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Abstract
In this paper, the linearly conforming enriched radial basis point interpolation method is implemented for the

elasto-plastic analysis of discontinuous medium. The linear conformability of the method is satisfied by the
application of stabilized nodal integration and the enrichment of radial basis functions is achieved by the
addition of linear polynomial terms. To implement the method for the analysis of a discontinuous medium, an
interface layer is assumed between different materials. Interfaces are simulated by the concept of linkage
element and there is no need of node or element in the traditional sense. The stiffness of each interface layer has
been taken into account by defining normal and tangential stiffness coefficients along the layer. The
displacement of each point across the interface layer is tied to the displacement of surrounding material nodes.
The final system of equations is derived by the combination of equations for different parts of a discontinuous
medium in the global coordinate. Based on the derived equations a computer code has been developed and the
results of analysis with the mesh-free method are compared with the results of the finite element analysis and
experimental tests.

Keywords: meshfree method, radial point interpolation, nodal integration, discontinuous medium.

1. Introduction

Recently a great deal of research has been devoted to the application of meshfree methods
in different fields of science [1-3]. The main objective of meshfree methods is to get rid of
the deficiencies related to mesh definition. All these meshfree methods can be classified
collectively as Galerkin meshfree method [4-9], Petrov-Galerkin meshfree method [10], or
collocation meshfree method [11]. Among these, a majority of meshfree methods are based
on Galerkin procedure, such as element free Galerkin [4], reproducing kernel particle method
[5], point interpolation method [6] and so on [7-9].

Gaussian integration is commonly used in Galerkin meshfree methods for integration of
the weak form. However due to the complexity involved in the Gauss integration, attempts
have been made to develop nodal integration for meshfree computation. Nodal integration
encounters spatial instability due to under integration and vanishing derivatives of meshfree
shape functions at nodes. Several methods have been introduced as a correction or
stabilization of nodal integration. Beissel and Belytschko [12] proposed a stabilization
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technique by adding the square of the residual of the equilibrium equation to the potential
energy. Although the addition of stabilization term improves the accuracy of solution for the
problems with spurious near-singular modes, for problems that do not contain unstable modes
in their original solution, this addition actually deteriorate the accuracy. Randles et al. [13]
introduced stress point method to improve the accuracy and to reduce spurious oscillations in
SPH. Bonet and Kulasegaram [14] presented a correction term into the derivatives of shape
function at nodal points to eliminate the spurious modes in SPH. Chen et al. [15] pointed out
that the inaccuracy in solution by the nodal integration is due to the disobedience of the
integral identity given by the divergence theorem. They proposed a conforming strain
smoothing in a stabilized conforming nodal integration (SCNI) in which the strain at a
specific point is replaced with the average strain in a Voronoi cell that contains the point.
Divergence theorem is then used to replace the area, or volume integration around the point
by a contour integration of the Voronoi cell boundary.

The objective of this work is to combine the SCNI and the radial point interpolation
method (RPIM) to analyze a discontinuous medium in elasto-plastic behavior of materials.
The outline of this paper is as follows: the mesh-free method used in this paper, i.e. RPIM is
reviewed in section 2, general equations for modeling a discontinuous medium is proposed in
section 3, stabilized conforming nodal integration is presented in section 4, section 5
demonstrates the effectiveness of proposed methodology by solving examples and,
conclusions are discussed in section 6.

2. Radial basis point interpolation method

A field function u(x) can be approximated using both radial and polynomial basis as

         
n m

T T
i i j j

i j
u = R a + P b = + x x x R x a P x b (1)

where, n is the number of field nodes in the local support domain for point x and the vector
R(x) is defined as:

        T
1 k n= R ,...,R ,...,R  R x x x x (2)

where,
   k kR = R rx (3)

is the radial basis functions and

   
1

2 2 2
k k kr = x - x + y - y 
  (4)

is the distance between the point x and field node kx and vector

        T
1 2 m= P ,P ,...,P  P x x x x (5)

is the vector of polynomial basis functions in 2D space  T = x , yx , and m is the number of
terms of polynomial basis functions. Vectors a and b, where,

 T1 2 n= a ,a ,..., aa (6)

