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Abstract. This paper presents a numerical method for solving the second-kind Fredholm integral equa-
tions using the least squares approach via QR decomposition. The proposed technique employs Gaussian
quadrature for numerical integration and efficiently applies QR decomposition for minimization. This
strategy not only simplifies the implementation but also significantly enhances computational perfor-
mance. A convergence analysis is provided, and several numerical examples demonstrate the accuracy
and effectiveness of the method compared to traditional technique.
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1 Introduction

Fredholm integral equations of the second kind arise frequently in various fields of engineering and
physics, where many problems can be reformulated as such equations. For example, in plasma physics
[17], medical imaging and signal processing [14], and atmospheric radiative transfer [29], all of which
often require efficient numerical solutions. Extensive research has focused on developing and analyzing
numerical methods for solving these equations (e.g., [6–8, 10]). Several efficient algorithms have been
proposed for the rapid numerical solution of Fredholm integral equations of the second kind in [9,10,16,
17, 23, 28, 31].

We focus on the following Fredholm integral equation:

u(x) = f (x)+λ

∫ b

a
k(x, t)u(t)dt. (1)

We consider an approximate solution to the Fredholm integral equation of the second kind, expressed as
a linear combination of Chebyshev polynomials. To determine the coefficients of this linear combina-
tion, we formulate and solve a minimization problem by minimizing the norm of the residual function
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associated with the approximate solution. Gaussian quadrature is employed to approximate the integral
in the norm of residual function, leading to a non-square linear system. The least squares solution to this
system is then obtained using QR decomposition.

The least squares solution to this system is then obtained using QR decomposition, while other de-
composition methods are available [18], QR decomposition is chosen here due to its direct relevance
to the minimization process. The use of Gaussian quadrature with Chebyshev nodes provides an accu-
rate approximation of the integral. The use of Gaussian quadrature with Chebyshev nodes provides an
accurate approximation of the integral. Moreover, Chebyshev polynomials have been widely used in
numerical approximation due to their favorable properties [20, 21, 24] and the least squares method has
been extensively employed in [1–5, 11–13, 22, 25, 26]. This paper focuses on the computational imple-
mentation of the least squares method. The efficiency of the least squares method over other well-known
numerical techniques has been reported in [15, 33]. Our primary contribution is to demonstrate that a
solver based on QR decomposition offers significant performance advantages compared to the traditional
zero-gradient approach for the required minimization. To further contextualize this efficiency, a numer-
ical comparison with the Galerkin method is also presented. This analysis confirms that our proposed
QR-based method is substantially more efficient, reducing CPU time significantly while delivering the
same level of absolute error. This paper presents several crucial contributions, which can be summarized
as follows:

• The integral equation is reformulated as a minimization problem for the residual norm. By ap-
plying Gaussian quadrature for numerical integration, the residual norm is transformed into a
non-square linear system, thereby reducing the minimization problem to one of numerical linear
algebra problems.

• The least squares solution of this non-square system is efficiently obtained using the QR decom-
position method, which offers both ease of implementation and high computational speed.

• Rigorous proofs are provided for the convergence of the residual norm as well as the convergence
of the approximate solution. Moreover, the minimum order of convergence is presented.

• Several numerical examples are included to illustrate the efficiency of the proposed method over
zero-gradient method and Galerkin method.

The rest of paper is organized as follows. Section 2 introduces the proposed method for transforming
the Fredholm integral equation of the second kind into a least squares problem and outlines the use of
QR decomposition to obtain the minimum-norm solution. Section 3 provides a rigorous convergence
analysis of the method and establishes the convergence rate of the approximate solution. Section 4
presents numerical examples that illustrate the superior efficiency and accuracy of the QR decomposition
method in comparison with the zero-gradient approach and Galerkin method. Finally, Section 5 offers
concluding remarks and summarizes the main findings of the study.

2 Description of the method

For convenience, we briefly express the Fredholm integral equation (1) in the form u = f +λKu where
K denotes the Fredholm integral operator on function u. We consider the approximate solution, in the
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form of a polynomial expressed in terms of Chebyshev polynomials as follows:

un(x) =
n

∑
j=0

c jTj(x).

The residual function is defined as a function in the following form:

R(c0, . . . ,cn)(x) := un(x)− f (x)−λ

∫ b

a
k(x, t)un(t)dt.

