classifications, the largest areas are dedicated to 

farmland, followed by built-up land, forest, and water bodies, respectively. The classified map obtained using the 

integrated spectral indices method is more similar to the SVM classifier. The overall accuracy and kappa 

coefficient for the integrated spectral indices method are 94.06% and 0.9136, respectively (Table 5). Farmland 

has the highest commission error (13.7%), while the highest omission error is associated with forests (14.51%). 

 



 
Fig. 4. land use map produced by integrated spectral indices method. 

 

Table 5. Results of accuracy assessment in classifying with integrated spectral indices. 

Water body Forest Farmland Built-up land  

0 1.85 13.7 2.40 Commission (%) 

10 14.51 3.07 1.22 Omission (%) 

90 85.48 96.92 98.78 Producer accuracy (%) 

100 98.14 86.30 97.59 User accuracy (%) 

94.06 Overall accuracy (%) 

0.9136 Kappa coefficient 

Table 6 shows the area of different land uses produced by the integrated spectral indices method. A comparison 

of the results in Table 6 and Table 3 indicates that the areas of the classes obtained by the spectral indices are very 

close to those derived from the SVM classifier. The area of built-up land in the spectral indices method (30.72 ha) 

is 1.424% higher than that of SVM. The area of farmland obtained by the spectral indices method is 8,734.32 ha, 

which is 0.078% (6.82 ha) less than the SVM result. The area of forest classified by the spectral indices method 

is 642.96 ha, which is 0.429% (2.76 ha) greater than that of SVM. 

Table 6. Results of land use area calculated with the integrated spectral indices method. 

 

 

 

Statistical comparison of three classifiers 

Table 7 provides a summary of the accuracy assessment results for the three classification methods. According to 

the table, the SVM and integrated spectral indices methods achieve higher accuracies than the ANN method. A 

comparison between SVM and the spectral indices shows that they deliver very similar performance. However, 

with slightly higher accuracy, SVM demonstrates the best performance among the three methods. When 

comparing farmland accuracy, SVM achieves the best results with 6% commission error and 0% omission error 

(Tables 2 and 5). ANN ranks second, with 0% commission error and 8.51% omission error. The highest error in 

ANN is due to insufficient separation of pixels for built-up land and farmland along their boundaries. The 

integrated spectral indices method ranks third, with a commission error of 13.7% and an omission error of 3.07%. 

Most of the farmland error in this method is due to the inseparability between forest and farmland.  

 

Area (%) Area (ha) Class 

18.68 2156.67 Built-up land 

75.66 8734.32 Farmland 

5.57 642.96 Forest 

0.09 10.62 Water body 



 
(a) 

 
(b) 

Fig. 5. Graphical representation of matching forest area obtained by three classification methods with real area: (a) large and 

concentrated forest area; (b) small and scattered forest area. 

 

Table 7. Overall accuracy and kappa coefficient obtained in SVM, ANN and spectral indices methods. 

Kappa coefficient Overall accuracy (%) Type of method 

0.9622 97.36 Support Vector Machine 

0.9051 93.42 Artificial Neural Network 

0.9136 94.06 Indices 

 

Visual comparison of three classifiers 

The accuracy assessment using the confusion matrix generally evaluates the correspondence between classified 

pixels and test pixels. The test points are prepared by the users and are highly dependent on the spatial distribution 

of these points across the region. Additionally, this assessment is conducted without considering the simplicity or 

complexity of the classification problem, whether it involves separate or mixed land uses. For this reason, in 

addition to the statistical assessment, visual interpretation was also conducted to further investigate the capabilities 

and characteristics of the studied classifiers. The visual assessment focused on evaluating the ability of the 

classifiers to detect discrete or mixed areas. We aimed to determine which classifier performed better in detecting 

regions with narrow shapes (low width-to-length ratio) or mixed areas. Fig. 5 shows two samples of the forest 

class. The white areas represent roads that were removed from the forest area. The errors associated with the three 

methods can be analyzed in two ways: 1) forest pixels that were correctly detected as forest by the different 

methods; and 2) non-forest pixels (white areas) that were incorrectly classified as forest by the methods.  

According to Fig. 5a, the ANN classifier visually detects roads and treeless regions better than the other two 

methods. However, it identifies forests as 2.8961 ha less than the actual area (Table 8). The SVM classifier 

provides the closest estimate to the real value, with a difference of 2.2818 ha. The high accuracy of SVM aligns 



with the results of the confusion matrix (statistical accuracy assessment). Similarly, in Fig. 5b, although SVM 

performs poorly in detecting roads, it provides the closest estimate of the real area, with a difference of 6.9825 ha.  

