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Abstract. Support Vector Machine (SVM) has proven effective in various classification tasks by fo-
cusing on maximizing the margin between classes. However, standard SVM often fails to consider the
underlying geometric structure of data near the decision boundary, particularly in scenarios where class
overlap or noise occurs. This paper proposes a new method that focuses on boundary-critical samples,
those near the decision boundary, by integrating their covariance matrix into the learning process. The
principal eigenvector of this covariance matrix is then utilized to guide the classifier towards the most in-
formative regions of the data, enabling the classifier to better capture the local geometry. Importantly, this
modification is confined to the objective function, ensuring the convexity of the optimization problem
is preserved. Experimental results across various datasets, including linearly and non-linearly separa-
ble ones, demonstrate that the proposed method provides competitive or slightly improved classification
performance.
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1 Introduction

Data classification remains one of the fundamental problems in machine learning and pattern recog-
nition [17, 32, 33]. Among the various techniques developed for this task, Support Vector Machines
(SVMs) [18,26] have proven to be highly effective due to their solid theoretical foundation and practical
performance. By constructing a hyperplane that maximizes the margin between different classes [11],
SVMs have achieved success in diverse applications including medical diagnosis [5], financial forecast-
ing [16], and face recognition [22].

However, standard SVM formulations assume that all training data are equally reliable and relevant,
which may not hold in real-world scenarios where datasets often contain noisy labels, overlapping re-
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gions, and non-linear class boundaries. For such instances, the application of the same treatment to
all samples yields suboptimal or unstable classifiers. To overcome such disadvantages, a number of
SVM extensions have been suggested [27]. Fuzzy SVMs [24] offer confidence-based weights for sam-
ples to decrease the influence of outliers and noisy instances. Other methods like Margin Distribution
Optimization [13], Localized Multiple Kernel Learning [15], and Robust SVMs [2, 19, 34] aim to opti-
mize the margin behavior around problematic decision boundaries or emphasize regional shapes of the
data. Despite these advances, most contemporary methods still employ global statistics of the data or
margin-based rescaling rather than modeling sample geometry directly in conjunction with the decision
boundary. In this work, we propose a new approach that extends the standard SV M by focusing directly
on boundary-critical samples, i.e., those along the separating hyperplane, and by constructing a covari-
ance matrix from this subset, the approach incorporates local geometry information into the optimization
procedure. With this, the model can adequately estimate the decision boundary shape and orientation,
especially in cases of boundary noise or class overlap. Convexity is preserved by modifying only the
objective function while retaining the computation efficiency benefits of traditional SVMs. We propose
a new formulation that makes use of the covariance structure of boundary-critical samples to enhance the
sensitivity of the model to informative regions. Throughout the paper, we denote the norm-2 vector by
∥ · ∥.

The rest of this paper is organized as follows: Section 2 introduces the theoretical background of
SVMs. Our proposed method is presented in Section 3. In this section, the details of the method along
with the corresponding algorithm are described. In Section 4, several examples with synthetic and real
data in different dimensions are applied to our proposed method, standard SVM and some other baseline
methods, and their accuracy is examined. Finally, Section 5 concludes the study and outlines future
research directions.

2 Theoretical background of SVM

The SVM is powerful supervised learning models designed to construct an optimal hyperplane that sep-
arates different classes with the widest possible margin [4]. By concentrating on a subset of critical
training samples, known as support vectors, SVM achieves robust generalization capabilities, even in
high-dimensional feature spaces [8, 12, 31].

Given a set of labeled training samples (xi,yi), where xi ∈Rd and yi ∈ {−1,+1}, the standard (hard-
margin) SVM formulation seeks to solve the following primal optimization problem:

min
w,b

1
2
∥w∥2

subject to yi(wT xi +b)≥ 1, ∀i.
(1)

Here, w represents the normal vector to the hyperplane, and b is the bias term that determines the hyper-
plane’s position in the feature space.

In practical applications where perfect linear separability is not achievable, slack variables ξi are
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introduced, leading to the soft-margin SVM:

min
w,b,ξ

1
2
∥w∥2 +C

n

∑
i=1

ξi

subject to yi(wT xi +b)≥ 1−ξi, ∀i,

ξi ≥ 0, ∀i,

(2)

where C > 0 is a regularization parameter that controls the trade-off between maximizing the margin and
minimizing the classification error.

From a geometric standpoint, SVM aims to maximize the distance between the separating hyperplane
and the nearest samples from each class. These closest samples, termed support vectors, exclusively
determine the orientation and position of the hyperplane [8].

The margin, defined as the perpendicular distance between the hyperplane and the support vectors,
can be expressed as:

Margin =
2

∥w∥
. (3)

Thus, minimizing ∥w∥2 is directly equivalent to maximizing the margin, leading to improved generaliza-
tion on unseen data.