 T1 2 m= b ,b ,..., bb (7)
are, respectively, coefficients for R(x) and P(x). The radial basis functions are used to
guarantee the invertability of moment matrix, and the polynomial basis functions are used to
ensure the linear consistency of generated shape functions. The coefficient vectors a and b
are determined by enforcing equation (1) to be satisfied at all the n nodes within the local
support domain. By the lengthy but straightforward procedure given by Liu [16] we have
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    su =x Φ x U (8)
where,

 Ts 1 2 n= u ,u ,..., uU (9)
is a vector of nodal values of the field variable in the local support domain, and

       1 2 n= φ ,φ ,...,φ  Φ x x x x (10)

contains RPIM shape functions for the n local nodes in which  kφ x is as follows:

     
n m

k i aik j bjk
i j

φ = R S + P S x x x (11)

where, aikS is the  i, k entry of matrix aS where,
-1 -1

a M M M b-S R R P S (12)
and bjkS is the (j, k) entry of matrix bS where,

T -1 -1 T -1
b M M M M M= ( )S P R P P R (13)

The moment matrices MR and MP consisted of row vectors  T
ixR and  T

ixP
(i=1,2,…,n) respectively.
There are many types of radial basis functions. In this paper the multi-quadratic form is used
as:

   q2 2
i iR r = r + c (14)

where, c and q are shape parameters which are, respectively, proposed 1.42 and 0.98 by Liu
[16] for solid mechanics problems..

3.  General equations for the elasto-plastic modeling of discontinuous medium

(a) System of equations
The total potential energy functional for a discontinuous medium can be expressed as

m i FΠ Π Π Π   (15)
where, m and i are respectively, the elastic strain energy of each continuous media and the
interface layers between different materials, and F is the potential energy related to the
external forces. These functionals are

m

m m
Ω

1Π dΩ
2

  T
m mε σ (16)

T
i i i i

1Π d
2

i

  ε σ (17)

m m

T T
F m m

Γ Ω

Π dΓ dΩ   U T U b (18)

where, m and m are respectively, the strain and stress tensors related to the continua

 T
x y xyε ε γmε ,  x y xy= σ σ τT

mσ (19)

The iε and iσ are respectively, the strain and stress tensors across the interface layers, U is
the displacement vector, T is the prescribed boundary traction and b is the body force vector.

mΩ and iΩ stand for the continuous material and interface layer domains respectively. mΓ is
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the material boundary on which the external tractions are imposed. It should be noted that
subscript m and i stand for the material and interface media respectively.

Considering the Hook's law (i.e. =σ Dε ), the variational form of equation (15) can be
written as

       
m i m m

T T T T
m i i i i m m

Ω Ω Ω Γ

δΠ δ dΩ δ dΩ δ dΩ δ dΓ 0       m m mε D ε ε D ε U b U T (20)

where, mD and iD are the elasticity matrices for materials and interface layers respectively.
The elasticity matrix for continuous mediums in plane strain condition can be written as

 

B

1 0
1

E(1 υ)
1 0

(1 υ)(1 2υ) 1
1 20 0

2 1










 
 

 
  

     
 

  

D (21)

where, E and  are elasticity modulus and Poisson's ratio respectively. The constitutive
matrix for interface layer will be derived later in this section.
The discrete form of equations can be obtained by the imposition of the strain-displacement
relation and equation (8) into equation (20). For the continuous material the strain-
displacement relation can be easily written as

s=ε BU (22)
where,

   i1 i2 i3 in= . . .  B B B B B (23)

and



T
ik ik

ik

ik ik

φ φ0
x y

φ φ0
y x

  
   

  
   

B (24)

where, ik k iφ φ (x ) is the shape function of kth node at ith node in the support domain.
However the derivation of stress-strain relation and also the strain-displacement relation in
the interface layer requires some manipulations.
As shown in Figure 1 the interface layer can be considered as a layer with two stiffness
coefficients along two orthogonal directions (i.e. sK and nK ). According to Figure 1, the
relative deformation vector  at point P between the top and bottom surfaces can be related
to the displacements of points A and B. Hence it can be written as

S A B
A B

n A B

δ u - u
= = - =

δ v - v
   
   
   