The unknown coefficients ci’s are determined such that the weighted Chebyshev norm of the residual
function is minimized (without loss of generality, consider [a,b] = [−1,1]):

min
c0,...,cn

∥R(c0, . . . ,cn)∥2
L2

w
= min

c0,...,cn

∫ 1

−1
w(x)(R(c0, . . . ,cn)(x))

2 dx. (2)

Traditionally, to minimize the norm of the residual function, the partial derivatives of the norm of the
residual R(c0, . . . ,cn) are set to zero and the solution of the following system yields the minimum:

∂∥R(c0, . . . ,cn)∥L2
w

∂ck
= 0, k = 0, . . . ,n.

For convenience, we call this traditional method (▽∥R(c0, . . . ,cn)∥L2
w
= 0), as the zero-gradient method

throughout this paper.
However, this paper shows that this method is very time-consuming even for moderately large N. To

address this issue, we propose a solution that, in an ideal scenario, considers the coefficients ci’s such
that the norm of the residual function equals zero:

0 = ∥R(c0, . . . ,cn)∥2
L2

w
=
∫ 1

−1
w(x)

(
n

∑
j=0

c jTj(x)− f (x)−λK

(
n

∑
j=0

c jTj

)
(x)

)2

dx (3)

≈
M

∑
i=0

wi

(
n

∑
j=0

c jTj(xi)− f (xi)−λK

(
n

∑
j=0

c jTj

)
(xi)

)2

. (4)

If we consider polynomial Ti as Chebyshev polynomial, therefore, the last equality effectively approx-
imates the integral using Gaussian quadrature with a sufficiently large number of nodes, denoted by
M +1. Since the weights wi’s are positive, each term in the summation is nonnegative. As a result, the
following linear system should hold:

0 =
n

∑
j=0

c jTj(xi)− f (xi)−λK

(
n

∑
j=0

c jTj

)
(xi)

=
n

∑
j=0

c j (Tj −λKTj)(xi)− f (xi)

for i = 0,1,2, . . . ,M. This non-square system can be written as

A(M+1)×(n+1)C(n+1)×1 = F(M+1)×1, (5)
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where

C =
(
c0,c1, . . . ,cn

)T
1×(n+1) ,

F =
(

f (x0), f (x1), . . . , f (xM)
)T

1×(M+1)

and

Ai j := (Tj −λKTj)(xi), i = 0,1, . . . ,M, j = 0,1 . . . ,n.

Note that the computation of the integral operator KTj at xi may involve complexities. In such cases,
Gaussian quadrature is used to efficiently approximate KTj(xi). The number M will be chosen as a
sufficiently large number to facilitate an accurate approximation of the integral (3). Note that M + 1 >
n+ 1 and the above matrix is not square matrix. The least squares solution of the linear system (5) is
a vector C which minimizes the function C 7−→∥ AC−F ∥L2

w
on C ∈ Rn+1. The QR decomposition of

matrix A yields the least squares solution of AC = F by solving the following linear system:

RC = QT F, (6)

where R is a square matrix ([27, Theorem 2.13]). Note that the QR decomposition of matrix A is consid-
ered as follows:

A(M+1)×(n+1) = Q(M+1)×(n+1)R(n+1)×(n+1),

where Q and R are the orthogonal matrix and square matrix, respectively ([27, Theorem 2.12]).

Remark 1. If we use the first kind of Chebyshev polynomials, then the Chebyshev points are

xi := cos(
(2i+1)π
2M+2

), 0 ≤ i ≤ M.

If we use the second kind of Chebyshev polynomials, then the Chebyshev points are

xi := cos(
iπ
M

), 0 ≤ i ≤ M.

Note that the weights wi’s are omitted when the non-square system (5) is obtained from (3). It shows that
system (5) is independent of the weights wi and only depends on Chebyshev points xi.

3 Convergence analysis of the method

This section proves the convergence rate of the proposed method. First, we establish that the minimum
norm of the residual function approaches zero as the degree n of the approximate solution increases.
Subsequently, we show that the approximate solution converges to the exact solution. To do this, we
consider

u(x) =
∞

∑
i=0

aiTi(x),
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as Chebyshev expansion of the exact solution u(x) and

ũn(x) =
n

∑
i=0

aiTi(x), (7)

where Ti is the first kind of Chebyshev polynomials. Thus

∥u− ũn∥2
L2

w
= ∥

∞

∑
i=n+1

aiTi ∥2
L2

w
=

∞

∑
i=n+1

|ai|2, (8)

since {Ti}∞
i=0 are orthogonal polynomials in L2

w, the last equality follows directly from Parseval’s identity.
According to [30], the following inequality can be proven for some natural number k and constant C:

∞

∑
i=n+1

|ai|2 ≤
C

(n− k)2k+1 . (9)

The detailed proof of inequality (9) is provided in the Appendix. Therefore, equality (8) and inequality
(9) imply that

∥u− ũn∥2
L2

w
→ 0 as n → ∞, (10)

which shows that

∥u− ũn∥2
L2

w
= O(

1
n2k+1 ). (11)

We now establish the following theorem, demonstrating that the norm of the residual function converges
to zero as the degree n of the approximate solution increases.

