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Abstract. One challenge with rehabilitation exoskeletons is the potential for reaching singular config-
urations, reducing efficiency. Additionally, paths generated for an exoskeleton may not always exhibit
optimal manipulability and dexterity, unlike healthy humans who perform tasks with maximum manip-
ulability. This paper considers a multi-degree-of-freedom model for the exoskeleton robot, deriving its
kinematic and dynamic equations. The robot’s kinematic manipulability is formulated based on the Ja-
cobian, and Model Predictive Control (MPC) is employed for control. The novelty lies in incorporating
the cost function related to the robot’s kinematic manipulability alongside other cost functions within the
MPC framework. Dynamic simulations evaluate this approach, showing that the manipulability criterion
conflicts with tracking error. This research demonstrates that using the manipulability index as a con-
straint or part of the cost function in MPC can help prevent the robot from reaching singular points and
enhance manipulability and dexterity in hand rehabilitation.
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1 Introduction

The rising number of patients with neurological disorders and strokes has increased the need for reha-
bilitation robots. According to the World Health Organization, 15 million people suffer from strokes
annually, boosting demand for effective rehabilitation methods [1]. Rehabilitation robots-such as ORTE,
which is a designated name rather than an acronym-support improved patient outcomes through precise
motion control and reduced physical burden on therapists [2]. The ORTE is designed to restore mobil-
ity to the shoulder and elbow joints, covering the entire workspace and including various rehabilitation
exercises. Robots excel at repetitive tasks without fatigue, making rehabilitation easier than traditional

*Corresponding author
Received: 18 March 2025/ Revised: 12 September 2025/ Accepted: 25 October 2025
DOI: 10.22124/jmm.2025.30154.2695

© 2026 University of Guilan http://jmm.guilan.ac.ir

https://doi.org/10.22124/jmm.2025.30154.2695
http://jmm.guilan.ac.ir


Co
rre

ct
ed

Pr
oo

f2 A. Pourmomtaz, B. Miripour Fard, H. Kouhi

methods [3]. A major challenge in developing these robots is designing efficient controllers to man-
age joint positions and forces. The goal is to restore the injured limb’s movement capability and skill.
High-degree-of-freedom exoskeletons often face efficiency issues due to singular points.

Model Predictive Control (MPC) is used in exoskeleton and rehabilitation robot control. A nonlin-
ear MPC with saturated input showed less tracking error compared to fuzzy and PID controllers [4].
In another study, a three-degree-of-freedom upper limb rehabilitation robot compared PID and MPC
algorithms, finding PID had a faster response, while MPC performed better against noise [5]. In [6]
the authors developed a model predictive controller based on the Laguerre model to ensure system per-
formance while reducing computational complexity. The results showed that the MPC could achieve
simultaneous tracking of joint expected trajectory and speed while meeting various constraints, improv-
ing patient motion control ability and reducing fatigue.

While some studies (e.g., [7]) have explored the integration of kinematic manipulability into MPC
to improve the control and efficiency of robotic arms, this approach has been less frequently applied to
rehabilitation robots. The Authors in [8] presented a design optimization of a robotic system for upper
limb rehabilitation based on the manipulability ellipsoid method. The study modeled the human-robot
system as a closed kinematic chain and identified the optimal position of the robot base with respect
to the patient. The optimization aimed to achieve the best alignment of the manipulability ellipsoids,
enhancing the efficiency and effectiveness of the rehabilitation process. This work has not implemented
MPC.

The current work significantly contributes by examining the incorporation of kinematic manipula-
bility into the cost function of model predictive control. The primary objectives are to prevent the robot
from encountering singular points and to improve both the manipulability and agility during upper limb
rehabilitation.

The remainder of this article is organized as follows: Section 2 elaborates on the methodologies used,
including the robot modeling, control approach, and the employed manipulaility metrics. In Section 3,
the simulation results are presented, followed by the conclusion in Section 4.