To tackle non-linearly separable data, SVM leverages the so-called kernel trick, wherein data is
implicitly mapped into a higher-dimensional feature space via a kernel function K(xi,x j) [6, 29]. This
allows the hyperplane to perform linear separation in the transformed space without explicitly computing
the mapping [1, 3, 21].

Common kernel functions include:

• Linear kernel: K(xi,x j) = xT
i x j,

• Polynomial kernel: K(xi,x j) = (xT
i x j + r)d ,

• Radial Basis Function (RBF) kernel: K(xi,x j) = exp(−γ∥xi − x j∥2).

Employing appropriate kernels enables SVM to model highly complex and non-linear decision bound-
aries effectively.

Ultimately, SVM offers a principled framework for classification by focusing on maximizing the
margin while maintaining computational efficiency through reliance on support vectors and kernel meth-
ods.

3 Proposed method

In this section, we introduce a novel modification to the standard SVM aimed at enhancing classification
accuracy by focusing on boundary-critical samples.

Standard SVM utilizes all training samples to define the separating hyperplane. However, many sam-
ples, particularly those far from the decision boundary, contribute little to the classification task and may
introduce noise. Concentrating on samples near the boundary offers a more efficient and discriminative
model.
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Let the dataset be denoted by {(xi,yi)}n
i=1, where xi ∈ Rd is a feature vector and yi ∈ {−1,1} is its

corresponding class label.
Let C+ = {xi | yi = +1} and C− = {xi | yi = −1} denote the sets of samples belonging to class +1

and class −1, respectively. We denote the mean of data points in class +1 and class −1 by µ+ and µ−,
respectively.

To identify samples near the decision boundary, we extract a subset of boundary-critical samples
from both classes based on their proximity to the opposing class mean. We introduce a hyperparameter
r (with 0 < r ≤ 1) that defines the proportion of samples to select from each class. For each sample
xi ∈C+, we compute its distance to the class −1 mean as

d(+→−)
i = ∥xi −µ

−∥.

Let π+→− be the permutation that sorts the samples in C+ according to the ascending order of d(+→−)
i .

Then, the closest r ·100% of class +1 samples to the class −1 mean are selected as:

S+→− =
{

xπ+→−(i)
∣∣ i = 1,2, . . . ,⌈r · |C+|⌉

}
.

Similarly, for each sample x j ∈C−, we compute the distance to the class +1 mean as

d(−→+)
j = ∥x j −µ

+∥.

Let π−→+ be the permutation that sorts the samples in C− in ascending order of d(−→+)
j . Then, the

closest r ·100% of class −1 samples to the class +1 mean are defined as:

S−→+ =
{

xπ−→+( j)
∣∣ j = 1,2, . . . ,⌈r · |C−|⌉

}
.

Finally, we define the set of boundary-critical samples as

Sv = S+→−∪S−→+. (4)

To determine an appropriate separating hyperplane, in our proposed method, we consider the data
scatter. Let the selected set of m samples be represented as

x(i)v ∈ Rd , i = 1,2, . . . ,m,

where each vector x(i)v denotes the i-th sample in a d-dimensional feature space.
The sample scatter (covariance) matrix is then given by

Σv =
1

m−1

m

∑
i=1

(
x(i)v − x̄v

)(
x(i)v − x̄v

)⊤
,

where

x̄v =
1
m

m

∑
i=1

x(i)v ,

is the mean vector of the samples. Here, each term
(

x(i)v − x̄v

)(
x(i)v − x̄v

)⊤
is a d×d matrix representing

the contribution of the i-th sample to the overall scatter.
To obtain the eigenvectors of the covariance matrix Σv, we formulate the eigenvalue equation as

Σvvk = λkvk, k = 1,2, . . . ,d,

where
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• λk is the k-th eigenvalue, representing the variance of the data along the direction vk,

• vk is the corresponding eigenvector, indicating the principal direction of variation.

The eigenvector associated with the largest eigenvalue specifies the direction of maximum data vari-
ance and can be utilized to determine the position and orientation of the separating hyperplane.

3.1 Proposed SVM objective function

The separating hyperplane in SVM is fundamentally influenced by samples from opposing classes that
lie close to each other. To better capture this critical region near the decision boundary, we focus on the
set Xv of boundary-critical samples that are closest across classes. The direction of maximum dispersion
within these samples is particularly informative for constructing a robust classifier.

By Singular Value Decomposition (SVD), one can show that the data points with normal distributions
Xv lie inside of an ellipsoid whose greatest diagonal is the direction of maximum variance [14]. Moreover,
we know that the eigenvector of covariance matrix corresponding to boundary points is in the same
direction as the diagonals of the ellipsoid. In the process of generating principal components in Principal
Component Analysis (PCA) [20], we also observe it [25].