δ U U (25)

where, Sδ and nδ are respectively, the shear and normal relative displacement at point P. AU

and BU are the displacement vectors in the local coordinate n-s at points A and B
respectively.
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Figure 1. Interface layer modeling by linkage element concept

Considering the relation between local and global coordinate, we have
=U LU (26)

where, L is coordinate transform matrix, U is the displacement vector in the global
coordinate.
As shown in Figure 1 the field variable (i.e. displacement) at points A and B can be estimated
by the values at the nodes located in the compact support domains. According to equations
(8), (25) and (26) we have

i S=δ B U (27)
where, SU is the displacement vector composed of displacement at all nodes in the compact
support domains of point A and B

 i A B= -B LΦ LΦ (28)
where, AΦ and BΦ are the shape function matrices of the nodes in the support domains of
point A and B respectively
Neglecting the normal strain component in the s direction, the strain vector in the local
coordinate can be defined as

1=
h

ε δ (29)

where, h is the virtual thickness assumed for the interface layer and  Tns n= γ εε , in which

nε is the normal strain in the direction n, and nsγ is the shear strain. By substituting equation
(29) into equation ( 27) the relation between strain and nodal displacement can be obtained
as

I S=ε B U (30)
where,

I i
1=
h
 
 
 

B B (31)

To evaluate the stiffness matrix related to the interface layer, the relation between stress
and strain in this region is also needed. According to Figure 1 the relation between stress
vector and relative deformation can be written as

i=σ D δ (32)
where, the stress vector σ consists of the normal stress nσ and the tangential stress τ in the
interface region.
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 Tn= τ σσ (33)
Matrix fD can also be defined as

s
i

n

K 0
=

0 K
 
 
 

D (34)
Substituting  equation (29) into equation (32) gives

I=σ D ε (35)
where,

I i= hD D (36)
At this stage all relations between stress, strain and displacement at the continuous domains
and interface layers are known and equation (20) can be rewritten as

m i m m

T T T T
m m m m I I I I S m m

Ω Ω Ω Γ

[ dΩ + dΩ ] = dΩ + dΓ   B D B B D B U Φ b Φ T (37)

Assuming constant virtual thickness for the interface layers, equation (37) can be written as
 m i S+ =K K U F

(38)
where,

m

T
m m m m m

Ω

= dΩK B D B (39)

i I I
β

= dβ T
IΚ B D B

(40)

m m

T T
m m

Ω Γ

= dΩ + dΓ F Φ b Φ T (41)

where, β is the length parameter along the interface layer.

(b) Elastic-plastic relation
The elastic-perfectly plastic Mohr-Coulomb criterion has been used in this paper and the

yield function is as follows:
     1 3 1 3F 2 cos( ) sin          (42)

where, 1 and 3 are the principle stresses,  is the cohesion and  is the internal friction
angle. Substituting  (dilation angle) for  , the potential function would be obtained.
Considering the yield ( F) and potential ( G ) functions, the relation between the stress and
strain increment can be written as:

  e ep ed R d  D D D  (43)

where, eD is the elasticity matrix and
T

e e

ep e
T

e

    
        
              

G FD D
D D

F GD

 

 

(44)

Parameter R is defined as:
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New

New Old

FR
F F



(45)

where, NewF and OldF are, respectively, the values of yield function for the new and the old
state of stresses. When the two successive states of stresses are in elastic region, R 0 , and
when the both successive states of stresses are in plastic region, R 1 .

4. Stabilized conforming nodal integration

For the linear exactness in Galerkin approximation, the method of shape function
construction and, the method of integration of the weak form have to be linear consistent. The
former condition is satisfied by the augmentation of linear polynomial terms with the radial
basis of point interpolation method. For linear consistency of the integration method,
integration constrains must be satisfied. According to the research of Chen et al. [15], by
satisfying the linear exactness for a standard patch test, the integration constrains would be
obtained as follows:

T T
I Id d

 

   B N (46)

where, IB is the gradient matrix,  is the domain of problem, and  is the boundary of
problem. Matrix IN is

1 1

I 2 2

1 2 2 1

n 0
0 n
n n

 
   
   