2 Methods

The shoulder is the most complex joint of the human body due to its high movements, for which some
consider 5 degrees of freedom and others 9 degrees of freedom. In this article, a model similar to the
ORTE robot is considered for rehabilitation of shoulder movements. The ORTE robot is designed to
reproduce elbow and shoulder rehabilitation exercises. In the following, the kinematic and dynamic
analysis of the ORTE is shown. Figure 1 shows the robot and the allocated frames based on Denavit-
Hartenberg convention. After allocating the frames based on the Denavit-Hartenberg convention, the
transformation matrix of the end-effector in the reference frame is obtained as follows:

A1 ∗A2 ∗A3 =


C23C1 −S23C1 S1 C1l3C23 +C1l2C2
C23S1 −S23S1 −C1 S1l3C23 +S1l2C2

S23 C23 0 l1 + l3S23 + l2S2
0 0 0 1

 . (1)

In Equation 1, Ai, for i = 1,2,3, is the transformation matrix of frame i. Let C1 := cos(θ1), S1 := sin(θ1),
C12 := cos(θ2+θ3), and so on, as shorthand notation. The variables l1, l2 and l3 denote the lengths of the
links.
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Figure 1: ORTE, exoskeleton designed for rehabilitation purposes [2].

Figure 2: Geometrical view of the robot

A geometric method has been used to solve the inverse kinematics according to Figure 2. In addition,
the Jacobian matrix of the robot, which relates joint angular velocities to the end-effector velocities of
the robot, is obtained as follows:
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J =



−S1(l3C23 + l2C2) C1(l3S23 + l2S2) −l3S23C1
C1(l3C23 + l2C2) −S1(l3S23 + l2S2) −C1

0 l3C23 + l2C2 l3C23
0 S1 S1
0 −C1 −C1
1 0 0

 . (2)

2.1 Dynamics

The exoskeleton is modeled as a 3-DOF mechanism comprising shoulder flexion/extension (θ1), shoulder
abduction/adduction (θ2), and elbow flexion/extension (θ3). All links are assumed rigid and the joints
frictionless, matching common biomechanical exoskeleton designs. The Euler-Lagrange method has
been used to derive the dynamic equations of the robot. Consider the generalized coordinate as q =
[θ1,θ2,θ3]

⊤. Define the Lagrangian as

L(q, q̇) = T (q, q̇) − V (q), (3)

where T is the total kinetic energy and V the potential energy. The equations of motion follow from

d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
= τi, i = 1,2,3. (4)

the general form of the dynamic equation can be expressed as follows:

M(q)q̈+C(q, q̇)q̇+G(q) = τ (5)

In Equation (5), M(q) is the mass and inertia matrix; C(q, q̇) is the matrix including Coriolis and cen-
trifugal forces, G(q) is the gravitational force vector of the robot; and τ denotes the generalized torque.

We enforce biomechanically feasible joint limits based on [10] as follows:

0◦ ≤ θ1 ≤ 180◦, −30◦ ≤ θ2 ≤ 150◦, 0◦ ≤ θ3 ≤ 135◦.

Angular velocity and torque bounds are also imposed to reflect safe rehabilitation practice.

2.2 Manipulability-driven MPC

In this paper, we aim to design an MPC system for a rehabilitation robot, incorporating a new term called
kinematic manipulability into the MPC cost function and maximizing it. The MPC is a technique that
leverages the system model to generate control signals. This involves optimizing a cost function while
considering constraints. The control signals are determined over a specified control horizon through an
optimization process. The block diagram of the MPC method is shown in Figure 3.

The MPC solves, at each time step, a finite-horizon optimization problem as follows:
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Figure 3: General architecture of MPC method used in the current work.

min
{τ (k)}

N−1

∑
k=0

∥∥∥q(k)−qd(k)
∥∥∥2

W1
+∥∆τ (k)∥2

W2
−w3 µ

(
q(k)

)
, (6)

subject to the continuous-time dynamics (5), input saturations, and joint limits. Here, W1 ∈ R3×3

penalizes tracking error, W2 ∈ R3×3 penalizes control effort, and w3 > 0 trades off manipulability. By
directly embedding the Euler–Lagrange–based model into the prediction, the MPC respects the robot’s
true dynamics and enforces all safety constraints. In (6), vectors q and qd represent the actual and desired
joint configurations, respectively and µ is the kinematic manipulability index will be defined next in this
section. A series of constraints are also considered on the input torque range.