Let the data points are inside of an ellipsoids whose diagonals are in the direction of eigenvectors
V = {v1,v2, . . . ,vd} of covariance matrix Σv. Suppose that the separating hyperplane is almost parallel
to the hyperplane formed by the eigenvectors V\{vi}, that means the eigenvector vi is almost parallel to
w and orthogonal to the given hyperplane. In other words, the vector w is derived by

w∗ = argmin
w

d

∑
j=1
j ̸=i

|wT v j|= argmin
w

1
2

d

∑
j=1
j ̸=i

(wT v j)
2 = argmin

w

1
2

d

∑
j=1
j ̸=i

(wT v j)(vT
j w)

= argmin
w

1
2

d

∑
j=1
j ̸=i

wT v jvT
j w = argmin

w

1
2

wT Bw,

where B =
d
∑
j=1
j ̸=i

v jvT
j is a symmetric, positive semi-definite matrix, ensuring the convexity of the objective

function.
To address concerns about completely replacing the standard SVM objective, we instead propose a

joint formulation that preserves the margin-maximizing term while incorporating the alignment with the
principal boundary direction. The modified problem becomes:

min
w

1
2
∥w∥2 +λwT Bw,

subject to yi
(
wT xi +b

)
≥ 1, ∀i,

(5)

where ∥w∥2 promotes a large margin as in standard SVM, while wT Bw tries to find the normal vector
w such that ⟨w,v⟩ is minimized. Here, λ > 0 is a regularization parameter that controls the trade-off
between maximizing the margin and minimizing ⟨w,v⟩.
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Remark 1. If the boundary-critical samples are almost equally distributed over all the features, the
resulting separating hyperplane of the new approach will be much like that of the classical SVM. This
implies that in these instances, the basic SVM already identified the dominant structure, and our method
converges to the same solution.

When data is not perfectly separable, slack variables ξi ≥ 0 are introduced to allow violations, leading
to the following problem:

min
w,{ξi}

1
2
∥w∥2 +λwT Bw+C

n

∑
i=1

ξi,

subject to yi
(
wT xi +b

)
≥ 1−ξi, ∀i,

ξi ≥ 0, ∀i.

(6)

This formulation ensures that the model benefits from the geometric margin guarantees of classical
SVM, while also aligning the decision boundary with the local structure captured by the top principal
directions of the boundary-critical region.

To formalize the method, the following algorithm outlines the procedure for training the SVM with
the proposed modification.

Algorithm 1: SVM with Boundary-Critical Samples

1: Input: Dataset {(x′i,yi)}n
i=1, Class labels yi ∈ {−1,1}.

2: Step 1: Use PCA (if needed) to reduce the dimensionality of the dataset and create a new dataset
{(xi,yi)}n

i=1.
3: Step 2: Compute the class means µ+ and µ− for Class +1 and Class −1, respectively.
4: Step 3: Select the set of boundary-critical samples Sv by (4).
5: Step 4: Construct matrix Xv from the selected boundary-critical samples.
6: Step 5: Compute the covariance matrix Σv.
7: Step 6: Extract d eigenvectors V of Σv.
8: Step 7: Find vi ∈V such that vi is almost orthogonal to separable hyperplane generated by standard

SVM.

9: Step 8: Form B =
d
∑
j=1
j ̸=i

v jvT
j .

10: Step 9: Solve the proposed SVM objective Problem (5) to obtain the optimal weight vector w and
bias b.

11: Output: Optimal hyperplane parameters w and bias b.

3.2 Discussion

The main innovation of the proposed method is its focus on critical-samples near the decision boundary,
rather than utilizing the entire training dataset. By selecting samples near the boundary, the influence of
noise or irrelevant points is reduced, ensuring that the classifier focuses on the important informational
aspects of the data.

In addition, the use of the covariance matrix allows the local geometric structure around the decision
boundary to be taken into account in the model, rather than simply maximizing the margin between
classes in the entire dataset.
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Standard SVM Accuracy: 0.9900 | Proposed SVM Accuracy: 0.9933

Figure 1: Classification in which the data of the two classes are on either side of the maximum dispersion.
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Standard SVM Accuracy: 0.9967 | Proposed SVM Accuracy: 0.9967

Figure 2: Classification in which the data of the two classes are on either side of the minimum dispersion.

In the case where the classes are located on both sides of the direction of maximum dispersion(s),
the proposed method performs effectively by considering the eigenvector(s) (Figure 1). However, if the
classes are on both sides of the minimum dispersion, the proposed method will give a separating plane
almost the same as the standard SVM (Figure 2).

This is because the criterion of the proposed method is to find a normal vector that is as perpendic-
ular (or close to perpendicular) to the direction of dispersion as possible. One note that the separating
hyperplane is ultimately determined by the problem’s constraints. The objective function tries to find
a separating plane with the largest margin. If the dispersion is distributed almost equally in different
directions, the resulting hyperplanes from the proposed method and the standard SV M are expected to
be almost the same (Figure 3). From another perspective, one can first obtain the separating hyperplane
from the standard SVM model and then consider the points whose distance from this plane is less than
a small threshold as boundary samples (see Example 6). This method is conceptually more robust, since
the definition of the boundary region is directly based on the model structure, not on the class means,
which may not be a good representation in asymmetric data.