N (47)

where, 1n and 2n are the components of outward normal vector to the boundary surface
along 1 and 2 axes respectively.
According to Chen’s approach, the gradient of field function (displacement) at a node is
smoothed by integration over the local domain such as the Voronoi cell, which satisfies the
integration constrains and subsequently guarantees the exact linear displacement solution. So
they called the method, “strain smoothing method” and introduced it as follows:
The smoothed strain can be produced by

   h h
ij L ij L

Ω

ε = ε Ψ ; - dΩx x x x (48)

where, h
ijε is the strain obtained from displacement by compatibility

jh i
ij

j i

uu1ε = +
2 x x
 
    

(49)

and Ψ is a distribution function which is chosen as

L
LL

L

1 x Ω
AΨ(x;x - x ) =
0 x Ω

 

 

(50)

where, LA is the area of the representative domain of node L obtained from the Voronoi
diagram. Combination of equations (8) and (48) to (50) and applying the integration by parts
gives:





LGI

ILIL
h )U(xB)(xε~ (51)
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where, GL is a group of nodes in which their associated shape function supports, cover node
L. In two dimensional space we have

Th h h h
x y xy= ε ,ε ,2ε 
  

ε    (52)
T

I xI yI= U , U  U (53)


















)(x)(x
)(x

)(x
)(xB

LL

L

L

LI

IxIy

Iy

Ix

b~b~
b~0

0b~

(54)

      
L

Ix L I x
L Γ

1b = φ n dΓ
A x x x (55)

      
L

Iy L I y
L Γ

1b = φ n dΓ
A x x x (56)

As shown in Figure 2, LΓ is the boundary of Voronoi cell which contains node L. xn and

yn are, respectively, the x and y components of vector n (outward vector which is normal to
boundary of Voronoi cell). Note that in equation (54) no derivatives of shape functions are
involved in evaluating the smoothed gradient matrix at the nodal points. Considering the
equation (54) and the nodal integration method, the coefficient matrices of equation (38) can
be rewritten as:





NP

1L

i
LLJL

T
IIJ A K)(x)DB(xBK (57)

   
NP NPb

I I L L I L L
L=1 L=1

= φ A + φ S F x b x T (58)

where, NP is the number of points in the local support domain of Node L, NPb is the
number of points on the natural boundary, SL are the weights associated with the boundary
points that can also be obtained from the Voronoi diagram, and Ki is the stiffness matrix of
the interface layer .

Figure 2. The Voronoi cell contains node L [12]

To calculate equations (55) and (56), any numerical integration method can be used. For
instance, by applying a two-point trapezoidal rule for each segment in Figure 2, equations
(55) and (56) can be written as
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    
SN M M

M M M+1 ML L
Ix L I L xL I L xL

M=1L

l l1b ( ) = φ n +φ n
A 2 2

 
 
 
x x x (59)

    
SN M M

M M M+1 ML L
Iy L I L yL I L yL

M=1L

l l1b ( ) = φ n +φ n
A 2 2

 
 
 
x x x (60)

where, Ns is the total number of segments of Voronoi cell contains node L, M
Lx and M+1

Lx are
the two end points of boundary segment M

LΓ and M
Ll is the length of M

LΓ . M
xLn and M

yLn are,

respectively, the x and y components of the outward surface normal of M
LΓ .

5. Numerical study

In this section three example are investigated. In the first example an elastic discontinuous
media is assumed and the accuracy and convergence of proposed mesh-free method is
investigated. The two latter examples are devoted to the elasto-plastic behaviour of materials
and the accuracy of obtained results.

Example 1. Elastic discontinuous media
An elastic discontinuous media shown in Figure 3 is analyzed under depicted loading

condition. The elastic properties of material types are shown in Table 1. Between different
materials, interface layers are assumed, and the normal and shear stiffness of these layers are
104  kN/m3 and 106  kN/m3 respectively.

Figure 3. Elastic discontinuous media

Table 1. Material properties
Type number Elastic modulus (GPa) Poisson's ratio

TYPE 1 3 0.3
TYPE 2 60 0.25

The results of finite element analysis are used as a datum for comparison. However it is
assumed that by increasing the number of elements the results of the finite element code get
closer to the exact solution. Hence, parameter  is defined as:

P F
FEM FEM

F
FEM

η



U U

U
(61)
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where, . stands for Euclidean norm, P
FEMU and F

FEMU are the vectors of displacement for the
analysis with P number of elements and the analysis with the initial number of elements
respectively. As in the two successive modeling with increasing number of elements, the
value of  remains constant, the results of the analysis can be assumed to be the best for the
finite element analysis. Figure 4 shows the variation of  with respect to the number of
elements. According to this Figure, the finite element model with 3420 elements gives the
best results.