Theorem 1. Let u be the exact solution of Fredholm integral equation (1) and integral operator Ku =∫ 1
−1 k(x, t)u(t)dt, be a bounded operator. Then

min
c0,...,cn

∥R(c0, . . . ,cn)∥2
L2

w
→ 0 as n → ∞. (12)

Proof. Let Πn be the space of polynomials of degree at most n. Thus

min
c0,...,cn

∥R(c0, . . . ,cn)∥2
L2

w
= min

vn∈Πn
∥vn − f −λKvn∥2

L2
w
≤ ∥ũn − f −λKũn∥2

L2
w
,

where the function ũn is defined as in (7). Hence

min
c0,...,cn

∥R(c0, . . . ,cn)∥2
L2

w
≤∥ũn − f −λKũn∥2

L2
w

=∥ũn −u+λKu−λKũn∥2
L2

w

≤
(
∥ũn −u∥L2

w
+∥λK(u− ũn)∥

)2

≤2
(
∥ũn −u∥2

L2
w
+∥λK(u− ũn)∥2

L2
w

)
≤2
(
∥ũn −u∥2

L2
w
+λ

2∥K∥2∥u− ũn∥2
L2

w

)
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=2
(
1+λ

2∥K∥2∥
)
∥u− ũn∥2

L2
w
. (13)

The first equality follows from the fact that u = f +λKu. The first and second inequalities are derived
from the triangle inequality and the fact that (A+B)2 ≤ 2(A2 +B2), respectively. The last inequality
stems from the boundedness of the integral operator. By the convergence in (10) and inequality (13), the
following inequality is derived, which directly implies (12):

0 ≤ min
c0,...,cn

∥R(c0, . . . ,cn)∥2
L2

w
≤ 2

(
1+λ

2∥K∥2∥
)
∥u− ũn∥2

L2
w
→ 0 as n → ∞,

which completes the proof of the theorem.

Remark 2. The previous theorem and (10) -(11) yield the convergence rate of minimum of the norm of
the residue function,

min
c0,...,cn

∥R(c0, . . . ,cn)∥2
L2

w
= O(

1
n2k+1 ).

The next theorem proves the convergence rate of the approximate solution to the exact solution. We
need to introduce the definition of projection from L2

w[−1,1] to subspace Πn as follows. Since every
polynomial in Πn can be written as ∑

n
i=0 ciTi, for some coefficients c0, . . . ,cn. For every f ∈ L2

w[−1,1],
one can find the optimal set of coefficients (c∗0, . . . ,c

∗
n) that solves the minimization problem:

min
c0,...,cn

∥
n

∑
i=0

ciTi − f∥2
L2

w
= ∥

n

∑
i=0

c∗i Ti − f∥2
L2

w
. (14)

Because L2
w[−1,1] is a Hilbert space and Πn is a closed subspace, such a unique set of coefficients that

minimizes this distance is guaranteed to exist. The resulting polynomial, ∑
n
i=0 c∗i Ti, is the best polynomial

approximation to f .

Definition 1. Let Pn be a linear transformation Pn : L2
w[−1,1]→Πn, for every f ∈ L2

w[−1,1], the pro-
jection of f is denoted by Pn f := Qn = ∑

n
i=0 c∗i Ti, such that the minimization problem (14) attains the

minimum at (c∗0, . . . ,c
∗
n).

It is clear that PnQn = Qn, then

P2
n f = Pn(Pn f ) = PnQn = Qn = Pn f ,

which shows that Pn is a projection (P2
n = Pn).

The following theorem ([19, Theorem 12.1.2]) proves that the approximate solution converges to the
exact solution under some assumptions.

Theorem 2 ([19]). Assume K : V →V is bounded, with V a Banach space; and assume λ −K : V→V is
one-to-one and onto. Further assume

∥K −PnK∥→ 0 as n → ∞,

for projection Pn from V to a finite dimensional subspace of V . Then for all sufficiently large n, say n≥N,
the operator (λ −PnK)−1 exists as a bounded operator from V to V . Moreover, it is uniformly bounded:

sup
n≥N

∥(λ −PnK)−1∥< ∞.
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Also, the following two-sided error estimate holds:

|λ |
∥λ −PnK∥

∥u−Pnu∥ ≤ ∥u−un∥ ≤ |λ |∥(λ −PnK)−1∥∥u−Pnu∥, (15)

for the approximate solution un with n sufficiently large and the exact solution u.
Thus ∥u−un∥ converges to zero at exactly the same speed as ∥u−Pnu∥.