It is well known that if a dataset is normally distributed, then the data will contain inside of an
ellipsoid, where the diameters of the ellipse are the eigenvectors of the covariance matrix of the dataset
[23]. If the dispersions of the boundary data are the same in different directions, then the covariance
matrix becomes approximately proportional to the identity matrix, i.e., Σ ∝ I. In such a case, almost any
vector can act as an eigenvector, since the data points are inside a spherical shape. In this case, it is better
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Standard SVM Accuracy: 0.9867 | Proposed SVM Accuracy: 0.9867

Figure 3: Classification in which dispersion is distributed almost equally in different directions for boundary
points.

to reduce the percentage of boundary-critical samples or consider data from only one class to find the
appropriate eigenvector.

Based on empirical observations and experiments, the proportion of boundary-critical samples is
denoted by the hyperparameter r (where 0 < r ≤ 1). This parameter can be adjusted depending on the
nature and complexity of the dataset, allowing flexibility in sample selection.

As discussed previously, the boundary data tend to lie within an ellipsoidal region, and therefore,
the proposed method continues to perform reliably under such conditions. If the data are not distributed
across a large number of clusters, then removing outliers can make this method perform well even when
the data do not follow identical distributions. Nevertheless, there is another approach that always works,
though at a higher computational expense. In this approach, one can first obtain the separating hyperplane
from the standard SVM solution and then select the samples whose distance from this hyperplane is
below a small threshold as boundary-critical samples. Example 6 illustrates this alternative approach.

Examples presented in the numerical results section demonstrate the effectiveness of the proposed
method. Furthermore, by evaluating different values of r in the range of 0.01 to 0.25 for both synthetic
and real datasets, it was observed that the model’s performance remains relatively stable with respect to
this hyperparameter. This analysis justifies the selected value of r in the experiments.

4 Experiments and results

To evaluate the effectiveness of the proposed method, a series of experiments are conducted on synthetic
datasets with different feature dimensions. Both linearly separable and non-linearly separable cases are
considered to analyze model performance under various scenarios. In addition to the synthetic datasets,
the a9a dataset from the UCI repository, which is widely used to evaluate linear and non-linear SVM
classifiers [9], as well as the Rice dataset [10, 28], are also used to evaluate the proposed method in
real-world conditions.

All codes related to data analysis and graph generation are written using Python programming lan-
guage. These codes use reliable libraries such as NumPy, pandas, matplotlib, scikit-learn, scipy, cvxpy.
All tests are performed on an ASUS VivaBook (X513EQN) laptop with the following specifications:
Intel Core i7 processor, 8GB RAM, 512GB SSD internal memory, and Windows 10 operating system.
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Figure 4: Decision boundaries and principal eigenvector for two-feature linear dataset

Data sets with two, three, and six features are generated. In non-linear scenarios, complex and non-
linear decision boundaries are created by adding Gaussian noise to the data.

To comprehensively evaluate the performance of the proposed method, we compared it with two
well-established baseline approaches in addition to the standard SVM: the ν-support vector machine and
the Fuzzy SVM. The ν-SVM [30] offers a principled way to directly control the model complexity and
error rate via the ν parameter, making it a robust geometric baseline close to classical SVM frameworks.
On the other hand, the Fuzzy SVM is specifically designed to handle ambiguous or imprecise labels by
incorporating Fuzzy membership values that fit well with the nature of uncertainty considered by our
method. Therefore, comparing these two methods provides meaningful insights into how our approach
performs relative to geometric margin-based and uncertainty-aware classification techniques.

For a more comprehensive evaluation, comparisons are made using 10-fold validation and the average
classification accuracy along with its standard deviation is reported as a measure of the stability of the
models’ performance. Also, two different types of kernel functions were used to examine the behavior
of the models under non-linear conditions.

In the evaluation process, the adjustment parameter λ is considered in the range [0.1,2] to examine
the effect of aligning the weight vector with the dominant direction of the boundary. Also, in all exper-
iments, the hyperparameter r is fixed at 0.1. In some experiments, to further evaluate the effect of this
hyperparameter, its value is varied within the range 0.1 to 0.25, and the corresponding impact on the
accuracy and stability of the proposed method was analyzed.

To ensure fairness and reproducibility across all experiments, the regularization parameter C is fixed
at 1 for all models. In the non-linear settings, the polynomial kernel is used with a fixed degree of 3, the
RBF kernel with γ = 1, and ν = 0.5 for ν-SVM. These hyperparameters are selected uniformly for all
models and datasets without additional tuning.