In our implementation, we discretize the dynamic model in (5) using a forward Euler integration with
sampling time Ts. We define the state vector at instant k as

x(k) =
[

q(k)
q̇(k)

]
, x(k+1) = x(k)+Ts

[
q̇(k) M−1

(
q(k)

)(
τ (k)−C(q(k), q̇(k)) q̇(k)−G(q(k))

)]
.

The MPC then optimizes the torque sequence {τ (0), . . . ,τ (N − 1)} by minimizing the above cost
over a horizon N, subject to:

• Discrete-time dynamics x(k+1) = f
(
x(k),τ (k)

)
as shown above.

• Joint limits: θ min
i ≤ θi(k)≤ θ max

i , i = 1,2,3.

• Torque bounds: τmin
i ≤ τi(k)≤ τmax

i .

• Rate-of-change limits: ∆τ (k) = τ (k)−τ (k−1), with ∥∆τ (k)∥ ≤ ∆τmax.

Kinematic manipulability measures a robot’s ability to position its end-effector in a specific config-
uration, reflecting its agility. A robot has higher manipulability if its end-effector can achieve a wider
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Figure 4: Desired trajectories of shoulder flexion, shoulder abduction and elbow flexion. The black solid lines
show the mean and the red dashed lines show the standard deviation ranges.

range of speeds at a given time and configuration. This criterion also indicates how well the robot avoids
singular configurations, where manipulability is zero. The mathematical expression for kinematic ma-
nipulability is as follows:

µ =

√
det

(
J(q)J(q)⊤

)
(7)

In Equation (7), J(q) is the Jacobian matrix and µ represents the volume element induced by the Ja-
cobian. The ability to generate velocity for the end-effector in different directions can also be represented
by an ellipse on a plane or an ellipsoid in space. The major axis of the ellipse indicates the direction in
which the end effector can move faster.

3 Results and discussion

Different scenarios can be explored for rehabilitation simulation. In this section, we will present the
results for a scenario where the patient moves their hand towards the table and then returns it to the start-
ing position. The desired trajectories for each joint involved in this movement have been derived from
experimental motion analysis of human movements, as presented in [9]. These reference trajectories
are illustrated in Figure 4. Notably, the significant standard deviation suggests that individuals employ
varying pathways for identical movements across different iterations. This observation underscores the
diminished relevance of precisely tracking paths during the rehabilitation process. Moreover, it will be
demonstrated later in this paper that the proposed method also attributes less importance to exact path
tracking.

Figure 5 presents the simulation results depicting joint variations under two scenarios: one account-
ing for manipulability and the other disregarding it. According to Figure 5, The results indicate that
taking manipulability into account does not yield identical tracking of reference trajectories compared to
scenarios where manipulability is not considered.
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Figure 5: Joint angular trajectories

Figure 6: Kinematic manipulability index under two scenarios: without manipulability and with manipulability

Figure 6 illustrates the variations in the manipulability index for two scenarios. It is evident from the
figure that, in the absence of manipulability index in the control, the robot reached a singular configura-
tion twice, which is highly undesirable.

Figure 7 shows the joint torques in the two cases. It is clear that due to the kinematic differences in
the two scenarios, the joint torques are also different.

The nonlinear MPC is implemented in MATLAB R2020b using the fmincon function with the
interior-point algorithm. We set solver options as:

OptimalityTolerance= 10−6, StepTolerance= 10−6, MaxIterations= 200.

At each control step, we warm-start fmincon with the previous control sequence. Computations are
performed on a ASUS (Intel Core i7-10510U @ 1.8 GHz, 8 GB RAM).
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Figure 7: Joint torques under two scenarios: without manipulability and with manipulability. τ1 represents shoul-
der flexion, τ2 signifies shoulder abduction, and τ3 denotes elbow flexion.