 

Table 8. The area of two regions of a) Large and concentrated area and b) small and scattered area for each classifier. 

Area (ha)  

Ind ANN SVM Real  Land use 

73.62 (-8.36%) 77.44 (-3.60%) 82.62 (2.84%) 80.34 a 
Forest 

5.94 (-25.80%) 4.39 (-45.12%) 6.98 (-12.75%) 8.00 b 

3.96 (-40.45%) 9.54 (43.45%) 3.33 (-49.92%) 6.65 b Built-up land 

18.02 (58.54%) 11.52 (1.37%) 15.48 (36.22%) 11.36 b Farmland 

1.53 (74.35%) 3.79 (36.32%) 2.52 (-57.69%) 5.96 a 
Water body 

0.18 (-95.08) 0.54 (-85.24%) 0 (-100%) 3.66 b 

 

The numbers in parenthesis indicate the error percentage in estimating each classifier compared to the actual 

value. In Fig. 6, the built-up land is visually assessed. The ANN classifier performs the best in detecting scattered 

and small built-up areas compared to the other classifiers. However, it estimates the built-up area as 2.89 ha larger 

than the actual value. The integrated spectral indices method provides the closest estimate to the real value, with 

a difference of 2.69 ha. The ANN method ranks second after the spectral indices in terms of estimated area. Fig. 

7 shows a section of farmland located in the urban area. A comparison of the three methods indicates that ANN 

performs best in identifying the boundaries of farmland. According to Table 8, ANN also provides the closest area 

estimate to the actual value, followed by the SVM method. Classification errors were primarily observed in areas 

with mixed land use boundaries, such as agricultural land adjacent to built-up areas. Contributing factors to these 

errors include spectral similarities between land types, atmospheric interference, and limitations in spatial 

resolution. For instance, agricultural land pixels near urban areas are sometimes misclassified as built-up due to 

spectral overlap. Fig. 8 shows a water body with a very low width-to-length ratio and a curved shape. According 

to Fig. 8a, ANN performs best in detecting river pixels. Among the studied classifiers, it provides the closest 

estimate to the actual area, with a difference of 2.1636 ha. Fig. 8b further emphasizes that ANN performs best in 

detecting river areas in mixed land uses where different land uses are intertwined. According to Fig. 8b, SVM is 

unable to detect the water body. 

 
Fig. 6. Graphical representation of matching built-up area obtained by three classification methods with real area. 



 
Fig. 7. Graphical representation of matching farmland obtained by three classification methods with real value. 

 

Overall, the results from the visual evaluation indicate that ANN tends to overestimate the boundaries and 

accounts for more area than the real amount. This characteristic can be considered an advantage for land uses with 

narrow shapes or areas. In other words, ANN is more effective than the other classifiers in detecting narrow areas, 

especially when they are surrounded by multiple land uses. However, while ANN excels in these scenarios, SVM 

generally provides more satisfactory results in detecting broader areas. While visual assessment is valuable for 

examining the spatial location and boundary accuracy of classifications, it has limitations. It relies on human 

perception, which can lead to challenges, particularly in areas with complex land use boundaries. Moreover, visual 

comparison lacks the precision of quantitative analysis and may overlook subtle errors that statistical 

measurements can identify. By combining visual assessment with metrics such as overall accuracy and the kappa 

coefficient, these shortcomings can be addressed, enabling a comprehensive evaluation that captures both 

qualitative and quantitative aspects of classifier performance 

 
(a) 



 
(b) 

Fig. 8. Graphical representation of matching water bodies obtained by three classification methods with real value: (a) large and concentrated 

area; (b) small and scattered area. 

 

CONCLUSION 

This study compared the performance of three methods—ANN, SVM, and integrated spectral indices—in 

classifying land uses. The results from the confusion matrix indicated that SVM is the most powerful classifier 

for estimating land use areas, followed by the integrated spectral indices method. The results of the visual 

assessment showed that the ANN classifier is more effective than the others in detecting regions with narrow 

shapes (low width-to-length ratio), despite its lower overall accuracy. Specifically, when detecting narrow classes, 

such as rivers or roads, within regions with spatially mixed or intertwined land uses, ANN performs better due to 

its tendency to overestimate narrow areas. In general, based on both statistical and visual assessments, the 

integrated spectral indices method provides intermediate performance and offers a suitable estimate of land use 

areas. Therefore, it can be considered a viable option in situations where field surveying is not feasible, or when 

time and budget constraints limit such activities. 
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