Example 1: In the first example, a synthetic dataset with two features and two classes is generated,
where each class contains 500 samples with different variances (variance of class −1: 1.0, variance of
class 1: 2.0), as shown in Figure 4. Purple points represent class −1, and red points represent class 1.
The points highlighted in cyan correspond to the boundary samples selected with r = 0.1. Specifically,
these include the samples of class 1 that are closest to the mean of class −1 (red cross), and the samples
of class −1 that are closest to the mean of class 1 (brown cross). The main eigenvector, corresponding
to the largest eigenvalue of the covariance matrix computed from these boundary samples, is shown in
black in Figure 4. Figure 4 illustrates the two-feature dataset with the corresponding boundary points for
both classes and the special eigenvector derived from the covariance of the selected boundary data.
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Table 1: Comparison of classification accuracy (%) and standard deviation for different methods

Method Mean Accuracy Standard Deviation Training Time(s)
Standard SVM 98.60 ± 0.0066 0.0021

Fuzzy SVM 98.50 ± 0.0055 0.0025
ν-SVM 97.60 ± 0.0058 0.0042

Proposed SVM 98.70 ± 0.0040 0.0032

Standard SVM Fuzzy SVM  -SVM Proposed MSVM
0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

A
c
c
u
ra

c
y

Comparison of SVM Methods Accuracy (10-fold CV)

Figure 5: Comparison of mean classification accuracy and standard deviation for four methods: standard SVM,
Fuzzy SVM, ν-SVM, and the proposed SVM

To compare the performance of the proposed method with baseline methods, classification accuracy and
standard deviation values obtained from 10-fold cross-validation are reported in Table 1. The results
cover four different methods: standard SVM, Fuzzy SVM, ν-SVM, and the proposed SVM. Each value
represents the average accuracy along with its standard deviation, allowing both predictive performance
and model stability to be assessed. According to the Table 1, the proposed method with an accuracy of
98.70% and a standard deviation of 0.0040 has shown the best performance in terms of accuracy and
stability between iterations.

In comparison, the standard SVM and Fuzzy SVM methods have achieved accuracies of 98.60%
and 98.50%, respectively, but have larger standard deviations, indicating higher fluctuations in their
performance compared to the proposed method. The ν-SVM method has the lowest performance in
terms of both accuracy (97.60%) and stability (standard deviation 0.0058).

These results show that the proposed method is able to generate a more accurate and stable decision
boundary by using local statistical information in the boundary region. Also, its smaller standard de-
viation indicates greater robustness to training data changes, which is of great importance in practical
applications.

As shown in Table 1, although the proposed SVM method requires slightly more training time com-
pared to standard and Fuzzy SVM variants, the increase is marginal and well justified by its superior ac-
curacy and robustness. The modest additional computational cost arises mainly from solving the convex
optimization problem with the boundary-focused regularization term. This overhead remains minimal in
practice, especially considering modern solver efficiencies and the critical performance gains achieved.
Therefore, the proposed approach strikes an excellent balance between computational complexity.

Figure 5 shows a visual comparison of the classification accuracy of the proposed method with other
methods.

Table 2 shows the classification accuracies of four SVM-based methods across different hyperpa-
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Table 2: Classification accuracy (%) for different hyperparameter values in various SVM methods. Bold numbers
indicate the best accuracy per method.

Method Parameter Value Mean Accuracy (%)

Standard SVM (C)
0.5 98.50
0.8 98.50
1.0 98.60

Fuzzy SVM (C)
0.5 98.50
0.8 98.50
1.0 98.50

Proposed SVM (C)
0.5 98.60
0.8 98.64
1.0 98.70

ν-SVM (ν)
0.3 97.60
0.5 97.60
0.7 97.40

Table 3: Sensitivity of classification accuracy (%) with respect to the value of r for the selected boundary-critical
samples using 10-fold cross-validation (fixed λ = 1.0)

Percentage of Boundary Samples Mean Accuracy Standard Deviation
0.01 97.80 ± 0.0068
0.05 98.10 ± 0.0063
0.10 98.70 ± 0.0040
0.15 98.20 ± 0.0054
0.20 98.20 ± 0.0054
0.25 98.20 ± 0.0054

rameter values. The parameters tested include the regularization parameter C for Standard SVM, Fuzzy
SVM, and the proposed SVM, as well as the parameter ν for ν-SVM. All results are averaged over 5-
fold stratified cross-validation on the synthetic dataset. As seen in Table 2, the highest accuracies for
standard SVM and proposed SVM are achieved at C = 1.0 while Fuzzy SVM performed consistently
across all tested C values. The ν-SVM achieved its best result at ν = 0.5. Overall, the proposed SVM
slightly outperforms the other methods, demonstrating the effectiveness of incorporating the principal
eigenvector regularization term. The results also indicate that the models are robust to small changes in
hyperparameters within the tested ranges.

The effect of varying the hyperparameter r (representing the proportion of selected boundary sam-
ples) on the classification accuracy, measured using 10-fold cross-validation, is reported in Table 3. As
can be seen in Table 3, the classification accuracy initially improves with increasing the hyperparameter
r and reaches its maximum value of 98.70% at r = 0.10, with the lowest standard deviation of 0.0040.
After that, the accuracy remains around 98.20% and does not change noticeably.