Figure 4. Variation of  with respect to the number of elements

To investigate the convergence of proposed method, three mesh-free models and their
Voronoi diagrams are assumed (Figure 5). The first model contains 39 nodes which are 1 m
apart from each other. In the second and third models the distances between nodes decreased
to 0.5 m and 0.25 m respectively, and consequently 95 and 225 nodes are generated. The
relative error of displacement between the mesh-free and the FEM is determined by

 
 

2FEM MFM

d 2FEM

-
e = 


U U

U
(62)

where, de is the relative error of displacement, MFMU is the displacement vector in mesh-free

method, FEMU is the displacement vector in FEM. Figure 6 shows the variation of de with
respect to the distances between nodes. It is obvious that by decreasing the distances between
nodes, the relative error is also decreased. This condition confirms the convergence of the
method.

Figure 5. Mesh-free models
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finite element analysis. Figure 4 shows the variation of  with respect to the number of
elements. According to this Figure, the finite element model with 3420 elements gives the
best results.

Figure 4. Variation of  with respect to the number of elements

To investigate the convergence of proposed method, three mesh-free models and their
Voronoi diagrams are assumed (Figure 5). The first model contains 39 nodes which are 1 m
apart from each other. In the second and third models the distances between nodes decreased
to 0.5 m and 0.25 m respectively, and consequently 95 and 225 nodes are generated. The
relative error of displacement between the mesh-free and the FEM is determined by

 
 

2FEM MFM

d 2FEM

-
e = 


U U

U
(62)

where, de is the relative error of displacement, MFMU is the displacement vector in mesh-free

method, FEMU is the displacement vector in FEM. Figure 6 shows the variation of de with
respect to the distances between nodes. It is obvious that by decreasing the distances between
nodes, the relative error is also decreased. This condition confirms the convergence of the
method.

Figure 5. Mesh-free models
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Figure 6. Variation of de with respect to the number of nodes

In the last part of this example the stability of the proposed method to the nodes
arrangement is investigated. An irregular arrangement of nodes is considered for 225 nodes
model and the Voronoi diagram of the model is established as shown in Figure 7. The
parameter de is calculated for different radiuses of support and the results are represented in
Figure 8 for regular and irregular nodal arrangements. As it is obvious from this Figure, the
disturbance in nodal arrangement deteriorates the accuracy of results, but the decrease in
accuracy is not to that extent to destroy the stability of the proposed method.

Figure 7. Irregular nodal arrangement
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Figure 8. Effect of nodal arrangement on the value of de

Example (2) : Thin layers of elastic material surrounded by elasto-plastic media
In this example three thin layers of elastic material are assumed to be surrounded by a

cohesive-frictional material. The geometry and loading condition of problem are shown in
Figure 9. The cohesive-frictional material is assumed weightless with the elasto-perfectly
plastic Mohr-Coulomb parameters of:
elastic modulus=30 MPa , Poisson ratio= 0.3, cohesion= 20 kPa , friction angle= 25°.

Figure 9. thin layers of elastic material surrounded by elasto-plastic medium

The elastic modulus and a Poisson's ratio of thin layers are 600 MPa and 0.3 respectively.
The thickness of layers is considered 0.01m. Complete bound between different domains is
assumed.

To investigate the accuracy of proposed mesh-free method, the results of analyses are
compared with the results of finite element modeling. The finite element modeling is carried
out using the PLAXIS [17] software which can model the thin layers efficiently. The finite
element model contains 2182 elements (Figure 10) and it is used as a datum for comparison.

0 2 4 6
5

6

7

8

9
Regular Arrangment

Irregular Arangement

e
d

%

Radius of support



S.M. Binesh, N. Hataf, A. Ghahramani /Comp. Meth. Civil Eng., Vol. 3, 2 (2012) 29-45

41

(c)
Figure 10. Finite element model

In meshfree modeling, 360 nodes with regular arrangement are used (Figure 11). Each
layer is simulated by 26 nodes along two parallel lines (which are separated from each other
by the thickness of layer). The Voronoi diagram for integration is presented in Figure 11.
To guarantee that sufficient and suitable nodes are covered in the support domains, the
radiuses of the support domains is specially devised with a slightly adjustable value in the
program which is automatically self-tuned such that at least 15 nodes are selected for each
local support domain.