Proof. See [19, Theorem 12.1.2].

Corollary 1. The previous theorem and order of convergence (10)-(11) conclude that the approximate
solution converges to the exact solution of order O(n−k− 1

2 ).

Remark 3. Note that, ∥u−Pnu∥ = ∥∑
∞
i=n+1 aiTi∥ converges to zero, at least order of O(n−k− 1

2 ) and
in the special cases the convergence rate is more than O(n−k− 1

2 ). Therefore, the approximate solution
converges to the exact solution, at least of order O(n−k− 1

2 ). See Remark 4 in the Appendix for further
details.

4 Numerical experiments

In this section, numerical examples demonstrate that computing the least squares solution using QR
decomposition method is significantly faster than the traditional zero-gradient method. The provided
numerical examples taken from [32] are utilized to perform a comparative analysis of the three methods.
Computations were performed using MAPLE 18 on a system with an Intel® Core™ i7-10750H processor
(2.60 GHz) and 16 GB RAM.

Example 1. In this example we consider the kernel function in the integral equation (1) as

k(x, t) := ex+t ,

with λ = 1 and the exact solution given by

u(x) := ex + cos(x).

The corresponding right-hand side function f (x) is given by

f (x) = 0.5
(
(cos(1)− sin(1))ex−1 − (cos(1)+ sin(1))ex+1 +2cos(x)+2ex + ex−2 − ex+2

)
.

Table 1 shows that the QR method yields significantly lower errors compared to the zero-gradient method
for n = 16,32. Moreover, its computational time is substantially shorter than that of the zero-gradient
method and Galerkin method.

Example 2. Consider the kernel k(x, t) := x in the integral equation (1), and λ = 1 with the exact solution
given by

u(x) := x · arctan(x)
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Table 1: Absolute Error and CPU time for three methods on Examples 1-4

Zero-Gradient QR decomposition Galerkin
method method M = n+15 method

Example. N CPU Absolute CPU Absolute CPU Absolute
time Error time Error time Error

1

4 0.39s 2.0 e-2 0.03s 1.0 e-2 0.41s 1.5 e-2
8 5.31s 1.0 e-6 0.12s 4.0 e-7 6.5s 5.1 e-7
16 63.9s 5.0 e-8 0.42s 1.3 e-18 72.5s 8.0 e-17
32 484s 6.0 e-12 0.92s 8.0 e-22 510.5s 2.2 e-21

2

4 0.015s 3.5 e-2 0.015s 2.0 e-2 0.10s 2.8 e-2
8 0.061s 6.0 e-4 0.030s 2.0 e-4 0.4s 3.5 e-4
16 0.891s 3.0 e-7 0.079s 1.0 e-7 1.8s 8.9 e-7
32 1206s 1.2 e-9 0.437s 4.0 e-13 1375s 2.5 e-12

3

4 0.125s 9.0 e-3 0.032s 4.5 e-3 0.18s 5.0 e-3
8 23.41s 4.5 e-7 0.203s 2.0 e-7 30.55s 2.8 e-7
16 1704s 1.0 e-9 0.750s 1.0 e-17 2012s 9.2 e-16
32 Fail ......... 5.140s 2.5 e-19 Fail .........

4

4 0.2s 6.0 e-2 0.07s 6.0 e-2 0.17s 6.0 e-2
8 0.71s 2.5 e-3 0.12s 1.5 e-3 0.59s 1.6 e-3
16 9.57s 3.5 e-6 0.86s 1.3 e-6 12.0s 1.5 e-6
32 Fail .......... 5.140s 2.5 e-12 Fail ..........

and the corresponding right-hand side

f (x) = 0.5 · x · (2−π +2 · arctan(x)).

Table 1 demonstrates that the QR method produces significantly lower errors compared to the zero-
gradient method for n = 16,32. Additionally, its CPU time is considerably shorter than that of the
zero-gradient method and Galerkin method.

Example 3. Consider the integral equation (1) with the kernel function defined by

k(x, t) := sin(x− t), & λ = 4,

and the inhomogeneous term

f (x) = cos(x)−4 · sin(x)+ cos(x+2)− cos(x−2),

The exact solution is given by
u(x) := cos(x).