This behavior indicates that using an appropriate proportion of boundary samples (particularly around
r = 0.10) provides sufficient and effective statistical information for learning, while higher values of r
offer limited additional benefit and may increase computational complexity. Moreover, the low standard
deviation in this region demonstrates better stability of the model performance against variations in the
training data.

To evaluate the sensitivity of the proposed method to the regularization parameter λ , we varied its
value from 0.1 to 2.0. This parameter controls the influence of the principal direction regularization term
in the objective function. Table 4 reports the classification accuracy and standard deviation obtained via
10-fold cross-validation for each value.
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Table 4: Sensitivity of classification accuracy (%) to the regularization parameter λ in the proposed SVM method
(fixed r = 1.0)

Lambda (λ ) Mean Accuracy Standard Deviation
0.1 98.10 ± 0.0054
0.4 98.00 ± 0.0063
0.7 98.00 ± 0.0063
1.0 98.70 ± 0.0072
1.3 98.00 ± 0.0063
1.6 97.90 ± 0.0083
1.9 97.70 ± 0.0090

Figure 6: Decision boundaries and principal eigenvector for two-feature non-linear dataset

As can be seen in Table 4, the classification accuracy remains relatively stable for values less than
λ = 1.0 and reaches its maximum value of 98.70% with a relatively low standard deviation at λ = 1.0.
After this point, increasing the value of λ causes a gradual decrease in accuracy and an increase in the
standard deviation.

This trend shows that introducing a regularization penalty for the main direction of the data in the
objective function helps improve the performance of the model, but making the weight of this penalty
too large may cause an inappropriate change in the direction of the decision boundary and reduce the
generalization power of the model. Therefore, the choice of λ = 1.0, which is used in all experiments,
provides a good balance between maintaining a large margin and being consistent with the data structure.

Example 2: In the second example, two non-linear two-feature datasets with 500 synthetic sam-
ples are created to evaluate further the proposed method for two classes with different variances. Class
variance minus one = 0.5 and Class variance plus one = 0.1 for the first dataset (Figure 6) and Class
variance minus one = 0.4, and class variance one = 0.9 for the second dataset (Figure 7). In Figures 6
and Figure 7, the blue points are class minus one, the red points are class one, the green dashed curve
is the standard SVM separator, and the orange curve is the proposed SVM separator. Figure 6 shows
the standard and proposed SVM implementations with the RBF kernel (defined in Section 2.3). Figure 7
shows the standard and proposed SVM implementations with the cubic polynomial kernel (defined in
Section 2.3). After evaluating the models on the non-linear two-feature synthetic dataset, classification
results for two different kernels — RBF and Polynomial (degree 3) — are reported. Table 5 summarizes
the accuracies achieved by both the standard SVM and the proposed method.

The results clearly show that the proposed method consistently outperforms the standard SVM, albeit
slightly, under both kernel settings. Particularly with the RBF kernel, the proposed method improved
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Figure 7: Decision boundaries and principal eigenvector for two-feature non-linear dataset

Table 5: Comparison of standard and proposed SVM models on a two-feature non-linear dataset using different
kernels

Kernel Standard SVM Accuracy (%) Proposed SVM Accuracy (%)
RBF 95.33 95.67

Polynomial (degree 3) 99.33 99.67

classification accuracy from 95.33% to 95.67%, while with the Polynomial kernel of degree 3, it achieved
a slight improvement from 99.33% to 99.67%. These findings highlight the robustness and adaptability
of the proposed method across different kernel types.

Example 3: In this example, we created a synthetic dataset with three features, 500 samples per
class, and linear separability. The variance for each class is different: the variance for class −1 was 0.9
and the variance for class 1 was 2.3.
The numerical results of four different approaches are compared, including the standard SVM, ν-SVM,
Fuzzy SVM, and the proposed method. The performance of the models is evaluated using 10-fold cross-
validation, and the average classification accuracy along with the standard deviation and training time
for each method are reported in Table 6. As observed in Table 6, the proposed SVM achieves the highest
mean accuracy with comparable stability (lowest standard deviation) compared to the other approaches.
Although Fuzzy and ν-SVM also perform well, their accuracies are slightly lower than those of the
standard and proposed SVM models.

To evaluate whether the observed differences in classification performance among the four methods
are statistically significant, pairwise Paired t-tests are conducted based on the cross-validation results.
The results are summarized in Table 7. These results demonstrate that the proposed SVM significantly
outperforms Fuzzy SVM and ν-SVM. Importantly, its improvement over the standard SVM is not sta-
tistically significant (p-value > 0.05). This indicates that the proposed method should be regarded as a
competitive alternative to the standard SVM, achieving comparable accuracy while offering additional
robustness to boundary noise and asymmetric data distributions.