Figure 11. Mesh-free model and Voronoi diagram

The load-deformation curves at the center line beneath the loaded area obtained from both
models and represented in Figure 12. The mean root square error (MRSE) between these
curves is also computed and shown in the Figure. As it is obvious, there is a very good
agreement between the results of finite element with a high number of elements (2182
elements), and meshfree modeling with quite a low number of nodes (360 nodes). The value
MRSE implies that the average difference between the values along two curves is just about
3% which is a small error.
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Figure 12. Load-deformation curves for meshfree and finite element models

Example (3) : Pull-out test
One of the most popular tests for the studying of interface behaviour between different

materials is pull-out test. In this test a single bar or fiber is pulled out off the surrounding
matrix and the corresponding load versus displacement relation is recorded. In order to
compare the results of proposed meshfree method with the experimental results, the study of
Yogarajah and Yeo [18] is considered. In this research the load and strain distribution is
measured along the reinforcement, during a pull-out operation. The schematic layout of test
apparatus is shown in Figure 13. The steel tank is filled by sand with the density of 17.5

3kN / m , the friction angle of 47°, the elasticity modulus of 80 MPa and null cohesion. A
1.1m geo-grid with the elasticity modulus of 40 MPa is placed at the mid-height of the tank.
The test is performed under displacement-control condition and hence, the load and strain
distribution is obtained for 10mm and 20mm edge displacement of the reinforcement. The
tests are carried out with a uniform overburden pressure of 6.5 kPa and at a displacement rate
of 1mm/min. Detailed description of the test can be seen in [18].

There is also a numerical simulation of the operation by the finite element method. The
model of finite element analysis is shown in Figure 14.
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Figure 13. Schematic layout of test apparatus [16]

Figure 14. Finite element model of pull-out test [15]

The meshfree model of pull-out test is constructed by 252 nodes for soil and 24 nodes for
reinforcement. The soil is assumed to behave under elasto-perfectly plastic Mohr-Coulomb
criterion. The nodes arrangement and Voronoi diagram of mesh-free method is presented in
Figure 15.

For the meshfree analyses the radius of the support domain is adjusted for two cases. In the
first one the value of the radius is automatically self-tuned such that at least 4 nodes are
selected for each local support domain. For the second case the supports in the soil media and
reinforcement contain at least 15 and 7 nodes respectively. The results of analyses are shown
in Figures 16 and 17. In these Figures the results of numerical and experimental investigation
of Yogorajah and Yeo is also presented. As it is obvious the results of numerical analyses for
the load distributions have a good agreement with the experimental results. Among numerical
analyses, the meshfree analysis with at least 15 nodes in each support gives better
compatibility with experimental results for 10mm edge displacement of reinforcement.
However in 20mm edge displacement the results of mesh-free method and finite element
method have an equal degree of agreement with the experimental results. Indeed the
performance of mesh-free method with 15 nodes in each support is better than meshfree
analysis with 4 nodes in each support and even better than the finite element analysis.
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Figure 15. Node arrangement and Voronoi diagram

(a) (b)
Figure 16. The distribution of (a) load (b) displacement distribution along reinforcement for 10mm

edge displacement

(a)                                                                    (b)
Figure 17. The distribution of (a) load (b) displacement distribution along reinforcement for 20mm

edge displacement
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6. Conclusions

By the combination of radial basis point interpolation method and the linear conformal
nodal integration approach, a truly mesh-free technique is implemented for the elasto-plastic
analysis of a discontinuous medium. The discontinuity in the media is simulated by assuming
an interface layer between different materials and, the linkage element concept is adopted, to
consider the effect of interface layer in the global stiffness matrix. Agreement between the
results of proposed mesh-free method and the results of finite element modeling with a high
number of elements, or experimental modeling, confirms the robustness and accuracy of
proposed method for the elasto-plastic analysis of discontinuous mediums.
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