Table 1 shows that for n = 16, the error produced by the QR method is significantly lower than that of
the zero-gradient method. Moreover, the computational time of the zero-gradient method exceeds that
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more than 2000 times longer than that of the QR method. Also, for n = 32, the zero-gradient method and
Galerkin method do not achieve the approximate solution, even after over 30 minutes of computational
effort, whereas the QR method successfully computes the solution in just 5 seconds.

Example 4. Consider
k(x, t) := earctan(t),

as kernel in the integral equation (1), and λ = 1 with the exact solution,

u(x) :=
1

1+ x2 ,

and inhomogeneous term

f (x) =
1

1+ x2 + e
−π

4 − e
π

4 .

As shown in Table 1, the CPU time of the zero-gradient method is more than eleven times longer than
that of the QR decomposition method. Furthermore, in the case n = 32, despite over 30 minutes of
computational effort, the zero-gradient method and Galerkin method do not achieve the approximate
solution, while the QR decomposition method successfully obtains the result within 5 seconds.

The well-known Galerkin method is also tested, but it is very time-consuming and could not compete
with the QR decomposition approach. In the third and fourth examples with n = 32, the zero-gradient
method and Galerkin method do not achieve the approximate solution after 2000 seconds of computa-
tion, while the QR decomposition method successfully computes an approximate solution in just a few
seconds of CPU time. Across all four examples, for n = 4,8,16, the QR decomposition method yields
a smaller absolute error compared to the zero-gradient method. Additionally, the execution time of the
QR decomposition method is substantially lower than that of the zero-gradient method and Galerkin
method. The QR decomposition method demonstrates superior efficiency and accuracy compared to the
zero-gradient method and Galerkin method particularly for n = 16 and n = 32.

5 Conclusion

This paper presents a numerical method for solving Fredholm integral equations of the second kind
using the least squares approach combined with QR decomposition. The proposed method minimizes
the norm of the residual function by employing Gaussian quadrature for numerical integration and QR
decomposition for efficient computation. The convergence of both the norm of residual function and
the approximate solution to the exact solution is rigorously analyzed, demonstrating the method’s strong
theoretical foundation. A key advantage of this approach is that it avoids the use of partial derivatives
and requires fewer computations than traditional zero-gradient methods, resulting in significantly faster
execution. Numerical examples clearly illustrate the efficiency of the proposed method. For instance,
in the third and fourth examples with n = 32, the zero-gradient method and Galerkin method do not
achieve the approximate solution, even after over 30 minutes of computational effort, whereas the QR
decomposition method finds the solution in just a few seconds. Looking forward, the computational
efficiency of this method makes it a strong candidate for real-world inverse problems. For example,
in medical imaging and signal processing, the deconvoluting of signals to restore blurry images can be
formulated as a Fredholm equation where solution speed is critical. Furthermore, its potential application
in physics, such as modeling radiative transfer in atmospheric science, could enable more complex and
large-scale simulations where traditional solvers are prohibitively slow.
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Appendix

To prove inequality (9) we apply the following theorem [30].
Theorem. If f , f ′, . . . , f (k−1) are absolutely continuous on [−1,1] and if∫ 1

−1
(1− x2)

−1
2 | f (k)(x)|dx = L < ∞,

for some k ≥ 0, then for each j ≥ k+1,

|a j| ≤
2L

π j( j−1) · · ·( j− k)
. (16)

In addition, if f is analytic with | f (z)| ≤ M in the region bounded by the ellipse with foci ±1 and major
and minor semiaxis lengths summing to ρ > 1, then for each j ≥ 0,

|a j| ≤
2M
ρ j . (17)

Inequality (16) in the above theorem implies the following inequality:

∞

∑
j=n+1

|a j|2 ≤
∞

∑
j=n+1

4L2

π2 j2( j−1)2 · · ·( j− k)2 ≤ 4L2

π2

∞

∑
j=n+1

1
( j− k)2k+2 ,

for n > k. It is clear that

∞

∑
j=n+1

1
( j− k)2k+2 ≤

∫
∞

n

dx
(x− k)2k+2 =

1
(2k+1)(n− k)2k+1 ,

which proves (9).

Remark 4. In the case (17), the following inequality holds:

∞

∑
j=n+1

|a j|2 ≤ 4M2
∞

∑
j=n+1

(
1

ρ2 )
j =

4M2

ρ2 −1
(

1
ρ2 )

n.

In the case (16), the approximate solution converges to the exact solution of order O(n−k− 1
2 ) and in the

case (17), the approximate solution converges to the exact solution of order O(ρ−n), that is more than
order O(n−k− 1

2 ). Therefore, the approximate solution converges to the exact solution, at least of order
O(n−k− 1

2 ), which explains Remark 3.
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