Example 4: To provide a more comprehensive evaluation of the classifiers on real-world data, we
applied all four methods to the Rice dataset after performing preprocessing and PCA. To reduce com-
putational complexity and potential overfitting, PCA is applied to project the data into a 6-dimensional
subspace. The transformation retained approximately 99.9% of the total data variance, indicating that
the most significant information was preserved during the dimensionality reduction process [7]. The
classification performance is measured using three metrics: Accuracy, F1-score, and AUC-ROC, using
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Table 6: Comparison of classification accuracy (%) and standard deviation for different methods (10-fold cross
validation)

Method Mean Accuracy (%) Standard Deviation F1-score (%)
Standard SVM 99.40 ± 0.0066 99.36

Fuzzy SVM 98.90 ± 0.0114 98.88
ν-SVM 98.30 ± 0.0149 98.25

Proposed SVM 99.42 ± 0.0065 99.38

Table 7: Paired t-test results between different SVM variants

Comparison t p-value Significance
Fuzzy SVM vs Proposed SVM −3.082 0.0131 Significant
ν-SVM vs Proposed SVM −2.602 0.0287 Significant
Standard SVM vs Proposed SVM 2.3510 0.0985 Not Significant

10-fold cross-validation. The results are reported in Table 8.
The results in Table 8 indicate that all four methods achieve very similar performance on the Rice

dataset. The proposed SVM attains the highest mean Accuracy (92.79%) and F1-score (92.83%), while
standard SVM and Fuzzy SVM show nearly identical Accuracy and F1-score values. The ν-SVM ex-
hibits slightly lower performance, but the differences across all metrics are minimal. Overall, these re-
sults suggest that all methods are comparably effective for this classification task, with no single method
demonstrating a clear advantage.

To assess the sensitivity of the proposed model to the regularization alignment parameter λ , experi-
ments are performed using values ranging from 0.1 to 2 with a fixed boundary sample ratio (10%). The
classification accuracy and standard deviation over 10-fold cross-validation are reported in Table 9.

As shown in Table 9, the accuracy of the proposed method remains stable across a wide range of λ

values. The highest accuracy (92.79%) is observed for λ = 0.4 and λ = 1.0, with only minor fluctuations
in other values. This robustness confirms that the model is not highly sensitive to the choice of λ within
this range.

To evaluate the impact of the selected boundary samples on model performance, we varied the hyper-
parameter r, which defines the proportion of closest samples from each class to the mean of the opposite
class, in the range of 0.01 to 0.25, while keeping λ = 1.0 fixed. Table 10 presents the results in terms of
classification accuracy and stability.

Table 10 shows that the choice of the hyperparameter r, i.e., the proportion of boundary samples,
has a limited effect on the model’s classification accuracy. The highest accuracy is achieved at r = 0.10,
while performance remains nearly the same for other values. This indicates that the proposed model can
generalize effectively even with a relatively small subset of discriminative samples from the boundary
region.

Example 5: To further validate the proposed method on real-world data, we conducted experiments
on the well-known a9a dataset (Adult dataset from UCI), which contains 32,561 training and 16,281 test
instances with 123 features.

All methods are evaluated using 5-fold cross-validation on the entire a9a dataset. The comparison
includes four classifiers: standard SVM, the proposed method, Fuzzy SVM, and ν-SVM. The average
accuracy and standard deviation over five folds are reported in Table 11.

As shown in the table above, the proposed SVM requires a longer training time compared to the
standard SVM and Fuzzy SVM methods. This increase in training time is due to the additional compu-
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Table 8: Comparison of average accuracy, F1-score, and AUC-ROC (%) with standard deviations over 10-fold
cross-validation on the Rice dataset

Method Accuracy (%) F1-score (%) AUC-ROC (%)
Standard SVM 92.70±1.00 92.75±1.00 97.92±0.00

Fuzzy SVM 92.70±1.00 92.77±1.00 97.90±1.00
ν-SVM 92.55±1.00 92.51±1.00 97.86±0.00

Proposed SVM 92.79±1.00 92.83±1.00 97.92±0.00

Table 9: Effect of λ on accuracy (%) of the proposed model over 10-fold cross-validation on the Rice dataset
(fixed r = 0.1)

λ Accuracy (%) Standard Deviation
0.1 92.73 ± 0.0116
0.4 92.79 ± 0.0115
0.7 92.76 ± 0.0120
1.0 92.79 ± 0.0112
1.3 92.73 ± 0.0116
1.6 92.70 ± 0.0112
1.9 92.76 ± 0.0120

Table 10: Effect of boundary data percentage on accuracy (%) of the proposed model over 10-fold cross-validation
on the Rice dataset (fixed λ = 1.0)

Boundary Percentage Accuracy (%) Standard Deviation
0.01 92.70 ± 0.0116
0.05 92.70 ± 0.0116
0.1 92.79 ± 0.0112
0.15 92.72 ± 0.0112
0.20 92.72 ± 0.0112
0.25 92.72 ± 0.0112

tational steps involved in the proposed model, which includes convex optimization utilizing the principal
boundary eigenvector.