With prediction horizon N = 20 and sampling time Ts = 0.02s, the average fmincon solution time
is 20s, and 95% of solves complete under 30s.

4 Conclusion

In this paper, kinematic and dynamic modeling of a rehabilitation robot are performed, and a nonlinear
model predictive controller is used for control. For the first time, kinematic manipulability is included
in the cost function alongside tracking error and energy consumption. The goal is to minimize tracking
error and energy consumption while maximizing manipulability. A simulated rehabilitation scenario
showed that adding manipulability to the cost function slightly increased tracking error. Thus, a balance
between manipulability, tracking error, and energy consumption is necessary. While this may not be
ideal for robotics, it is significant for rehabilitation, where precise path tracking is less critical, and more
emphasis can be placed on manipulability. Reaching the target point (e.g., the mouth) remains important
and can be achieved by modifying the algorithm. A comprehensive sensitivity analysis of the weighting
matrices W1, W2, and scalar weight w3 is recognized as an important extension and will be pursued in
future work to further characterize the precision–dexterity trade-off.

References

[1] S.Y. Raza, S.F. Ahmed, A. Ali, K.A. Kadir, M.K. Joyo, S. Khan, Z. Janin, Model predictive control
for upper limb rehabilitation robotic system under noisy condition, Proc. IEEE 5th Int. Conf. Smart
Instrumentation, Measurement and Application (ICSIMA), Nov. 2018, 1–4.

[2] M.A. Destarac, J.G. Montano M. Cardona, E. Gomez, Orte exoskeleton: Kinematic analysis
and dynamic modeling, Proc. IEEE 38th Central America and Panama Convention (CONCAPAN
XXXVIII), 2018.



Co
rre

ct
ed

Pr
oo

fManipulability Based Model predictive Control of Rehabilitation Robot. 9

[3] H.S. Lo, S.Q. Xie, Exoskeleton robots for upper-limb rehabilitation: State of the art and future
prospects, Med. Eng. Phys. 34 (2012) 261–268.

[4] S.M.T. Zarandi, S.K.H. Sani, M.R.A. Tootoonchi, A.A. Tootoonchi, M.G Farajzadeh, Design and
implementation of a real-time nonlinear model predictive controller for a lower limb exoskeleton
with input saturation, Iran. J. Sci. Technol. Trans. Electr. Eng. 45 (2021) 309–320.

[5] A. Ali, S.F. Ahmed, M.K. Joyo, K. Kushsairy, MPC-PID comparison for controlling therapeutic
upper limb rehabilitation robot under perturbed conditions, Proc. IEEE 3rd Int. Conf. Eng. Technol.
Soc. Sci. (ICETSS), 2017.

[6] Y. Yan, et al., Trajectory tracking control of wearable upper limb rehabilitation robot based on
Laguerre model predictive control, Robot. Auton. Syst. 179 (2024) 104745.

[7] G.B. Avanzini, A.M. Zanchettin, P. Rocco, Constrained model predictive control for mobile robotic
manipulators, Robotica 36 (2018) 19–38.

[8] G. Chiriatti, A. Bottiglione, G. Palmieri, Manipulability optimization of a rehabilitative collabora-
tive robotic system, Machines 10 (2022) 452.

[9] M.C. Molet, J.L. Prat, Analysis of arm movements during activities of daily living for the design
of an active upper limb exoskeleton for adults with Duchenne, M.Sc. Thesis, Dept. Mech. Eng.,
Universidad Politecnica de Catalunya, Barcelona, Spain, 2016.

[10] D.A. Winter, Biomechanics and Motor Control of Human Movement, 3rd ed., John Wiley & Sons,
Hoboken, NJ, USA, 2009.


	1 Introduction
	2 Methods
	2.1 Dynamics
	2.2 Manipulability-driven MPC

	3 Results and discussion
	4 Conclusion