However, the accuracy of the proposed model is slightly better than the other methods, with a similar
standard deviation, indicating its stable performance.

In Table 12, by setting (λ = 1.5), the accuracy of the proposed method is better than the stan-
dard SVM. Moreover, considering the standard deviation of the mean accuracies, the proposed method
demonstrates slightly better stability compared to the standard SVM.

We conducted experiments to compare the classification accuracy of four different methods: standard
SVM, the Proposed Method, Fuzzy SVM, and ν-SVM. Each method is evaluated using multiple values of
its key hyperparameters: C for SVM-based methods and ν for ν-SVM. The experiments are performed
using 5-fold cross-validation on the dataset, and the mean accuracies for each parameter setting are
recorded.

Following the results shown in Table 13, it is clear that both standard SVM and the proposed Method
provide stable and high accuracy across the tested parameter values, indicating their robustness and suit-
ability for this dataset. Fuzzy SVM shows slightly lower performance, which may be due to the weighting
scheme applied to the samples. On the other hand, ν-SVM exhibits significantly lower accuracy for all
tested (ν) values, suggesting that the current parameter settings may not be optimal for this dataset or
that ν-SVM is less effective under these conditions.
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Table 11: Comparison of classification accuracy (%) and standard deviation for different methods on the a9a
dataset using 5-fold cross-validation

Method Mean Accuracy (%) Standard Deviation Training Time(s)
Standard SVM 83.89 ± 0.0084 30.42

Fuzzy SVM 82.65 ± 0.0079 26.87
ν-SVM 40.75 ± 0.0575 4.45

Proposed SVM 83.90 ± 0.0083 35.25

Table 12: Comparison of classification accuracy (%) and standard deviation for different methods on the a9a
dataset using 5-fold cross-validation and λ = 1.5

Method Mean Accuracy (%) Standard Deviation
Standard SVM 83.89 ± 0.0084

Fuzzy SVM 82.65 ± 0.0079
ν-SVM 40.75 ± 0.0575

Proposed SVM 83.92 ± 0.0083
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Figure 8: Boundary-critical points is selected based on distance to standard SVM decision boundary.

Example 6: In this example, the goal is to evaluate the effectiveness of the proposed boundary point
selection strategy. Unlike the previous examples, where 10% of the samples closest (r = 0.10) to the
mean of the opposite class are considered as boundary-critical points, here the boundary-critical points
are defined geometrically based on the vertical distance from the separating hyperplane. Specifically,
data whose vertical distance from the hyperplane obtained from the standard SVM is less than a certain
small threshold (such as δ = 0.2) are selected as boundary-critical points.

Using this new subset, the proposed model is retrained via 10-fold cross-validation, and its perfor-
mance is compared with the original method. The results showed that the accuracy of the model did not
decrease significantly, indicating the stability and robustness of the proposed method with respect to the
type of boundary point definition (see Figure 8).

The results of the ten-fold validation are shown in Table 14.

The accuracy of the proposed method with this new boundary-critical points selection method is still
higher than standard.
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Table 13: Classification accuracy for different methods and parameter settings on the dataset

Method Parameter Mean Accuracy
Standard SVM 0.5 0.8388

0.8 0.8388
1.0 0.8389

Proposed Method 0.5 0.8389
0.8 0.8387
1.0 0.8390

Fuzzy SVM 0.5 0.8254
0.8 0.8254
1.0 0.8265

ν-SVM 0.1 0.4015
0.3 0.4033
0.5 0.4175

Table 14: Selection of 10% percent of boundary-critical points based on the alternative method

Method Mean Accuracy (%) Standard Deviation
Standard SVM 88.67 ± 0.0120
Proposed SVM 90.67 ± 0.0100

5 Conclusion

In this study, a novel framework was proposed to enhance the performance of SVMs by redefining the
objective function based on the geometric structure of data near the decision boundary. By focusing on
critical samples that play a significant role in defining the separating hyperplane, the proposed approach
effectively captured the underlying distribution of the data with greater precision.

Experimental results suggest that utilizing the principal eigenvector extracted from a carefully se-
lected subset of samples can enhance classification performance in certain scenarios, particularly in
non-linear settings and high-dimensional datasets. This highlights the importance of leveraging local
boundary information rather than relying solely on the global distribution of all training samples.

The principal advantage of the proposed method lies in its ability to adapt to complex data structures
and to reinforce decision boundaries against noise and overlapping samples. From a theoretical perspec-
tive, this approach provides a promising pathway toward geometry-aware learning models. Practically,
the method shows shows promise in addressing challenges in real-world classification tasks.

Future research directions include extending the proposed method to multi-class problems, inves-
tigating its adaptability with various types of kernel functions, and applying it to complex real-world
datasets, such as those encountered in medical diagnosis or financial forecasting.
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